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" the needle in the hay-stack is already “one piece” ... but:

(Higgs-) particles need to be reconstructed from decay products

decay products need to be reconstructed from detector signatures

etc..
Key:
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Experience Twitter like never before, full speed ahead. Fast, sleek, stylish,
advanced, bold, and beautiful

ENGLISCH

Experience Twitter like never before, full speed
ahead. Fast, sleek, stylish, advanced, bold, and
beautiful.

DEUTSCH

Erleben Sie Twitter, wie nie zuvor, volle Kraft
voraus. Schnell, schlicht, elegant, moderne, fett
und schon.

platfy
grows and advances, | have no doubt that Talon will continue leading the way

$200,000

READ
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.... IS ‘everywhere’
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= What is: Machine Learning (ML) & S

Multivariate Analysis/Technique (MVA)

= Basics (classification, regression)
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= generative vs predictive models 07 BT ¢ 07 07 05 o4

= MVA/ML algorithms
= Naive Basian, KNN,
= Linear discriminators, SVM
= model fitting — gradient decent and loss function
= General comments about MVAs

= BDT (Yann Coadou) this afternoon)

= Neural Networks (tomorrow)
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= “[Machine Learning is the] field of study that gives computers the

ability to learn without being explicitly programmed.” Arthur Samuel
(1959)

= “A computer program is said to learn from experience E with respect to
some task T and some performance measure P, If its performance on T,

as measured by P, improves with experience E.” Tom Mitchell, Carnegie
Mellon University (1997)

| suggest: forget about ‘fancy definitions’:

‘understanding/modeling your data’ ...
and if you cannot do it in multi-dimensions on “analytic first
principles” let the computer help ©
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- Many things ... starting from “linear regression”

£(X) to multivariate event classification

10} . "" R Xy

20 -10 10 20 30 40 50 i

—> or w/o prior ‘analytic’ model

- typically “multivariate”
= Parameters depend on the ‘joint distribution’ f(x,, X,)

= ‘learning from experience’ > known data points
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= fitted (non-)analytic function may approximate:

= target value - ‘regression’

( e.g. calorimeter calibration/correction function)

- CM

0 ;Simulation

Events/0.014

105E||1[|||

T [ T T T I T T
Barrel

H— vy, P> 25 GeV
¢ Photons
—— Sum of pdfs
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Etrue/Eraw

MC sample: y +jets

= Raw energy in crystals, n, ®

= Cluster shape variables

= Local cluster position variables
(energy leakage)

= Pile-up estimators

-> predict energy correction (i.e.
parameters in crystal-ball: pdf for
energy measurement)
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" Signal and Background
discriminating observed variables x,, x,, ...
-> decision boundary ?
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"‘known measurements” - model “functional behaviour”
" e.g. : photon energy as function “D”-variables: ECAL shower parameters + ...
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= known analytic model (i.e. nth -order polynomial) = Maximum Likelihood Fit)

= no model ?
- “draw any kind of curve” and parameterize it?

" seems trivial 7 > human brain has very good pattern recognition capabilities!

" what if you have many input variables?
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" “standard” regression - fit a known analytic function
"e.g. f(x)= ax,>tbx,?+c

" BUT most times: don’t have a reasonable “model” ? - need something more general:
" e.g. piecewise defined splines, kernel estimators, decision trees to approximate f(x)

Note: we are not interested in the ‘fitted parameter(s)’, it is not: “Newton deriving F=m-a”
—> just provide prediction of function values f(x) for new measurements x



vin
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= intelligent “Multivariate Pattern Recognition” used to identify particles

Helge Voss
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= Later: ‘MVAs got out of fashion’ - replaced by
= if (..)then ... ; = ‘cuts on individual variables’

= Fear of “black box fears” or because it is easier to program?

= Some ‘Fisher discriminants’, Naive Bayesian (Likelihood) even

NNs.... have always been around before becoming mainstream

agal n @ , \ November 1992

LU TP 92-23

— e

Neural Networks in High Energy Physics

High Energy Physics

The jprogress of exploiting ANN in high enregy physics has been somewhat slow. IPartly this con-
servalisi 15 due to the a misconception tha approaches contain an element of ['black box
magic” as compared to conventional approaches. I hope I have convinced the reader that-tristsnot

the case. Statistical interpretation of the answers makes the ANN approach as well-defined to use
as the discriminant ones.
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Normaliz
B

" Each event, if Signal or Background, has “D” measured variables.

4 5
log(sIPS_pi)

[TMVA In put Variablesiog (FS_Bd)|

" Ripst atatapping from D-dimensional input-observable (*feature” space)
PD t8(sheRdmBrsional output > clgns%sfa%%rl]eral form

oars. 5 P y =Yy(x); x ePP
® “feature x={X4,....,Xp}: input variables
o space”

: " plotting (histogramming) % 3.s§ij’;“k‘ij'm'un'd 1
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\ " Each event, if Signal or Background, has “D” measured variables.

" Find a mapping from D-dimensional input/observable/’feature” space

ImErE
H~ 7] Background

- y(B) — 0, y(S) —> 1 3

to one dimensional output

“»
w

log(sIPS_pi)

Normalized
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Test statistic: ; E
D y(x): RP>R: 05 E
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“feature ' ' —y(x

space”

log(FS_Bd)

N
|

" distributions of y(x): PDFg(y) and PDFg(y)

" used to set the selection cut! > cut: signal
y(Xx): = cut: decision boundary

< cut: background

Qefﬁciency and purity

" overlap of PDF¢(y) and PDFg(y) = separation power , purity

o s / " y(x)=const: surface defining the decision boundary.
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ifi i ; H Signal = " ] 3
Classification: s Bkground 3
= y(x): ROSR: “test statistic” in D- Yo ROSR: |2 ° i B) =0 =1 -

dimensional space of input variables _— i -
2 =
" y(x)=const: surface defining the decision . 3
boundary. N E
0.5 i
o 0 0.2 04 0.6 0.8 | 1 -

y(x)

Reqgression:
B “D” measured variables + one function value

(e.g. cluster shape variables in the ECAL + particles |
f(Xq,%o)

energy)
" y(x): RP>R “regression function”

400 _ P o e =
y(x)=const -> hyperplanes where the e ?:‘;%:":":,‘“
200" TS e
target function is constant 150 OSSR
, _ 1004 ot
Now, y(x) needs to be build such that it o
4.5 %
best approximates the target, not such X, N e

that it best separates signal from bkgr. SR 18 0 T X

Helge Voss SOS 2016, Autrans France, Multivariate Analysis — Machine Learning 17



PDFg(y). PDFg(y): y(x): RP>R:
%3.52‘;;1 wel N\ - - Probability densities for y
2 °F E given background or signal
ik < | e.g.:foran event with y(x)=0.2
°‘: 2 ke | > PDFg(y(x)) = 1.5 and PDFg(y(x)) = 0.45
2 04 0.6 0.8 y(X‘S

fs ,fg : fraction of S and B in the sample:

fsP D |:S (y) is the probability of an event with

: = P(C =S |Y) measured x={x;,.....xp} that gives y(x)
fsPDF (y)+ fu,PDF;(y) to be of type signal
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Signal(H,) /Background(H,)

| MVA distributions |
> 14 %% signal
g - === Backgr
B 12— —— Type 1 Error
o - —— Type 2 Error
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Type-1 error small
Type-2 error large

Type-1 error large
Type-2 error small

v

0 1- ﬁ/ gsignal 1

= Type 1 error: reject H, (i.e. the ‘is bkg’ hypothesis) although it would haven been true

= - background contamination
= Type 2 error: accept H, although false

= - loss of efficiency
Helge Voss
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. __ PDF(x|S)
y(x) = PDF(x|B)

—2 but p(X|S), p(x|B) are typically unknown
9Neyman-Pearsons lemma doesn’t really help us directly

—> best possible classifier

" use already classified “events” (e.g. MonteCarlo) to:
estimate p(X|S) and p(x|B): (e.g. the differential cross section folded with the detector
influences) and use the likelihood ratio

—> e.g. D-dimensional histogram, Kernel density estimators, ...
é(generative algorithms)

OR
approximate the “likelihood ratio” (or a monotonic transformation thereof).
find a y(x) whose hyperplanes”® in the “feature space”
(y(x) = const) optimally separate signal from background
e.g. Linear Discriminator, Neural Networks, ...
é(discriminative algorithms)

* hyperplane in the strict sense goes through the origin. Here | mean “affine set” to be precise



supervised: - training “events” with known type (i.e. Signal or Backgr, target value)

un-supervised: - no prior notion of “Signal” or “Background”

- cluster analysis: if different “groups” are found - class labels
- principal component analysis:

find basis in observable space with biggest
hierarchical differences in the variance

—> infer something about underlying substructure
reinforcement-learning:

- learn from “success” or “failure” of some “action policy”

(i.e. a robot achieves his goal or does not / falls or does not fall/ wins
or looses the game)

This lecture: supervised learning



m— —t

“‘events” distributed according to P(x
" estimate probability density P(x) in D-dimensional space: J ()

A
X2 ¢ o o h
" The only thing at our disposal is our “training data” *fiee e o o
e e® ® e e ® o
e o
" Say we want to know P(x) at “this” point “X” 0.'.':... ®4o0 00 0
[ 0e®0® P o P
" One expects to find in a volume V around point “x” o of .:. : L
N*[P(x)dx events from a dataset with N events ® ol ee o0 v
v . o.o .. .o o.o.. X
- K-events: vid
1
K(x) = N k(x_xn) ith k(1) = 1, |y < l,i =1..D k(u): is called
X) = _ n )W wW=10 2 : a Kernel function:
n=1 ’ otherwise

—->K(x)/N: estimate of average P(x) in the volume V

X — X
® Classification: Determine P(x) = — Z k L n j
PDF(x) and PDF4(x) P h

— likelihood ratio as classifier!

- Kernel Density estimator of the probability density



" estimate probability density P(x) in D-dimensional space: “events” distributed according to P(x)
. . . .. X2 ° o o h
" The only thing at our disposal is our “training data” *fiee e o o
o o '. : oo ® °
" Say we want to know P(x) at “this” point “x” 0% e o ®eoc ®0 %0
® ¢ °%ee .3 S
" One expects to find in a volume V around point “x” o o0 >
[ J [ J
N*[P(x)dx events from a dataset with N events ®* ' ee oo *S v
v o o0 ¢ 000 X
oo © o
- K-events: . >
1

N 1 . .
— : 1, |yl <=,i=1..D k(u): is called
K(x) = E k(== ,Wlthk(u)Z{ b= .
n=1 ( h ) 0, otherwise a Kernel function:

—->K(x)/N: estimate of average P(x) in the volume V

" Regression: If each events with (x4,x,) carries a “function value” f(x4,X,) (e.g. energy of incident
particle) -

1T . -
—Z kK(x —x)f(x") = J f(x)P(x)dx i.e.: the average function value
N =

Vv



“‘events” distributed according to P(x)
— kNN : k-Nearest Neighbours
relative number events of the various y(x) = —
classes amongst the k-nearest neighbours K

keep K fixed —> variable window size

éautomatically ‘adapt’ resolution to the available >
data

- may replace “window” by “smooth” kernel function (i.e. weight events by
distance via Gaussian)



N
P (X) — L Z Kh (X - X ) . a general probability density estimator using kernel K

" Kor h: “size” of the Kernel - “smoothing”
" too small: overtraining/overfitting

" too large: not sensitive to features in P(x)

= Kernel types: window/Gaussian ...
" which metric for the Kernel ?
= normalise all variables to same range
= include correlations ?
= Mahalanobis Metric: x*x 2 xV-1x

" a drawback of Kernel density estimators:
Evaluation for any test events involves ALL TRAINING

DATA - typically very time consuming

K=15

Bayes’ optimal decision boundary

(Elements of statistical learning)



Bellman, R. (1961), Adaptive
Control Processes: A Guided
Tour, Princeton University Press.

We all know:

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due
to lack of Monte Carlo events.

Shortcoming of nearest-neighbour strategies: £
5
_%0.8:—
" higher dimensional cases K-events often are not in ® 06l /T
a small “vicinity” of the space point anymore: 04i —D=2
- -D=3 |—
0.2[ / D=5
of —p=10 |
C L e e
I . =1D 0 0.02 0.04 0.06 0.08 0.1
consider: total phase space volume V=1 Volume fraction

for a cube of a particular fraction of the volume:

edge length=(fraction of Volume)l/D

" 10 dimensions: capture 1% of the phase space
- 63% of range in each variable necessary -» that’s not “local” anymore..®

2> develop all the alternative classification/regression techniques



Multivariate Likelihood (k-Nearest Neighbour)
—> estimate the full D-dimensional joint probability density

Naive Bayesian
—> ignore correlations

P roduct of marginal PDFs
P(x)=[P(x) " 9
i=0

(1-dim “histograms”)

pdf: histogram + smoothing

:I LIL I.II LI ir%blil{ Hal.tla.l (Islilglr{allil LI I LIl

T " No hard cuts on individual variables = “fuzzy”,

600 Estimated PDF (norm. signal) -

(a very signal like variable may % oo, // H,
counterweigh another, less signal V///////'/J

500

like variable) s

400

&.

300}

o
>

: [ ” X
200F fuzzy cuts 1

100 = optimal method if correlations ==

" try to “eliminate” correlations




* Find variable transformation that diagonalises the covariance matrix
" Determine square-root C ' of correlation matrix C, i.e., C=C'C'

"compute C ' by diagonalising C: D=S'CS = C'= S+/Ds”

" transformation from original (x) in de-correlated variable space (x') by: x’ = C '—1x

= T —
|||||||||| 0.5 T&T T T T T
?,a, 022F E § T Sigriai
S 02} 1z [/ZZ] Background 2
E oa8f 48 E 0ar T s
[+] E 1= QO i
Zz 016 i Z s
0.14F 3= 03l =
3 E 2
0.12¢ EES g
3 e S
o} E M s
£ 1s 02 5
0.08f i bt
0.08F iz [ S
E EPs (R ]S 3
0.04F 15 3
0.02F = ¥ ! ]
ok is o P2 ]
10 -8 6 4 2 0 2 4 6 -

varl+var2

Normalised [
Normalised ]

AUT ETETAFTENIFFRTARTE RS FRERE FRTRY FUTHY 01
UiQ-tlow (8,8): (0.0, 0.0)% / (0.0, 0.4)%
U/O-tlow (S,B): (0.0, 0.0)% / (0.0, 0.8)%

Attention: eliminates only linear correlations!!
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= PCA (unsupervised learning algorithm)
= reduce dimensionality of a problem
= find most dominant features in a distribution

= Eigenvectors of covariance matrix = “axes” in transformed variable space
= large eigenvalue - large variance along the axis (principal component)

- PCA eliminates correlations!

Helge Voss SOS 2016, Autrans France, Multivariate Analysis — Machine Learning
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" Example: linear correlated Gaussians - de-correlation works to 100%

—1-D Likelihood on de-correlated sample give best possible performance

écompare also the effect on the MVA-output variable!

correlated variables: after decorrelation

TMVA response for classifier: Likelihood

TMVA response for classifier: LikelihoodD

g

% I IISilgnéI T | T | T T T T E % I ||Silgné| T T T | T T T | T T T E
> 8 Background — > 8 Background —
- - J L= C m
z g F = 'F E
= ] 722 E s 6 - =
=1 ] C 7
5 722 = é. - -
= 1< =
- ] -
4 ? = = ]
i £ .
1s -
—a =
= ]
Al :
/F_ W 1 (s g 1 1 1 1 1 1 1 m
0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Likelihood response LikelihoodD response

Watch out! Things might look very different for non-linear correlations!

Helge Voss

SOS 2016, Autrans France, Multivariate Analysis — Machine Learning

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
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in cases with non-Gaussian distributions and/or nonlinear correlations,
the decorrelation needs to be treated with care

How does linear
decorrelation affect
cases where
correlations
between signal and
background differ?

Original correlations

| varl versus var0 (signal)_NoTransform

vari

IIIIIIIIIIIIIIIIIII|IIII|IIII|IIII|IIII+

| vari versus varl (background)_MoTransform

_I'I_lllII.III.JI.IIIIIIIIIIIIIIIIIIIIIIII IIII|-.

Background




in cases with non-Gaussian distributions and/or nonlinear correlations,
the decorrelation needs to be treated with care

How does linear
decorrelation affect
cases where
correlations
between signal and
background differ?

SQRT decorrelation

varl wersus varl (signal)_DecorrTransform

vari [

| warl versus vard (background)_Decorr Tranaferm

:l LI | LI | LI | LI | LI III: t EI I.I I.II T TT I LI | T T T I T T T III:
af 1§ 4 LN 3
3¢ 1 s M
1t
AE —z -'Iz— —
2f 1 =
-3F 3 aF i
4AF _z 42_ ﬁ"':
sH . Ll | = sB

6 -2 0 & -4 -2 1] 2 4

var( var(
Signal Background




B in cases with non-Gaussian distributions and/or nonlinear correlations,
the decorrelation needs to be treated with care
® How does linear
decorrelation aﬁeCt | varl versus varl (signal)_NoTransform | varl wersus varl (background)_NoTransform
Strongly non”near E1.4 T AL A A TAAPTTTTT T
cases ? L E
08F
06["
tmi
ﬂ.2;
Original correlations 0F
020
04f

06 .
1_—| 1 I 111 I 111 | 111 | 111 I 111 I 111 | 111 I 111 I
10.80.60.40.2 -0 0.20.40.60.8

|IIII: ]:'IIIIIIIIII|IIIIIIIIIIIIIIIIIIIII.I-Il.I-IIIIIIIIII|E
11214 450604020 62040608 11.21.4

] var( var0
Signal Background




B in cases with non-Gaussian distributions and/or nonlinear correlations,
the decorrelation needs to be treated with care

How does linear
decorrelation aﬁect | vari versus varl (signal]_DecorrTransform | | varl versus varl (background)_DecorrTransform
Strongly nonlinear 1!-6355_H|||||||||||||||||||||||.||:|||-|.‘-:\.L.|||| HI-II_'H_'E EME_|||||||||||||||||||||||||||||||||||||||||| ||_|E
A = - r ]
cases ? af - sf
25F 25f
2t 2t
1.5} 15}
1f
05F 05f
: of of
SQRT decorrelation 5] 5
-1:—..|....|....|....|....:|..,. R R T
1405005 115 2 25 3
. var( var(Q
Signal Background

—> Watch out before using decorrelation “blindly™!!
9Perhaps “de-correlate” only a subspace!



‘correlations’, ‘linear-correlations’, ‘interaction/dependence’

—> phsicist’s slang often different from statistitans’ !

1 0.8

0.4 0 -0.4 -0.8 -1

he) 1
i

5
k- Erpe
-

o i B e

w L k e C :

Lt [ iy A g -4 L
- Sy, B e B e
R ?&. % g s o

http://en.wikipedia.orglwikilCorreIation_énd_deperidence

= to capture “non-linear correlations” - mutual information

xy(X,y)
= I(x,y) = ffpxy(x,y)log( Pry 5Y )dxdy

Px (x)py )

= I(x,y) =0 only if x, y are really statistically independent !

SOS 2016, Autrans France, Multivariate Analysis — Machine Learning
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= KNN and Naive Bayesian (Multi-dimensional and Projective Likelihood)
= generative methods - estimate the pdf

= discriminative methods
= impose model-specific restrictions (i.e. linear decision boundaries)

= fit directly the decision boundaries

Neyman-Pearson Lemma: in the limit, a ‘perfect’ discriminative
“limit” in ROC curve is given by assifier y(x) . o
PDF(x|S classlitier y(X) parametriZes ine
y(x) = PDF((;C:B))' o .
Bayes’ optimal the likelihood ratio likeihood ratio (or a monotonic function thereof)

(or any monotonous function —> use as ‘event weights’
thereof)



M
General: Y0 = (g, 0] = ) wily(6)
i=0
D
Linear Discriminant: y(x ={xq, ..., xp}) = wy + Z W; X
i=1

i.e. any linear function of the input variables: - linear decision boundaries

o

2l ‘% ' e:+ .| PDF of the test statistic y(x)

| % SR | = determine the "weights” w that separate "best”
?’ PDF from PDF

2" .




3 S SgRal” T L= T T T

determine the “weights” w that do “best”

" Maximise “separation” between the S and B

—> minimise overlap of the distributions of y5 and yg

" maximise the distance between the two mean
values of the classes

" minimise the variance within each class

_ 2 —T 55— mn: n" .
> maximise J() = (Elygl-Elys])? _ wTBwW in between" variance

2 2 - —T — T o o ]
Oy +ays wiWw within" variance

V—W>](V_V)) =0=> wax W L{(¥)s — (X)p) the Fisher coefficients

L=

note: these quantities can be calculated from the training data



assume the following non-linear correlated data:
" the Linear discriminant obviously doesn’t do a very good job here:

" Of course, these can easily be de-
correlated:

— here: linear discriminator works

perfectly on de-correlated data

vari
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" A simple to “quadratic” decision boundary:

" var(Q

— linear decision boundaries in varQ,var1
" var1i

while:

" varQ * varO

‘feature : .. .
" varl *varl =2 quadratic decision boundaries in varO,var1
H H ) 0 a 0 0
engineering = yarQ * var1 Performance of Fisher Discriminant
with quadratic input:
| Signal and background distributions weighted by Fisher output ‘
B4 TRV L L T signal §1-4E
>1_2? . : ‘Background g1.2
5 3 =

1;_; | MVA_Fisher

e
o
=3

=Y

=
w©
©

backar rejection (1~

Fisher
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)J4-02 0 02040608 1 1.2 1.4
Var00

0_ e Lo Lo v Lo b Lo b b
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What about a more ‘general approach’ than ‘constructing J(w)’ ?

> minimize the expectation value of a “Loss function” L(y*™", y(x))

L(ytrain’ y(x)) . penalizing prediction errors for training events

* Regression:

2
E[L] =E E (ytrem — y(x )) ] squared error loss
* Classification:

E[L] = E[y{"*"log(y(x) + (1 — y{"*")log(1 — y(x;))]

regression: yfrain = the functional value of training event i which
happens to have the measured observables x;

classification:  yf %" =1 for signal, =0 (-1) background

Helge Voss SOS 2016, Autrans France, Multivariate Analysis — Machine Learning

binomial loss

42



* Regression: y{"*™" : Gaussian distributed around a mean v

* Remember: Maximum Likelihood estimatior

* Maximise: log probability of the observed training data -

events events

Py y(x)) == ) log(POI ™ ly(x;
i

L =—log

i

2
B ER=VE; E (ytremn—y (x )) ]  squared error loss (regression)

* Classification: now: yf ™" (i.e. is it ‘sing distributed

events
train train

L=— ) log(PO ™ |y(x)) = = ) log(P(Slx)* " P(Blx) ")

If we now say y(x) should simply parametrize P(S|x); P(B|x)=1-P(B|x) =

Helge Voss N 11 v rSOBy-gif futrans France, \Wltivarigte Analysis ¢ plggis Leaming. 043



*

Fisher Discriminant:
— equivalent to Linear Discriminant with ‘squared loss function’
- Ups: didn’t we just show that “classification” would naturally use ‘binomial loss’ ?

—> build a linear classifier that maximizes ‘binomial loss’:
- y(x) to parameterize P(S|x), we clearly cannot ‘use a linear function for ‘y(x)’
— ‘squeeze’ any linear function wy + ijxf = Wx into the proper interval 0 <
y(x) < 1 using the ‘logistic function’ (i.e. sigmoid function)

Logistic Regression P -
y(x) = P(S|x) = sigmoid(Wx) = 1+31—Wx 0_5_/

B P(S|x)\ . /
- Log(0dds) = Log( (le)) = Wx is linear! _ —

Note: Now y(x) has a ‘probability’ interpretation. y(x) of the Fisher discriminant was ‘just’ a
discriminator.
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1
1+e~Wx

y(x) = P(S|x) = sigmoid(Wx) =

1 D example: Logistic Regression: 1 Feature

1.5

y(x) =sigm(wx,

y(x) =wx

-0.5

Feature X

Note: decision boundaries are still ‘linear’, just the ‘contour lines’ (y(x)=const)
are non-linear, parametrizing the probability of the event being y=0 or y=1 as

‘distance’ from the boundary....
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Difference between ‘linear classifier’ and ‘logistic regression’

- distribution of decision boundaries

4-
\ .
o .
2-
B
0t ‘ef/
e
<
2t °

Helge Voss

a ‘monotonous’ transformation of y(x)
— does not change ‘relative overlap’
for pdfs of yg and yg

— Does not change performance
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minimize the “loss function” > “W” ?

e.g. E[LW)] = E[y™" log(y(x;)) + (1 — y{" ™) log(1 — y(x))]

with y(x) = — . :
1+e~Wx learning rate
4 L

W - W-—-n # . gradient decent
and if you don’t want to evaluate the
expectation value every time for the whole
sample:

’ JL , ,

WX W - W-—-n 5., stochastic gradient decent

mostly: something in between = mini-batches
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There are methods to create linear decision boundaries using only measures of
distances (= inner (scalar) products)

= - |leads to quadratic optimisation problem

The decision boundary in the end is defined only by training events that are
closest to the boundary

suitable variable transformations into a higher dimensional space may allow
separation with linear decision boundaries non linear problems

—>Support Vector Machine



" hyperplane that separates S from B X2 A

- quadratic minimisation problem

Helge Voss

Linear decision boundary

Best separation: maximum distance (margin)
between closest events (support) to hyperplane
If data non-separable add misclassification cost
parameter C-X&; to minimisation function

Non-separable data

Solution of largest margin depends only on

inner product of support vectors (distances)

SOS 2016, Autrans France, Multivariate Analysis — Machine Learning
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" hyperplane that separates S from B

" Linear decision boundary

" Best separation: maximum distance (margin)
between closest events (support) to hyperplane

" |f data non-separable add misclassification cost
parameter C-X&; to minimisation function

largest margin - inner product of support vectors
(distances) > quadratic minimisation problem

Non-separable data
=
x
e X

®  Non-linear cases:

" Transform variables into higher dimensional feature space where again a linear
boundary (hyperplane) can separate the data
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______________________

Find hyperplane that best separates signal
from background

" Linear decision boundary

data
‘\
‘ X
O
O
O
O O

" Best separation: maximum distance (margin)
between closest events (support) to hyperplane

" |f data non-separable add misclassification cost
parameter C-X &, to minimisation function

Nepsaprsabie:

" largest margin - inner product of support vectors
(distances) > quadratic minimisation problem

Non-linear cases:

" non linear variable transformation - linear separation in transformed feature space
" no explicit transformation specified = Only its “scalar product” x:x = ®(x)-®P(x) needed.

= certain Kernel Functions can be interpreted as scalar products between transformed
vectors in the higher dimensional feature space. e.g.: Gaussian, Polynomial, Sigmoid

" Choose Kernel and fit the hyperplane using the linear techniques developed above

=» Kernel size paramter typically needs careful tuning! (Overtraining!)



= How does this “Kernel” business work?
= Kernel function == scalar product in “some transformed” variable space

—

— standard: x-y =Y x; y; = |x||y| * cos(6)

- largeif: x-y areinthe same “direction”
- zeroif: x -y are orthogonal (i.e. point along different axes / dimension)
. - >N A4 N (.')?—_')7)2
- e.g. Gauss kernel:  o(x) - P(y) = K(x,y) = exp(— = )

- zero if points: x and y “far apart” in original data space
—> large only in “vicinity” of each other

— o < distance between training data points:
— each data point is “lifted” into its “own” dimension

—> full separation of “any” event configuration with decision boundary along
coordinate axis

- well, that would of course be: overtraining



—>

L:Iassifier Is too flexible
l% overtraining

True performance

classificaion error

~  (independent test sample)
training sample

7

% 04
X \aoptin%
Or ?

A Bias if ‘performance’ is estimated
from the training sample

—2> possible overtraining is concern for
every “tunable parameter” o of
classifiers: Smoothing parameter,
n-nodes...

> éverify on independent “test” sample
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Minimize loss function: e.g. via W - W—ng—iz SDG

Include prior distribution on ‘weights’/ parameters’ w:
events

L = log( 1_[ P(yf ™y (x;)) *pw))

_ Ejvemlog(l’(yi”“"”Iy(xi)) +log(p(w))

often (e.g if y = polynomial or y = neural network)
w “small” = model is less ‘flexible’

—> reasonable prior p(w) would be: Gaussian with mean zero

2>L=L+ %asz a: factor of ‘'now much you want to penalize”



Kolmogorov Smirnov Test:

Tests if two sample distributions are compatible with coming from the same

parent distribution

- Statistical test: if they are indeed random samples of the same parent distribution, then
the KS-test gives an uniformly distributed value between 0 and 1 !!

- Note: that means an average value of 0.5 !

Please: don’t misunderstand the
title of this plot as:

~1: ok

S = else: trouble

TMVA overtraining check for classifier: BDT |

Normalized [ ]

3

L
t

N
T LI

1.5

0.5
I

7] Background (test sample)

Sighal (test sample) | ' |

I "al T ], T T 1 1T
= Signal (training sample)

= Background (tra'mmg sample) ]

j(olmogorov-Smirnov test: signal (background) probability = 2.68

PP (3.92¢-13)

fi

0.4

BDT response

< THNNI Y
U/Q-flow (S,B): (0.0, 0.0)%

/(0.0, 0.0)%

Was meant as quick sanity check ONLY!!




" parameters “o” - control performance
" #training cycles, #nodes, #layers, regularisation parameter (neural net)
" smoothing parameter h (kernel density estimator)
.....

" more training data - better training results

" division of data set into “training” and “test” and “validation” sample? ®

Cross Validation: divide the data sample into say 5 sub-sets

Train Train Train Train Test

" train 5 classifiers: y;(x,a) : i=1,..5,
" i-th classifier is trained without the i-th sub sample =2 used as ‘test/validation’

events

L :loss function

= calculate the test error: CV(«

events

" use a for which CV(a) is minimum -> train the final classifier using all data



no magic in MVA- or ML-Methods:

» no “artificial intelligence” ® ... just “fitting decision boundaries” in a given
model

most important: finding good observables

» good separation power between S and B
» little correlations amongst each other - have ‘new information’
» no correlation with the parameters you try to measure in your signal sample!

combination of variables - feature engineering !

» eliminate correlations: you are MUCH more intelligent than the algorithm
scale features to similar numeric range

apply pure pre-selection cuts yourself.

avoid “sharp features” = numerical problems, binning loss
» often simple variable transformations (i.e. log(variable) ) do the trick

treat regions with different features “independent”
» Introduces unnecessary correlations, ‘kinks’ in decision boundaries



- one classifier per ‘region’

Example: var4 depends
on some variable “eta”

Helge Voss

MVA

‘regions’ in the detector (data) with different features treated independent
» improves performance

» avoids additional correlations where otherwise the variables would be
uncorrelated!

leta| > 1.3

leta] < 1.3

(1/N) dN/0.134 [

TMVA Input Variables: vard |
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Helge Voss

© 2014 Ted Goff
KDnuggets Cartoon

e

“The machine learning algorithm
wants to know if we’d like a
dozen wireless mice to feed the
Python book we just bought.”

SOS 2016, Autrans France, Multivariate Analysis — Machine Learning
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" Typical worries are:
® What happens if the estimated “Probability Density” is wrong ?
® Can the Classifier, i.e. the discrimination function y(x), introduce systematic uncertainties?
® What happens if the training data do not match “reality”

9Any wrong PDF leads to imperfect discrimination function y(x) =

elmperfect (calling it “wrong” isn’t “right”) y(x) —> loss of discrimination power
that’s all!
—> classical cuts face exactly the same problem, however:

in addition to cutting on features that are not correct, now you can also “exploit”
correlations that are in fact not correct

" Systematic error are only introduced once “Monte Carlo events” with imperfect modeling are
used for

" efficiency; purity ® same problem with classical “cut” analysis

"#expected events ® use control samples to test MVA-output distribution (y(x))

" Combined variable (MVA-output, y(x)) might “hide” problems in ONE individual variable more
than if looked at alone - train classifier with few variables only and compare with data
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= Multivariate Classifiers THEMSELVES don’t have systematic uncertainties
—> even if trained on a “phantasy Monte Carlo sample”

= there are only “bad” and “good” performing classifiers !
= OVERTRAINING is NOT a systematic uncertainty !!
= difference between two classifiers resulting from two different training runs

DO NOT CAUSE SYSTEMATIC ERRORS
= same as with “well” and “badly” tuned classical cuts
= MVA classifiers: = only select regions in observable space

= Efficiency estimate (Monte Carlo) - statistical/systematic uncertainty
= involves “estimating” (uncertainties in ) distribution of PDE,

= statistical “fluctuations” - re-sampling (Bootstrap)
= “smear/shift/change” input distributions and determine PDF,

Ys(B)
— estimate systematic error/uncertainty on efficiencies

S(B)

= Only involves “test” sample..
= systematic uncertainties have nothing to do with the training !!

Helge Voss SOS 2016, Autrans France, Multivariate Analysis — Machine Learning
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= MVA or ML algorithms
-> parametrize likelihood ratio (or a monotonic function thereof)
—> decision boundaries or ‘event weights’
- Parametrize the ‘target function’
- ‘regression’
- Generative or discriminative algorithms
- Multidimensional/projective Likelihood (rec. pdf)
- (Linear) discriminators etc. - minimize a loss function
- Take care in training, validation and testing

- Don’t want over/’under’-training but the best classifier!



Helge Voss
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MVA o

> Don’t be afraid of correlations!

typically “kinematically generated” - easily modeled correctly
“classical cuts” are also affected by “wrongly modeled correlations”
MVA method let’s you spot mis-modeled correlations!

> “projections” of input variables

> + the combined MVA test statistic “y(x)" !




* Use as training sample events that have correlatetions

 optimize CUTs
* train an propper MVA (e.g. Likelihood, BDT)

[ TMVA Input Variable: vard |

[ TMVA Input Variable: var2 |

-] PR e -
Signdl ]

§ ouT05 13
] [-7] Background e S X
E 04 EE 2 Cly
S o0asf |‘k is & _
% eat sz ¢
3 1z 03f
e 1 S [

| Background rejection versus Signal efflclency

—

TMVA

=
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| Correlation Matrix (signal) |

Linear correlation coefficients in %

Vary Varg Varg Varg

Background rejection versus Signal efficiency

Background rejection

1

0.9

0.8

0.7

0.6

0.5

04

0.3

0.2

TMVA

§ VA Method:
S S MLP

CutsGA

0 01 02 03 04 05 06 07 08 09 1
Signal efficlency

- Assume in “real data” there are NO correlations - SEE what happens!!

Helge Voss
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Compare “Data” (TestSample) and Monte-Carlo
(both taken from the same underlying distribution)

[ TMVA Input Variable: var1 |
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Normalised

0.4}
03}
0.2}

0.1}

[ TMVA Input Variable: vard |

T k-] P
. ﬁ 0.4f
= 3 .0
15 E oast
12 2 o3
12 0.25F
1= E
18 :
i3 02}
s E
1= 0.45F
_m' C
% 0.1}
12 0.05F
_g n_

Helge Voss
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WIO-flow (S,B): (0.0, 0.0)% / {0.0, 0.0)%

| TMVA overtraining check for classifier: MLP |
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Compare “Data” (TestSample) and Monte-Carlo
(both taken from the same underlying distributions

that differ by the correlation!!! )

[ TMVA Input Variable: var1 |

[ TMVA Input Variable: var2 |

a0 _ Background
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Differences are ONLY visible in the MVA-output plots
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WIO-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

(and if you'd look at cut sequences....)
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= minimize “systematic” uncertainties (robustness)

-> “classical cuts” : do not cut near steep edges, or in regions
of large sys. uncertainty

> hard to translate to MVAs:

artificially degrade discriminative power (shifting/smearing) of
systematically “uncertain” observables IN THE TRAINING

> remove/smooth the ‘edges’ > MVA does not try to exploit them

Signal Background

= Note: if | KNEW about the error, I’d correct for it. I'm talking about

‘unknown’ systematics



MVA-decision boundaries
« Looser MVA-cut - wider

boundaries in BOTH variables

* You actually want a boundary
like THIS
- Tight boundaries in var1

e Loose boundaries in var0

-> train MVA algorithm with ‘problematic
variables’ transformed to make them les
discriminant:;

= YES it works !

Helge Voss SOS 2016, Autrans France, Multivariate Analysis — Machine Learning
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= Hmm... also here, I'd still say it does exactly what | want it to do
= The difficulty is to ‘evaluate’ or ‘estimate’ the advantage

(reduction in systematic €<- loss in performance)

bad decsision boundary better

vari
vari
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vari

Seems to work but:
difficult to ‘evaluate’ or

‘estimate’ the advantage

(reduction in systematic

<-> loss in performance

vari
vari

varQ var0 ;
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MVA-decision boundaries
« Looser MVA-cut - wider

boundaries in BOTH variables

What if you are sure about the
peak’s position in var1, but less
sure about varQ ?
* You actually want a boundary
like THIS
- Tight boundaries in var1

e Loose boundaries in var0

Helge Voss SOS 2016, Autrans France, Multivariate Analysis — Machine Learning
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= Looking for a general tool to ‘force’ any MVA algorithm, not to rely
too much on exact feature:
= Similar: early stopping techniques in Neural networks to avoid overtraining

- reduce difference between “signal” and “background”

- or reduce information content in each, “signal” and “background”

o :
LR = Here: one would for example “shift”

3000 [

such that signal and backgr. are less

- separated

1500 [

1000 [

= However, that’s not “universal”

Variable 0 [units]
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= Looking for a general tool to ‘force’ any MVA algorithm, not to rely

too much on exact feature:

= Similar: early stopping techniques in Neural networks to avoid overtraining
-> reduce difference between “signal” and “background”

- or reduce information content in each, “signal” and “background”

Variable 0 Variable 1 Variable 2
FITTTTTTTTTTTITTTTITITTTITTITT[TITTITITITT 7] g : III|IIII T T T TT rTTT g IIII|I
5 3goo [ .
6800 . = [
S b5
z L Zool
5000 = a 2500 — —
sov0 - 1 = ‘smear
a0l - ] 1500 — —
2000 — - __ 1000 .t 7 -
o v i - . .. i
1000 _ 500 |—
B i - o
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= compare: difference between red (what you think you have) and
black (what your algorithm applied to nature might actually provide)

= do this for solid (smeared) and dashed (unsmeared) classifiers

=' [ T [ T T T T [ T T T T | T T T | ]
) | el —
ki — Tvel sys wrong ROC curve .
m 0.78 e Seal true+ wrong ROC curve ]
i = T A-. true- wrong ROC curve ]
— e, O e m e s mmma- sys wrong ROC curve (unsmeared —
0.77 — ) I y v 8 ( ) A ]
— e, mmmmmE=== triue+ wrong ROC curve (unsmeared ) —
— I """"""""" true- wrong ROC curve (unsmeared) I —
0.76 [ — | —]
0.75— : =
0.74— I —]
0.73— —
: | e I 1 1 1 :

0.84 0.89 0.9 0.91
Signal eff.
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Decision Tree: Sequential application of cuts splits

the data into nodes, where the final ngglg
classify an event as signal or backgro

Each branch = one standard “cut”
sequence

" easy to interpret, visualised | | '
Disadvatage - very sensitive to ¥
statistical fluctuations in training data o @ S
Boosted Decision Trees (1996):.
combine a whole forest of Decision Trees, @

derived from the same sample, e.g. using
different event weights.

"= overcomes the stability problem > became popular in HEP since
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classifier
© Training Sample CONx)
1 re-weight
Weighted classifier
Sample C(x)
re-weight
Weighted classifier
Sample C@)(x)
re-weight
Weighted classifier y(x) =
Sample CO)(x)
1 re-weight
v
Weighted classifier
Sample Cm)(x)
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1 re-weight
Weighted
Sample

re-weight
Weighted
Sample

re-weight
Weighted
Sample

1 re-weight

i
Weighted
Sample

classifier

()

classifier
CM(x)

classifier
C@)(x)

classifier
CG)(x)

classifier

™(x)

" AdaBoost re-weights events
misclassified by previous classifier:

1—ferr _ misclassified

rJjerr
ferr all events

NG iassifisr (1 —f (i) \
y(x)= Y log| —=2=[C"(

i fe rr
8 HJSigndl " ]
E £ Background =
S 3 -
= -
25 =
2f =
15F E
’ 1 —]
05
0 _
0 0.2 04 0.6 8 1
y(x)
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= Are very popular in HEP
= Robust and easy to train,
= get good results
= But: when we adopted BDTs,
= In 2006 ANNSs just started their big breakthrough in
the ML community with remarkable advances in
DEEP Learning !

- Let’s move on to Neural Networks



= if we do not know that ‘straight line’ or ‘polynomial’ is a
good model (particularly in higher dimension) ?
-> general, simple, piecewise models

- fit non-analytic - computer > machine learning

o

o}
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0 |
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oﬁool
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° 0
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0
(0] 0

|
|
|
|
|
| 0
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|
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|
|
I

§1 £2
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= fitted non-analytic function may approximate:

= Likelihood ratio:

_ PDF(x|S)
~ PDF(x|B) '

y(x)

const

y(x)

-> decision boundary

Helge Voss
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P(Class=C|x) (or simply P(C|x)) :  probability that the event class is of C, given the
measured observables x={x,,....,xp} 2 y(X)

Probability density distribution

according to the measurements x
and the given mapping function Prior probability to observe an event of “class C”

I.e. the relative abundance of “signal” versus

“background” > P(C) = f, = =%
\ jb 0 Ntot
P(y|C)U
P(Class=C|y)= Ilcr . .
/ P(y)
\

Overall probability density to observe the actual
measurement y(x). i.e. P(y)= > P(y|Class)P(Class)

Classes

Posterior probability

" [t’s a nice “exercise” to show that this application of Bayes’ Theorem
gives exactly the formula on the previous slide !



P(x|H,)
P(xlHy) @

graphical proof of Neyman Pearson’s Lemma:

(graphics/idea taken from Kyle Cranmer)

P(x|H4)

P(x|Hy)

- for each given size « (risk of e.g. actually making a false discovery)

= the statistical test with the largest power 1 — 3 (chances of actually
discovering something given it’s there)

= the critical region W¢ given by the likelihood ratio
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Neyman Pearson Lemma

assume we want to modify/find another “critical” region with
same size (a) i.e. same probability under H,
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Neyman Pearson Lemma

Gl

.. as size (a) is fixed 2= LP(’CWO)dx
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Neyman Pearson Lemma

outside “critical
region” given by
LL-ratio

P(\_|Hy) = P(_/|H)y)
P(zlHy) 2
P(z|Hp)

P(\_|H1) < P(\_|Ho)k,
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Neyman Pearson Lemma

outside “critical
region” given by
LL-ratio

P(z|H,)

< ko
P(z|Ho)

P(\_|H1) < P(\_|Ho)k,

P(\_|Ho) =

inside “critical
region” given by
LL-ratio

P(_/ |Hy)

P(z|H:)
P(z|Ho)

P(_/|H1) > P(_/|Ho)k,

> kq
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Neyman Pearson Lemma

NP\l = Py
P(Ilﬂl) <k, (=) g
(z|Ho) P(z|Ho)

P(\_|H1) < P(\_|Ho)k, P(_/|H1) > P(_/|Ho)k,
P(\_|H1) < P(_/|H:1) B=j|CP(x|H1)dx
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Neyman Pearson Lemma

“acceptance” region
(accept H, (rejectH,)

P(elHy) _ P( &|HO) - P(/|HO) P(z|H)

P(z|Ho) P(a| Ho)

P(\_|H1) < P(\_|Ho)k, P(_/|H1) > P(_/|Ho)k,
The NEW “acceptance” region has less
power' (i.e. probablllty under H,) g.ed
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