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Multivariate Analysis (Machine 

Learning) … in HEP
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HEP Experiments: Simulated Higgs 

Event in CMS
That’s how a “typical” higgs event looks like: 

(underlying ~23 ‘minimum bias’ events)

And not only this: These event happen only in a tiny 

fraction of  the collisions O(10-11)
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HEP Experiments: Event 

Signatures in the Detector
 the needle in the hay-stack is already  “one piece” …  but:

 (Higgs-) particles need to be reconstructed from decay products

 decay products need to be reconstructed from detector signatures

 etc.. 
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NOnA long baseline oscillation exp.

(nm)/ne (dis-)/appearance
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O(100k) background, O(100) nm , O(10) ne per year



Machine Learning ‘elsewhere’
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…. is ‘everywhere’ 



Outline
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 What is: Machine Learning (ML) & 

Multivariate Analysis/Technique (MVA)

 Basics  (classification, regression)

 ROC-curve

 generative vs predictive models

 MVA/ML algorithms

 Naïve Basian, KNN,

 Linear discriminators, SVM

 model fitting – gradient decent and loss function

 General comments about MVAs

 BDT (Yann Coadou) this afternoon)

 Neural Networks (tomorrow)



What is Machine Learning
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 “A computer program is said to learn from experience E with respect to 

some task T and some performance measure P, if its performance on T, 

as measured by P, improves with experience E.” Tom Mitchell, Carnegie 

Mellon University (1997)

 “[Machine Learning is the] field of study that gives computers the 

ability to learn without being explicitly programmed.” Arthur Samuel 

(1959)

‘understanding/modeling your data’ … 

and if you cannot do it in multi-dimensions on “analytic first 

principles” let the computer help 

I suggest: forget about ‘fancy definitions’:



What are Multivariate Techniques
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Many things … starting from “linear regression” …

or w/o prior ‘analytic’ model

 typically “multivariate”

 Parameters depend on the ‘joint distribution’ f(x1, x2)

 ‘learning from experience’  known data points

x

f(x)

• Background

• Signal

x2

x1

to multivariate event classification



Machine Learning -

Multivariate Techniques
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 fitted (non-)analytic function may approximate:

 target value  ‘regression’   

( e.g. calorimeter calibration/correction function)

MC sample:  g +jets

 Raw energy in crystals, η, Φ

 Cluster shape variables

 Local cluster position variables 

(energy leakage) 

 Pile-up estimators

 predict energy correction (i.e. 

parameters in  crystal-ball: pdf for 

energy measurement)



Event Classification
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A linear boundary? A nonlinear one?Rectangular cuts?

S

B

x1

x2 S

B

x1

x2 S

B

x1

x2

 Signal  and Background

 discriminating observed variables x1, x2, …  

 decision boundary ?

Low variance (stable), high bias methods High variance, small bias methods



Regression

linear? 

x

f(x)

x

f(x)

x

f(x)

constant ? non - linear? 

 ‘known measurements”  model “functional behaviour” 

e.g. : photon energy as function “D”-variables:  ECAL shower parameters + …

 seems trivial ?    

what if you have many input variables?

Cluster Size

E
n

e
rg

y

 seems trivial ?     human brain has very good pattern recognition capabilities!

 known analytic model (i.e. nth -order polynomial)  Maximum Likelihood Fit) 

 no model ? 
 “draw any kind of curve” and parameterize it? 
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Regression  model functional behaviour

 “standard” regression  fit a known analytic function 

 e.g.     f(x) =  ax1
2+bx2

2+c 

 BUT most times: don’t have a reasonable “model”  ?    need something more general: 

 e.g.  piecewise defined splines, kernel estimators, decision trees to approximate  f(x) 

x1

x2

f(x1, x2)

Note:  we are not interested in the ‘fitted parameter(s)’, it is not: “Newton deriving F=m·a”    

 just provide prediction of function values f(x) for new measurements x 
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HEP: Everying startet Multivariate
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 intelligent “Multivariate Pattern Recognition” used to identify particles



Machine Learning in HEP
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 Later:  ‘MVAs got out of fashion’   replaced by

 if (..) then … ;   ‘cuts on individual variables’

 Fear of “black box fears”  or because it is easier to program?

 Some ‘Fisher discriminants’, Naïve Bayesian (Likelihood) even 

NNs…. have always been around before  becoming mainstream 

again 



Event Classification
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 Each event, if Signal or Background, has “D” measured variables. 

D

“feature

space”

y(x)


most general form

y  = y(x);  x D

x={x1,….,xD}: input variables

Test statistic:

y(x): RD
R:

 plotting (histogramming) 

the resulting y(x) values:

 Find a mapping from D-dimensional input-observable (”feature” space)

to one dimensional output   class label



y(x)

Event Classification
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 Each event, if Signal or Background, has “D” measured variables. 

D

“feature

space”

y(B)  0, y(S)  1



 distributions of y(x):  PDFS(y) and PDFB(y)

 overlap of PDFS(y) and PDFB(y)  separation power , purity

 used to set the selection cut! 

 Find a mapping from D-dimensional input/observable/”feature” space

 y(x)=const: surface defining the decision boundary.

efficiency and purity

to one dimensional output  

 class labels

> cut: signal

= cut: decision boundary

< cut: background

y(x):

Test statistic:

y(x): RD
R:



Regression:

 “D” measured variables + one function value 

(e.g. cluster shape variables in the ECAL + particles 

energy)

 y(x): RD
R   “regression function”

 y(x)=const  hyperplanes where the

target function is constant

Now, y(x) needs to be build such that it

best approximates the target, not such 

that it best separates signal from bkgr.

Classification ↔ Regression
Classification:

 y(x): RD
R:  “test statistic” in D-

dimensional space of input variables

 y(x)=const: surface defining the decision 

boundary.

y(x): RD
R:
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y(x)

y(B)  0, y(S)  1

X
1

X2

f(x1,x2)



y(x)

1.5

0.45

Event Classification
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S S

S S B B

f PDF (y(x ))
P(C S | y(x ))

f PDF (y(x )) f PDF (y(x ))
 



PDFB(y). PDFS(y):

 Probability densities for y 

given background or signal

e.g.: for an event with  y(x) = 0.2

is the probability of an event with 

measured x={x1,….,xD} that gives y(x) 

to be of type signal

y(x): RD
R:

fS ,fB : fraction of S and B in the sample:

 PDFB(y(x)) = 1.5   and PDFS(y(x)) = 0.45

S S

S S B B

f PDF (y )
P(C S | y )

f PDF (y ) f PDF (y )
 





which one of those

two blue ones is the better??

Receiver Operation Charactersic 

(ROC) curve 
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y(x)

y(B)  0, y(S)  1

Signal(H1) /Background(H0) 

discrimination: 

0 1

1

0
1
-

e b
a

c
k
g

r.

esignal 

y’(x)

y’’(x)

large purity

small efficiency

large efficiency 

small purity



Receiver Operation Charactersic 

(ROC) curve 
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Signal(H1) /Background(H0) 

0 1

1

0

y’(x)

y’’(x)

1
−
𝛼
/1

-
e b

a
c
k
g

r.

𝟏 − 𝜷 / esignal 

Type-1 error small

Type-2 error large

Type-1 error large 

Type-2 error small

 Type 1 error:  reject H0 (i.e. the ‘is bkg’ hypothesis) although it would haven been true 

  background contamination

 Type 2 error:  accept H0 although false 

  loss of efficiency



Event Classification  finding the 

mapping function y(x)
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 𝒚 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺)

𝑷𝑫𝑭(𝒙|𝑩)
 best possible classifier

but p(x|S), p(x|B) are typically unknown

Neyman-Pearsons lemma doesn’t really help us directly

* hyperplane in the strict sense goes through the origin. Here I mean “affine set” to be precise

 use already classified “events”  (e.g. MonteCarlo)  to:
estimate p(x|S) and p(x|B): (e.g. the differential cross section folded with the detector 

influences)   and use the likelihood ratio 

 e.g. D-dimensional histogram, Kernel density estimators, …

(generative algorithms)

OR

 approximate the “likelihood ratio” (or a monotonic transformation thereof).  

find a  y(x)  whose hyperplanes* in the “feature space”: 

(y(x) = const)   optimally separate signal from background 

e.g. Linear Discriminator, Neural Networks, …

(discriminative algorithms)



Machine Learning Categories

supervised: - training “events” with known type (i.e. Signal or Backgr, target value)

un-supervised: - no prior notion of “Signal” or “Background” 

- cluster analysis:  if different “groups” are found  class labels

- principal component analysis: 

find basis in observable space with biggest 

hierarchical differences in the variance

 infer something about underlying substructure

reinforcement-learning:

- learn from “success” or “failure” of some “action policy”

(i.e. a robot achieves his goal or does not / falls or does not fall/ wins 

or looses the game)
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This lecture: supervised learning



Kernel Density Estimator
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 estimate probability density P(x) in  D-dimensional space: 

 The only thing at our disposal is our “training data”

x1

x2

“events” distributed according to P(x)

“x”

h

 Say we want to know P(x) at “this” point “x”

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events
V

K(x)/N:  estimate of average  P(x) in the volume V

 Classification: Determine 

PDFS(x) and PDFB(x)

likelihood ratio as classifier! 

 K-events:

 Kernel Density estimator of the probability density

1

x x1 1
(x )



 
  

 

N

n

D

n

P k
N h h

k(u): is called 

a Kernel function: 
𝐾 𝑥 = 

𝑛=1

𝑁

𝑘
𝑥−𝑥𝑛

ℎ
, with 𝑘 𝑢 = ቊ

1,
0,

𝑢𝑖 ≤
1

2
, 𝑖 = 1…𝐷

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Kernel Density Estimator

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 24

 Regression: If each events with (x1,x2) carries a “function value” f(x1,x2) (e.g. energy of incident 

particle)  
i.e.: the average function value

x1

x2

“events” distributed according to P(x)

“x”

k(u): is called 

a Kernel function: 

h

N

i i

i V

1 ˆk(x x )f ( x ) f ( x )P(x )dx
N

  

 estimate probability density P(x) in  D-dimensional space: 

 The only thing at our disposal is our “training data”

 Say we want to know P(x) at “this” point “x”

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events
V

𝐾 𝑥 = 
𝑛=1

𝑁

𝑘
𝑥−𝑥𝑛

ℎ
, with 𝑘 𝑢 = ቊ

1,
0,

𝑢𝑖 ≤
1

2
, 𝑖 = 1…𝐷

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

K(x)/N:  estimate of average  P(x) in the volume V

 K-events:



K-Nearest Neighbour
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“x”

x1

x2

kNN : k-Nearest Neighbours
relative number events of the various 

classes amongst the k-nearest neighbours

S
n

y(x )
K



“events” distributed according to P(x)

 may replace “window” by “smooth” kernel function (i.e. weight events by 

distance via Gaussian)

keep K fixed   variable window size

automatically ‘adapt’ resolution to the available 

data



Kernel Density Estimator
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K or h: “size” of the Kernel    “smoothing”

 too small:  overtraining/overfitting

 too large:  not sensitive to features in P(x) 

(E
le

m
e
n
ts

 o
f 
s
ta

ti
s
ti
c
a
l 
le

a
rn

in
g
)

 a drawback of Kernel density estimators:

Evaluation for any test events involves ALL TRAINING 

DATA  typically very time consuming

1

1
n

P( ) ( )


 x x - x

N

h

n

K
N

:  a general probability density estimator using kernel K

 Kernel types: window/Gaussian …

 which metric for the Kernel ?

 normalise all variables to same range

 include correlations ? 

 Mahalanobis Metric:  x*x  xV-1x

Bayes’ optimal decision boundary

K=1

K=15



“Curse of Dimensionality”
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Bellman, R. (1961), Adaptive 

Control Processes: A Guided 

Tour, Princeton University Press.

Shortcoming of nearest-neighbour strategies:

 higher dimensional cases   K-events often are not in 

a small “vicinity” of the space point anymore:

1/
edge length=(fraction of volume)

D

consider: total phase space volume V=1D

for a cube of a particular fraction of the volume:

 10 dimensions:  capture 1% of the phase space

 63% of range in each variable necessary    that’s not “local” anymore..

We all know: 

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due 

to lack of Monte Carlo events.

 develop all the alternative classification/regression techniques



Naïve Bayesian Classifier 

(projective Likelihood Classifier)

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 28

Multivariate Likelihood (k-Nearest Neighbour) 

 estimate the full D-dimensional joint probability density

Naïve Bayesian

 ignore correlations

D

i

i 0

P( ) P ( )


 x x

No hard cuts  on individual variables  “fuzzy”, 

optimal method if correlations == 0

 try to “eliminate” correlations

“fuzzy cuts” 

product of marginal PDFs

(1-dim “histograms”)

pdf: histogram + smoothing 

(a very signal like variable may 

counterweigh another, less signal 

like variable)



De-Correlation

Attention: eliminates only linear correlations!!

 Determine square-root C  of correlation matrix C, i.e., C = C C 

compute C  by diagonalising C:

 transformation from original (x) in de-correlated variable space (x) by: x = C 1x 

    
T T

D S SSSC C D  

 Find variable transformation that diagonalises the covariance matrix
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De-Correlation via PCA

(Principal Component Analysis)

 PCA eliminates correlations!

 PCA    (unsupervised learning algorithm)

 reduce dimensionality of a problem

 find most dominant features in a distribution

 Eigenvectors of covariance matrix  “axes” in transformed variable space

 large eigenvalue  large variance along the axis  (principal component)
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Decorrelation at Work
Example: linear correlated Gaussians  de-correlation works to 100%

1-D Likelihood on de-correlated sample give best possible performance

compare also the effect on the MVA-output variable!

correlated variables:                                               after decorrelation

Watch out! Things might look very different for non-linear correlations!
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care

 How does linear 

decorrelation affect  

cases where 

correlations 

between signal and 

background differ?

Original correlations

Signal Background
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care

 How does linear 

decorrelation affect  

cases where 

correlations 

between signal and 

background differ?

SQRT decorrelation

Signal Background
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care

 How does linear 

decorrelation affect 

strongly nonlinear 

cases ?

Original correlations

BackgroundSignal
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care

 How does linear 

decorrelation affect 

strongly nonlinear 

cases ?

SQRT decorrelation

Watch out before using decorrelation “blindly”!!

Perhaps “de-correlate” only a subspace!

BackgroundSignal
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Correlation Coefficients

http://en.wikipedia.org/wiki/Correlation_and_dependence

 to capture “non-linear correlations”     mutual information

 𝑰 𝒙, 𝒚 = ∫ ∫ 𝒑𝒙𝒚 𝒙, 𝒚 𝒍𝒐𝒈
𝒑𝒙𝒚 𝒙,𝒚

𝒑𝒙 𝒙 𝒑𝒚 𝒚
𝒅𝒙𝒅𝒚

 𝑰 𝒙, 𝒚 =0  only if 𝒙, 𝒚 are really statistically independent !
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‘correlations’ , ‘linear-correlations’, ‘interaction/dependence’

 phsicist’s slang often different from statistitans’ !



Discriminative Classifiers
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 KNN and Naïve Bayesian (Multi-dimensional and Projective Likelihood)

 generative methods  - estimate the pdf

 discriminative  methods 

 impose model-specific restrictions (i.e. linear decision boundaries)

 fit directly the decision boundaries

“Neyman-Pearson Lemma:

“limit” in ROC curve is given by 

𝒚 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺)

𝑷𝑫𝑭(𝒙|𝑩)
,

Bayes’ optimal the likelihood ratio 

(or any monotonous function 

thereof)

in the limit, a ‘perfect’ discriminative 

classifier y(x) parametrizes the 

likeihood ratio (or a monotonic function thereof)

 use as ‘event weights’ 

arXiv:1506.02169 for a ‘more theoretical’ analysis



Linear Discriminant
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i.e.  any linear function of the input variables:   linear decision boundaries

H1

H0

x1

x2

Linear Discriminant:

General:

PDF of the test statistic y(x)

 determine the “weights” w that separate “best” 

PDFS from PDFB

𝑦 𝑥 = 𝑥1, … , 𝑥𝐷 =

𝑖=0

𝑀

𝑤𝑖ℎ𝑖(𝑥)

𝑦 𝑥 = 𝑥1, … , 𝑥𝐷 = 𝑤0 + 

𝑖=1

D

𝑤𝑖𝑥𝑖



Fisher’s Linear Discriminant
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determine the “weights” w that do “best”

y

Maximise “separation” between the S and B 

 minimise overlap of the distributions of yS and yB

maximise the distance between the two mean 

values of the classes

minimise the variance within each class

yS
yB

 maximise

note: these quantities can be calculated from the training data

the Fisher coefficients

𝑦(𝐱,𝐰) = 𝑤0 + 

𝑖=1

D

𝑤𝑖𝑥𝑖

𝐽 𝑤 =
𝐸 𝑦𝐵 −𝐸[𝑦𝑆]

2

𝜎𝑦𝐵
2 +𝜎𝑦𝑆

2 =
𝑤𝑇𝐵𝑤

𝑤𝑇𝑊𝑤
=
"in between" variance

"within" variance

𝛻𝑤 𝐽 𝑤 = 0 ⇒ 𝑤 ∝ 𝑊−1( Ԧ𝑥 𝑆 − Ԧ𝑥 𝐵)



Linear Discriminant and non linear 

correlations

assume the following non-linear correlated data:

 the Linear discriminant obviously doesn’t do a very good job here:

Of course, these can easily be de-

correlated:

here: linear discriminator works 

perfectly on de-correlated data

l 2 2

|

var 0 var 0 var 1

var 0
var 1 a tan

var 1

 

 
  

 

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 40



Linear Discriminant with Quadratic input:

A simple to “quadratic” decision boundary:

 var0 * var0

 var1 * var1

 var0 * var1

 quadratic decision boundaries in  var0,var1

Performance of Fisher Discriminant:

 linear decision boundaries in  var0,var1while:
 var0

 var1

Performance of Fisher Discriminant

with quadratic input:

Fisher

Fisher with decorrelated variables

Fisher with quadratic input
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‘feature 

engineering’



Classifier Training and Loss-Function

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 42

What about a more ‘general approach’  than ‘constructing 𝐽 𝑤 ’ ?

 minimize the expectation value of a “Loss function” 𝐿(𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦 𝑥 )

𝐿(𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑦 𝑥 ) :  penalizing prediction errors for training events

• Regression:

𝐸[𝐿] = 𝐸
1

2
(𝑦𝑡𝑟𝑎𝑖𝑛 − 𝑦 𝑥

2

] squared error loss 

• Classification:

𝐸 𝐿 = 𝐸[𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 ) binomial loss

regression: 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 = the functional value of training event 𝑖 which

happens to have the measured observables 𝑥𝑖

classification: 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 =1 for signal, =0 (-1) background



Classifier Training and Loss-Function
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• Regression: 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 : Gaussian distributed around a mean value

• Remember: Maximum Likelihood estimatior

• Maximise: log probability of the observed training data:  

𝐿 = − log ෑ

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑃 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦(𝑥𝑖) = − 

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 ) = 

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 − 𝑦 𝑥𝑖

2

𝐸[𝐿] = 𝐸
1

2
(𝑦𝑡𝑟𝑎𝑖𝑛−𝑦 𝑥

2

] squared error loss (regression)

• Classification: now: 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 (i.e. is it ‘signal’ or ‘background’) is  Bernoulli distributed

𝐿 = − 

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 ) = −

𝑖

log(𝑃 𝑆 𝑥𝑖
𝑦𝑖
𝑡𝑟𝑎𝑖𝑛

𝑃 𝐵 𝑥𝑖
1−𝑦𝑖

𝑡𝑟𝑎𝑖𝑛
)

If we now say y(x) should simply parametrize P(S|x); P(B|x)=1-P(B|x) 

𝐸 𝐿 = 𝐸[𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 ) binomial loss



Logistic Regression*
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*although called ‘regression’ it is a ‘classification’ algorithm!

Fisher Discriminant: 
 equivalent to Linear Discriminant with ‘squared loss function’

 Ups: didn’t we just show that “classification” would naturally use ‘binomial loss’ ?

 build a linear classifier that maximizes ‘binomial loss’:
 y(x) to parameterize P(S|x), we clearly cannot ‘use a linear function for ‘y(x)’

 ‘squeeze’ any linear function 𝑤0 + ∑𝑤𝑗𝑥
𝑗 = Wx into the proper interval  0 ≤

𝑦(𝑥) ≤ 1 using the ‘logistic function’ (i.e. sigmoid function)

𝑦 𝑥 = 𝑃 𝑆 𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊𝑥 =
1

1+𝑒−𝑊𝑥

 𝐿𝑜𝑔 𝑂𝑑𝑑𝑠 = 𝐿𝑜𝑔
𝑃 𝑆 𝑥
𝑃 𝐵 𝑥

= 𝑊𝑥 is linear! 

Logistic Regression

Note: Now y(x) has a ‘probability’ interpretation. y(x) of the Fisher discriminant was ‘just’ a 

discriminator.



Logistic Regression
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𝑦 𝑥 = 𝑃 𝑆 𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊𝑥 =
1

1+𝑒−𝑊𝑥

1D example:

y(x) =sigm(wx)

y(x) =wx

x

Note: decision boundaries are still ‘linear’, just the ‘contour lines’ (y(x)=const) 

are non-linear, parametrizing the probability of the event being y=0 or y=1 as 

‘distance’ from the boundary….



Logistic Regression
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Difference between ‘linear classifier’ and ‘logistic regression’

 distribution of decision boundaries 

a ‘monotonous’ transformation of y(x) 

 does not change ‘relative overlap’ 

for pdfs of yS and yB

 Does not change performance



(Stochastic) Gradient Decent  SDG
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minimize the “loss function”  “W” ?

e.g. 𝐸 𝐿(𝑾) = 𝐸[𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 )

with   𝑦 𝑥 =
1

1+𝑒−𝑾𝒙 ;

𝑾 → 𝑾− 𝜼
𝝏𝑬(𝑳)

𝝏𝒘
: gradient decent

and if you don’t want to evaluate the 

expectation value every time for the whole 

sample:

𝑾 → 𝑾− 𝜼
𝝏𝑳

𝝏𝒘
: stochastic gradient decent

mostly: something in between  mini-batches

learning rate



Support Vector Machine
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 There are methods to create linear decision boundaries using only measures of 

distances  (= inner (scalar) products)

  leads to quadratic optimisation problem

 The decision boundary in the end is defined only by training events that are 

closest to the boundary

 suitable variable transformations into a higher dimensional space may allow   

separation with linear decision boundaries non linear problems

 Support Vector Machine



Support Vector Machines
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x1

x2

margin 

support 

vectors

S
e

p
a

ra
b

le
 d

a
ta

 hyperplane that  separates S from B

 Linear decision boundary

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane

N
o

n
-s

e
p

a
ra

b
le

 d
a

ta

 Solution of largest margin depends only on  

inner product of support vectors (distances) 

 quadratic minimisation problem

1

2

4

3 If data non-separable add misclassification cost

parameter C·ii to minimisation function



Support Vector Machines
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 Non-linear cases:
 Transform variables into higher dimensional feature space where again a linear 

boundary (hyperplane) can separate the data

(x1,x2)S
e
p
a

ra
b
le

 d
a
ta

N
o
n

-s
e
p
a
ra

b
le

 d
a
ta hyperplane that  separates S from B

 Linear decision boundary

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane

 largest margin - inner product of support vectors 

(distances)  quadratic minimisation problem

 If data non-separable add misclassification cost

parameter C·ii to minimisation function



Support Vector Machines
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x1

x2

x1

x3

x1

x2

 Non-linear cases:

Kernel size paramter typically needs careful tuning!   (Overtraining!)

 non linear  variable transformation  linear separation in transformed feature space

 no explicit transformation specified  Only its “scalar product”  x·x  Ф(x)·Ф(x) needed.

 certain Kernel Functions can be interpreted as scalar products between transformed 

vectors in the higher dimensional feature space. e.g.: Gaussian, Polynomial, Sigmoid

 Choose Kernel and fit the hyperplane using the linear techniques developed above

(x1,x2)S
e

p
a

ra
b

le
 d

a
ta

N
o
n

-s
e
p
a
ra

b
le

 d
a
ta Find hyperplane that best separates signal 

from background 

 Linear decision boundary

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane

 largest margin - inner product of support vectors 

(distances)  quadratic minimisation problem

 If data non-separable add misclassification cost

parameter C·ii to minimisation function



Support Vector Machines
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 How does this “Kernel” business work?

 Kernel function  == scalar product in “some transformed” variable space

 standard:   Ԧ𝑥 ∙ Ԧ𝑦 = ∑𝑥𝑖 𝑦𝑖 = 𝑥 𝑦 ∗ 𝑐𝑜𝑠(𝜃)

 large if :   Ԧ𝑥 ∙ Ԧ𝑦 are in the same “direction”

 zero if :   Ԧ𝑥 ∙ Ԧ𝑦 are orthogonal  (i.e. point along different axes / dimension)

 e.g. Gauss kernel:   Φ Ԧ𝑥 ∙ Φ Ԧ𝑦 = 𝐾 Ԧ𝑥, Ԧ𝑦 = 𝑒𝑥𝑝(−
Ԧ𝑥−𝑦 2

2𝜎2
)

 zero if points: Ԧ𝑥 𝑎𝑛𝑑 Ԧ𝑦 “far apart” in original data space

 large only in “vicinity” of each other

 𝜎 < distance between training data points:

 each data point is “lifted” into its “own” dimension

 full separation of “any” event configuration with decision boundary along 

coordinate axis

 well, that would of course be:  overtraining  



Overtraining

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 53

S

B

x1

x2

S

B

x1

x2

Classifier is too flexible

 overtraining

True performance 

(independent test sample)

training cycles

c
la

s
s
if
ic

a
io

n
 e

rr
o
r

training sample

a𝛼𝑜𝑝𝑡𝑖𝑚𝑎𝑙

Bias if ‘performance’ is estimated 

from the training sample

Or ?

possible overtraining is concern for 

every “tunable parameter” a of 

classifiers: Smoothing parameter,   

n-nodes…

verify on independent “test” sample



Regularisation
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𝐿 = log( ෑ

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑃 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦(𝑥𝑖) ∗ 𝑝 𝑤 )

=
𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 ) + log 𝑝 𝑤

often (e.g if  y = polynomial or y = neural network)

w “small”  model is less ‘flexible’

 reasonable prior 𝑝 𝑤 would be: Gaussian with mean zero

𝐿 = 𝐿 +
1

2
𝛼∑𝑤2 α: factor of ‘how much you want to penalize”

Minimize loss function:   e.g. 𝐯𝐢𝐚 𝑾 → 𝑾− 𝜼
𝝏𝑳

𝝏𝒘
:   SDG 

Include prior distribution on ‘weights’/’parameters’  w: 



Digression 
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Kolmogorov Smirnov Test:
Tests if two sample distributions are compatible with coming from the same 

parent distribution

 Statistical test: if they are  indeed random samples of the same parent distribution, then 

the KS-test gives an uniformly distributed  value between 0 and 1  !!

 Note: that means an average value of 0.5  !!

Please: don’t misunderstand the

title of this plot as: 

𝑲𝑺 = ቊ
~𝟏: 𝒐𝒌
𝒆𝒍𝒔𝒆: 𝒕𝒓𝒐𝒖𝒃𝒍𝒆

Was meant as  quick sanity check ONLY!!



Cross Validation
parameters “a”  control performance

 #training cycles, #nodes, #layers, regularisation parameter (neural net)

 smoothing parameter h  (kernel density estimator)

….

more training data  better training results

division of data set into  “training” and “test” and “validation” sample? 

Train TrainTrainTrainTest Train

Cross Validation: divide the data sample into say 5 sub-sets

Train TrainTrainTrainTest TrainTrain TrainTrainTrain TestTrain TrainTrain TestTrainTrain TrainTrainTrain TestTrain

 train 5  classifiers:  yi(x,a) : i=1,..5, 

 i-th classifier is trained without the i-th sub sample  used as ‘test/validation’

 calculate the test error:
events

i k

kevents

1
CV( ) L(y (x , )) L : loss function

N
a a 

use a for which CV(a) is minimum  train the final classifier using all data
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General Advice for (MVA) Analyses

 no magic in MVA- or ML-Methods:
no “artificial intelligence”  … just “fitting decision boundaries” in a given 

model

 most important:  finding good observables
good separation power between S and B

little correlations amongst each other  have ‘new information’

no correlation with the parameters you try to measure in your signal sample!

 combination of variables  feature engineering !
eliminate correlations:   you are MUCH more intelligent than the algorithm

 scale features to similar numeric range

 apply pure pre-selection cuts yourself.

 avoid “sharp features”  numerical problems, binning loss 
often simple variable transformations (i.e. log(variable) ) do the trick
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 treat regions with different features “independent”
Introduces  unnecessary correlations, ‘kinks’ in decision boundaries



MVA Categories

 one classifier per ‘region’

 ‘regions’ in the detector (data)  with different features treated independent

improves performance

avoids additional correlations where otherwise the variables would be 

uncorrelated!
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Recover optimal performance after 

splitting into categories
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About Systematic Errors
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 Typical worries are:  

What happens if the estimated “Probability Density” is wrong ?

 Can the Classifier, i.e. the discrimination function y(x), introduce systematic uncertainties?

What happens if the training data do not match “reality” 

Any wrong PDF leads to imperfect discrimination function

Imperfect (calling it “wrong” isn’t “right”)  y(x)   loss of discrimination power

that’s all!

classical cuts face exactly the same problem, however:

in addition to cutting on features that are not correct, now you can also “exploit” 

correlations that are in fact not correct

P(x | S )
y(x )

P(x | B )


 Systematic error are only introduced once “Monte Carlo events” with imperfect modeling are 

used for 

 efficiency; purity

#expected events 

 same problem with classical “cut” analysis

 use control samples to test MVA-output distribution (y(x))

 Combined variable (MVA-output, y(x)) might “hide” problems in ONE individual variable more 

than if looked at alone  train classifier with few variables only and compare with data
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About Systematic Errors



MVA and Systematic Uncertainties

Multivariate Classifiers  THEMSELVES  don’t have systematic uncertainties 

 even if trained on a “phantasy Monte Carlo sample”

 there are only “bad” and “good” performing classifiers !

 OVERTRAINING is NOT a systematic uncertainty !!

 difference between two classifiers resulting from two different training runs 

DO NOT CAUSE SYSTEMATIC ERRORS

 same as with “well” and “badly” tuned classical cuts

 MVA classifiers:  only select regions in observable space 

 Efficiency estimate (Monte Carlo)  statistical/systematic uncertainty
 involves “estimating” (uncertainties in ) distribution of 𝑃𝐷𝐹𝑦𝑆(𝐵)

 statistical “fluctuations”  re-sampling  (Bootstrap)

 “smear/shift/change” input distributions and determine 𝑃𝐷𝐹𝑦𝑆(𝐵)
 estimate systematic error/uncertainty on efficiencies

 Only involves “test” sample..

 systematic uncertainties have nothing to do with the training !!
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Summary
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 MVA or ML algorithms 

 parametrize likelihood ratio (or a monotonic function thereof) 

decision boundaries or ‘event weights’

Parametrize the ‘target function’

 ‘regression’

Generative or discriminative algorithms

Multidimensional/projective Likelihood  (rec. pdf)

 (Linear) discriminators etc.  minimize a loss function 

Take care in training, validation and testing 

Don’t want over/’under’-training  but the best classifier! 



Backup
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MVA and Systematic Uncertainties

 Don’t be afraid of correlations!
 typically “kinematically generated”  easily modeled correctly

 “classical cuts” are also affected by “wrongly modeled correlations”

 MVA method let’s you spot mis-modeled correlations! 

 “projections” of input variables 

 + the combined MVA test statistic “y(x)” !
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Systematic “Error” in Correlations

• Use as training sample events that have correlatetions

• optimize CUTs

• train an propper MVA (e.g. Likelihood, BDT)

• Assume in “real data” there are NO correlations    SEE what happens!!
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Systematic “Error” in Correlations
•Compare “Data” (TestSample)  and Monte-Carlo

(both taken from the same underlying distribution)
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Systematic “Error” in Correlations
•Compare “Data” (TestSample)  and Monte-Carlo

(both taken from the same underlying distributions 

that  differ by the correlation!!! )

Differences are ONLY visible in the MVA-output plots (and if you’d look at cut sequences….)
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Robustness against systematic Uncertainties

 minimize “systematic” uncertainties  (robustness)

 “classical cuts” : do not cut near steep edges, or in regions 

of large sys. uncertainty

 hard to translate to MVAs:
 artificially degrade discriminative power (shifting/smearing) of 

systematically “uncertain” observables  IN THE TRAINING

 remove/smooth the ‘edges’  MVA does not try to exploit them

Signal Background

 Note: if I KNEW about the error, I’d correct for it. I’m talking about 

‘unknown’ systematics
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How does this look in 2D?

MVA-decision boundaries

• Looser MVA-cut  wider 

boundaries in BOTH variables 

• You actually want a boundary 

like THIS

• Tight boundaries in var1

• Loose boundaries in var0

 YES it works !

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 69

 train MVA algorithm with ‘problematic 

variables’ transformed to make them less 

discriminant:



Another example..

 Hmm… also here, I’d still say it does exactly what I want it to do

 The difficulty is to ‘evaluate’ or ‘estimate’ the advantage 

(reduction in systematic  loss in performance)
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bad decsision boundary better 



other examples..

Seems to work but:

difficult  to ‘evaluate’ or 

‘estimate’ the advantage 

(reduction in systematic 

 loss in performance)
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bad decsision boundary better 



How does this look in 2D?

MVA-decision boundaries

• Looser MVA-cut  wider 

boundaries in BOTH variables 

What if you are sure about the 

peak’s position in var1, but less 

sure about var0 ?

• You actually want a boundary 

like THIS

• Tight boundaries in var1

• Loose boundaries in var0
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Reduce information content

 Here: one would for example “shift” 

such that signal and backgr. are less 

separated

 However, that’s not “universal” 

 Looking for a general tool to ‘force’ any MVA algorithm, not to rely 

too much on exact feature:

 Similar: early stopping techniques in Neural networks to avoid overtraining

 reduce difference between “signal” and “background”

 or  reduce information content in each, “signal” and “background”
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Reduce information content

 Looking for a general tool to ‘force’ any MVA algorithm, not to rely 

too much on exact feature:

 Similar: early stopping techniques in Neural networks to avoid overtraining

 reduce difference between “signal” and “background”

 or  reduce information content in each, “signal” and “background”

shift

smear

turn
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Back to my “complicated” 3D 

example
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ROC Cuve - Zoom

 compare: difference between red (what you think you have) and 

black (what your algorithm applied to nature might actually provide)

 do this for solid (smeared) and dashed (unsmeared) classifiers 
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Boosted Decision Trees
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 Decision Tree: Sequential application of cuts splits 

the data into nodes, where the final nodes (leafs) 

classify an event as signal or background

 Boosted Decision Trees (1996):
combine a whole forest of Decision Trees, 

derived from the same sample, e.g. using  

different event weights.

 overcomes the stability problem

 increases  performance

 became popular in HEP since 

MiniBooNE, B.Roe et.a., NIM 543(2005)

 Each branch  one standard “cut” 
sequence

 easy to interpret, visualised

 Disadvatage  very sensitive to 
statistical fluctuations in training data



Boosting
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Training Sample
classifier 

C(0)(x)

Weighted 

Sample

re-weight

classifier 

C(1)(x)

Weighted 

Sample

re-weight

classifier 

C(2)(x)

Weighted 

Sample

re-weight

Weighted 

Sample

re-weight

classifier 

C(3)(x)

classifier 

C(m)(x)

ClassifierN

( i)

i

i

y(x ) w C (x ) 



Adaptive Boosting (AdaBoost)
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Training Sample
classifier 

C(0)(x)

Weighted 

Sample

re-weight

classifier 

C(1)(x)

Weighted 

Sample

re-weight

classifier 

C(2)(x)

Weighted 

Sample

re-weight

Weighted 

Sample

re-weight

classifier 

C(3)(x)

classifier 

C(m)(x)

C lassifie rN ( i )

( i )e rr

( i )

i e rr

1 f
y(x ) log C (x )

f

 
  

 


AdaBoost re-weights events 

misclassified by previous classifier:

𝟏 − 𝒇𝒆𝒓𝒓
𝒇𝒆𝒓𝒓

; 𝒇𝒆𝒓𝒓 =
𝒎𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅

𝒂𝒍𝒍 𝒆𝒗𝒆𝒏𝒕𝒔

y(x)





Boosted Decision Trees
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 Are very popular in HEP

 Robust and easy to train, 

 get good results

 But: when we adopted BDTs, 

 In 2006 ANNs just started their big breakthrough in 

the ML community with remarkable advances in 

DEEP Learning !

 Let’s move on to Neural Networks 



Machine Learning -

Multivariate Techniques
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 if we do not know that ‘straight line’ or ‘polynomial’ is a 

good model (particularly in higher dimension) ? 

 general, simple, piecewise models

 fit non-analytic  computer  machine learning



Machine Learning -

Multivariate Techniques
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 fitted non-analytic function may approximate:

 Likelihood ratio: 

• Background

• Signal

𝒚 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺)

𝑷𝑫𝑭(𝒙|𝑩)
; 𝒙 =

𝒗𝒂𝒓𝟎
𝒗𝒂𝒓𝟏
.
.
.

 decision boundary

𝒚 𝒙 = 𝒄𝒐𝒏𝒔𝒕



Event Classification

P(Class=C|x) (or simply P(C|x)) :  probability that the event class is of C, given the 

measured observables x={x1,….,xD}  y(x)  

P(y | C ) P (C)
P (C lass = C | y) =

P(y)

Prior probability to observe an event of “class C”

i.e. the relative abundance of “signal” versus 

“background”   P C = 𝑓𝐶 =
𝑛𝐶

𝑛𝑡𝑜𝑡

Overall probability density to observe the actual 

measurement y(x). i.e.
Classes

P(y) = P(y | Class)P(Class)

Probability density distribution 

according to the measurements x

and the given mapping function

Posterior probability

 It’s a nice “exercise” to show that this application of Bayes’ Theorem 

gives exactly the formula on the previous slide !
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Neyman Pearson Lemma

𝑷 𝒙 𝑯𝟏

𝑷 𝒙 𝑯𝟎
< 𝒌α

Kyle Cranmer

graphical proof of Neyman Pearson’s Lemma:
(graphics/idea taken from Kyle Cranmer)

 the critical region WC given by the likelihood ratio 
𝑷 𝒙 𝑯𝟏

𝑷 𝒙 𝑯𝟎

 for each given size α (risk of e.g. actually making a false discovery) 

= the statistical test with the largest power 𝟏 − β (chances of actually 

discovering something given it’s there)
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Neyman Pearson Lemma

assume we want to modify/find another “critical” region with 

same size (α)  i.e. same probability under H0 

Kyle Cranmer

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

… as size (α) is fixed

Kyle Cranmer

α = න
𝑪

𝑷 𝒙 𝑯𝟎 𝒅𝒙

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

outside “critical 

region” given by 

LL-ratio

Kyle Cranmer

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

outside “critical 

region” given by 

LL-ratio

inside “critical 

region” given by 

LL-ratio

Kyle Cranmer

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

Kyle Cranmer

β = න
!𝑪

𝑷 𝒙 𝑯𝟏 𝒅𝒙

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

The NEW “acceptance” region has less 

power!  (i.e. probability under H1 )    q.e.d

Kyle Cranmer

“critical” region 

(reject H0)

“acceptance” region 

(accept H0 (reject H1)
𝑊𝑐:

𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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