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Multivariate Analysis (Machine 

Learning) … in HEP
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HEP Experiments: Simulated Higgs 

Event in CMS
That’s how a “typical” higgs event looks like: 

(underlying ~23 ‘minimum bias’ events)

And not only this: These event happen only in a tiny 

fraction of  the collisions O(10-11)
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HEP Experiments: Event 

Signatures in the Detector
 the needle in the hay-stack is already  “one piece” …  but:

 (Higgs-) particles need to be reconstructed from decay products

 decay products need to be reconstructed from detector signatures

 etc.. 
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NOnA long baseline oscillation exp.

(nm)/ne (dis-)/appearance
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O(100k) background, O(100) nm , O(10) ne per year



Machine Learning ‘elsewhere’
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…. is ‘everywhere’ 



Outline
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 What is: Machine Learning (ML) & 

Multivariate Analysis/Technique (MVA)

 Basics  (classification, regression)

 ROC-curve

 generative vs predictive models

 MVA/ML algorithms

 Naïve Basian, KNN,

 Linear discriminators, SVM

 model fitting – gradient decent and loss function

 General comments about MVAs

 BDT (Yann Coadou) this afternoon)

 Neural Networks (tomorrow)



What is Machine Learning
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 “A computer program is said to learn from experience E with respect to 

some task T and some performance measure P, if its performance on T, 

as measured by P, improves with experience E.” Tom Mitchell, Carnegie 

Mellon University (1997)

 “[Machine Learning is the] field of study that gives computers the 

ability to learn without being explicitly programmed.” Arthur Samuel 

(1959)

‘understanding/modeling your data’ … 

and if you cannot do it in multi-dimensions on “analytic first 

principles” let the computer help 

I suggest: forget about ‘fancy definitions’:



What are Multivariate Techniques
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Many things … starting from “linear regression” …

or w/o prior ‘analytic’ model

 typically “multivariate”

 Parameters depend on the ‘joint distribution’ f(x1, x2)

 ‘learning from experience’  known data points

x

f(x)

• Background

• Signal

x2

x1

to multivariate event classification



Machine Learning -

Multivariate Techniques
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 fitted (non-)analytic function may approximate:

 target value  ‘regression’   

( e.g. calorimeter calibration/correction function)

MC sample:  g +jets

 Raw energy in crystals, η, Φ

 Cluster shape variables

 Local cluster position variables 

(energy leakage) 

 Pile-up estimators

 predict energy correction (i.e. 

parameters in  crystal-ball: pdf for 

energy measurement)



Event Classification
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A linear boundary? A nonlinear one?Rectangular cuts?

S

B

x1

x2 S

B

x1

x2 S

B

x1

x2

 Signal  and Background

 discriminating observed variables x1, x2, …  

 decision boundary ?

Low variance (stable), high bias methods High variance, small bias methods



Regression

linear? 

x

f(x)

x

f(x)

x

f(x)

constant ? non - linear? 

 ‘known measurements”  model “functional behaviour” 

e.g. : photon energy as function “D”-variables:  ECAL shower parameters + …

 seems trivial ?    

what if you have many input variables?

Cluster Size

E
n

e
rg

y

 seems trivial ?     human brain has very good pattern recognition capabilities!

 known analytic model (i.e. nth -order polynomial)  Maximum Likelihood Fit) 

 no model ? 
 “draw any kind of curve” and parameterize it? 
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Regression  model functional behaviour

 “standard” regression  fit a known analytic function 

 e.g.     f(x) =  ax1
2+bx2

2+c 

 BUT most times: don’t have a reasonable “model”  ?    need something more general: 

 e.g.  piecewise defined splines, kernel estimators, decision trees to approximate  f(x) 

x1

x2

f(x1, x2)

Note:  we are not interested in the ‘fitted parameter(s)’, it is not: “Newton deriving F=m·a”    

 just provide prediction of function values f(x) for new measurements x 
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HEP: Everying startet Multivariate
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 intelligent “Multivariate Pattern Recognition” used to identify particles



Machine Learning in HEP
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 Later:  ‘MVAs got out of fashion’   replaced by

 if (..) then … ;   ‘cuts on individual variables’

 Fear of “black box fears”  or because it is easier to program?

 Some ‘Fisher discriminants’, Naïve Bayesian (Likelihood) even 

NNs…. have always been around before  becoming mainstream 

again 



Event Classification
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 Each event, if Signal or Background, has “D” measured variables. 

D

“feature

space”

y(x)


most general form

y  = y(x);  x D

x={x1,….,xD}: input variables

Test statistic:

y(x): RD
R:

 plotting (histogramming) 

the resulting y(x) values:

 Find a mapping from D-dimensional input-observable (”feature” space)

to one dimensional output   class label



y(x)

Event Classification
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 Each event, if Signal or Background, has “D” measured variables. 

D

“feature

space”

y(B)  0, y(S)  1



 distributions of y(x):  PDFS(y) and PDFB(y)

 overlap of PDFS(y) and PDFB(y)  separation power , purity

 used to set the selection cut! 

 Find a mapping from D-dimensional input/observable/”feature” space

 y(x)=const: surface defining the decision boundary.

efficiency and purity

to one dimensional output  

 class labels

> cut: signal

= cut: decision boundary

< cut: background

y(x):

Test statistic:

y(x): RD
R:



Regression:

 “D” measured variables + one function value 

(e.g. cluster shape variables in the ECAL + particles 

energy)

 y(x): RD
R   “regression function”

 y(x)=const  hyperplanes where the

target function is constant

Now, y(x) needs to be build such that it

best approximates the target, not such 

that it best separates signal from bkgr.

Classification ↔ Regression
Classification:

 y(x): RD
R:  “test statistic” in D-

dimensional space of input variables

 y(x)=const: surface defining the decision 

boundary.

y(x): RD
R:
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y(x)

y(B)  0, y(S)  1

X
1

X2

f(x1,x2)



y(x)

1.5

0.45

Event Classification
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S S

S S B B

f PDF (y(x ))
P(C S | y(x ))

f PDF (y(x )) f PDF (y(x ))
 



PDFB(y). PDFS(y):

 Probability densities for y 

given background or signal

e.g.: for an event with  y(x) = 0.2

is the probability of an event with 

measured x={x1,….,xD} that gives y(x) 

to be of type signal

y(x): RD
R:

fS ,fB : fraction of S and B in the sample:

 PDFB(y(x)) = 1.5   and PDFS(y(x)) = 0.45

S S

S S B B

f PDF (y )
P(C S | y )

f PDF (y ) f PDF (y )
 





which one of those

two blue ones is the better??

Receiver Operation Charactersic 

(ROC) curve 
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y(x)

y(B)  0, y(S)  1

Signal(H1) /Background(H0) 

discrimination: 

0 1

1

0
1
-

e b
a

c
k
g

r.

esignal 

y’(x)

y’’(x)

large purity

small efficiency

large efficiency 

small purity



Receiver Operation Charactersic 

(ROC) curve 
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Signal(H1) /Background(H0) 

0 1

1

0

y’(x)

y’’(x)

1
−
𝛼
/1

-
e b

a
c
k
g

r.

𝟏 − 𝜷 / esignal 

Type-1 error small

Type-2 error large

Type-1 error large 

Type-2 error small

 Type 1 error:  reject H0 (i.e. the ‘is bkg’ hypothesis) although it would haven been true 

  background contamination

 Type 2 error:  accept H0 although false 

  loss of efficiency



Event Classification  finding the 

mapping function y(x)
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 𝒚 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺)

𝑷𝑫𝑭(𝒙|𝑩)
 best possible classifier

but p(x|S), p(x|B) are typically unknown

Neyman-Pearsons lemma doesn’t really help us directly

* hyperplane in the strict sense goes through the origin. Here I mean “affine set” to be precise

 use already classified “events”  (e.g. MonteCarlo)  to:
estimate p(x|S) and p(x|B): (e.g. the differential cross section folded with the detector 

influences)   and use the likelihood ratio 

 e.g. D-dimensional histogram, Kernel density estimators, …

(generative algorithms)

OR

 approximate the “likelihood ratio” (or a monotonic transformation thereof).  

find a  y(x)  whose hyperplanes* in the “feature space”: 

(y(x) = const)   optimally separate signal from background 

e.g. Linear Discriminator, Neural Networks, …

(discriminative algorithms)



Machine Learning Categories

supervised: - training “events” with known type (i.e. Signal or Backgr, target value)

un-supervised: - no prior notion of “Signal” or “Background” 

- cluster analysis:  if different “groups” are found  class labels

- principal component analysis: 

find basis in observable space with biggest 

hierarchical differences in the variance

 infer something about underlying substructure

reinforcement-learning:

- learn from “success” or “failure” of some “action policy”

(i.e. a robot achieves his goal or does not / falls or does not fall/ wins 

or looses the game)

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 22

This lecture: supervised learning



Kernel Density Estimator
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 estimate probability density P(x) in  D-dimensional space: 

 The only thing at our disposal is our “training data”

x1

x2

“events” distributed according to P(x)

“x”

h

 Say we want to know P(x) at “this” point “x”

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events
V

K(x)/N:  estimate of average  P(x) in the volume V

 Classification: Determine 

PDFS(x) and PDFB(x)

likelihood ratio as classifier! 

 K-events:

 Kernel Density estimator of the probability density

1

x x1 1
(x )



 
  

 

N

n

D

n

P k
N h h

k(u): is called 

a Kernel function: 
𝐾 𝑥 = ෍

𝑛=1

𝑁

𝑘
𝑥−𝑥𝑛

ℎ
, with 𝑘 𝑢 = ቊ

1,
0,

𝑢𝑖 ≤
1

2
, 𝑖 = 1…𝐷

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



Kernel Density Estimator
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 Regression: If each events with (x1,x2) carries a “function value” f(x1,x2) (e.g. energy of incident 

particle)  
i.e.: the average function value

x1

x2

“events” distributed according to P(x)

“x”

k(u): is called 

a Kernel function: 

h

N

i i

i V

1 ˆk(x x )f ( x ) f ( x )P(x )dx
N

  

 estimate probability density P(x) in  D-dimensional space: 

 The only thing at our disposal is our “training data”

 Say we want to know P(x) at “this” point “x”

 One expects to find in a volume V around point “x”  

N*∫P(x)dx  events from a dataset with N events
V

𝐾 𝑥 = ෍
𝑛=1

𝑁

𝑘
𝑥−𝑥𝑛

ℎ
, with 𝑘 𝑢 = ቊ

1,
0,

𝑢𝑖 ≤
1

2
, 𝑖 = 1…𝐷

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

K(x)/N:  estimate of average  P(x) in the volume V

 K-events:



K-Nearest Neighbour
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“x”

x1

x2

kNN : k-Nearest Neighbours
relative number events of the various 

classes amongst the k-nearest neighbours

S
n

y(x )
K



“events” distributed according to P(x)

 may replace “window” by “smooth” kernel function (i.e. weight events by 

distance via Gaussian)

keep K fixed   variable window size

automatically ‘adapt’ resolution to the available 

data



Kernel Density Estimator

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 26

K or h: “size” of the Kernel    “smoothing”

 too small:  overtraining/overfitting

 too large:  not sensitive to features in P(x) 

(E
le

m
e
n
ts

 o
f 
s
ta

ti
s
ti
c
a
l 
le

a
rn

in
g
)

 a drawback of Kernel density estimators:

Evaluation for any test events involves ALL TRAINING 

DATA  typically very time consuming

1

1
n

P( ) ( )


 x x - x

N

h

n

K
N

:  a general probability density estimator using kernel K

 Kernel types: window/Gaussian …

 which metric for the Kernel ?

 normalise all variables to same range

 include correlations ? 

 Mahalanobis Metric:  x*x  xV-1x

Bayes’ optimal decision boundary

K=1

K=15



“Curse of Dimensionality”
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Bellman, R. (1961), Adaptive 

Control Processes: A Guided 

Tour, Princeton University Press.

Shortcoming of nearest-neighbour strategies:

 higher dimensional cases   K-events often are not in 

a small “vicinity” of the space point anymore:

1/
edge length=(fraction of volume)

D

consider: total phase space volume V=1D

for a cube of a particular fraction of the volume:

 10 dimensions:  capture 1% of the phase space

 63% of range in each variable necessary    that’s not “local” anymore..

We all know: 

Filling a D-dimensional histogram to get a mapping of the PDF is typically unfeasable due 

to lack of Monte Carlo events.

 develop all the alternative classification/regression techniques



Naïve Bayesian Classifier 

(projective Likelihood Classifier)
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Multivariate Likelihood (k-Nearest Neighbour) 

 estimate the full D-dimensional joint probability density

Naïve Bayesian

 ignore correlations

D

i

i 0

P( ) P ( )


 x x

No hard cuts  on individual variables  “fuzzy”, 

optimal method if correlations == 0

 try to “eliminate” correlations

“fuzzy cuts” 

product of marginal PDFs

(1-dim “histograms”)

pdf: histogram + smoothing 

(a very signal like variable may 

counterweigh another, less signal 

like variable)



De-Correlation

Attention: eliminates only linear correlations!!

 Determine square-root C  of correlation matrix C, i.e., C = C C 

compute C  by diagonalising C:

 transformation from original (x) in de-correlated variable space (x) by: x = C 1x 

    
T T

D S SSSC C D  

 Find variable transformation that diagonalises the covariance matrix
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De-Correlation via PCA

(Principal Component Analysis)

 PCA eliminates correlations!

 PCA    (unsupervised learning algorithm)

 reduce dimensionality of a problem

 find most dominant features in a distribution

 Eigenvectors of covariance matrix  “axes” in transformed variable space

 large eigenvalue  large variance along the axis  (principal component)
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Decorrelation at Work
Example: linear correlated Gaussians  de-correlation works to 100%

1-D Likelihood on de-correlated sample give best possible performance

compare also the effect on the MVA-output variable!

correlated variables:                                               after decorrelation

Watch out! Things might look very different for non-linear correlations!
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care

 How does linear 

decorrelation affect  

cases where 

correlations 

between signal and 

background differ?

Original correlations

Signal Background
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care

 How does linear 

decorrelation affect  

cases where 

correlations 

between signal and 

background differ?

SQRT decorrelation

Signal Background
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care

 How does linear 

decorrelation affect 

strongly nonlinear 

cases ?

Original correlations

BackgroundSignal
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Limitations of the Decorrelation

in cases with non-Gaussian distributions and/or nonlinear correlations, 

the  decorrelation needs to be treated with care

 How does linear 

decorrelation affect 

strongly nonlinear 

cases ?

SQRT decorrelation

Watch out before using decorrelation “blindly”!!

Perhaps “de-correlate” only a subspace!

BackgroundSignal
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Correlation Coefficients

http://en.wikipedia.org/wiki/Correlation_and_dependence

 to capture “non-linear correlations”     mutual information

 𝑰 𝒙, 𝒚 = ∫ ∫ 𝒑𝒙𝒚 𝒙, 𝒚 𝒍𝒐𝒈
𝒑𝒙𝒚 𝒙,𝒚

𝒑𝒙 𝒙 𝒑𝒚 𝒚
𝒅𝒙𝒅𝒚

 𝑰 𝒙, 𝒚 =0  only if 𝒙, 𝒚 are really statistically independent !
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‘correlations’ , ‘linear-correlations’, ‘interaction/dependence’

 phsicist’s slang often different from statistitans’ !



Discriminative Classifiers
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 KNN and Naïve Bayesian (Multi-dimensional and Projective Likelihood)

 generative methods  - estimate the pdf

 discriminative  methods 

 impose model-specific restrictions (i.e. linear decision boundaries)

 fit directly the decision boundaries

“Neyman-Pearson Lemma:

“limit” in ROC curve is given by 

𝒚 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺)

𝑷𝑫𝑭(𝒙|𝑩)
,

Bayes’ optimal the likelihood ratio 

(or any monotonous function 

thereof)

in the limit, a ‘perfect’ discriminative 

classifier y(x) parametrizes the 

likeihood ratio (or a monotonic function thereof)

 use as ‘event weights’ 

arXiv:1506.02169 for a ‘more theoretical’ analysis



Linear Discriminant
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i.e.  any linear function of the input variables:   linear decision boundaries

H1

H0

x1

x2

Linear Discriminant:

General:

PDF of the test statistic y(x)

 determine the “weights” w that separate “best” 

PDFS from PDFB

𝑦 𝑥 = 𝑥1, … , 𝑥𝐷 =෍

𝑖=0

𝑀

𝑤𝑖ℎ𝑖(𝑥)

𝑦 𝑥 = 𝑥1, … , 𝑥𝐷 = 𝑤0 + ෍

𝑖=1

D

𝑤𝑖𝑥𝑖



Fisher’s Linear Discriminant
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determine the “weights” w that do “best”

y

Maximise “separation” between the S and B 

 minimise overlap of the distributions of yS and yB

maximise the distance between the two mean 

values of the classes

minimise the variance within each class

yS
yB

 maximise

note: these quantities can be calculated from the training data

the Fisher coefficients

𝑦(𝐱,𝐰) = 𝑤0 + ෍

𝑖=1

D

𝑤𝑖𝑥𝑖

𝐽 𝑤 =
𝐸 𝑦𝐵 −𝐸[𝑦𝑆]

2

𝜎𝑦𝐵
2 +𝜎𝑦𝑆

2 =
𝑤𝑇𝐵𝑤

𝑤𝑇𝑊𝑤
=
"in between" variance

"within" variance

𝛻𝑤 𝐽 𝑤 = 0 ⇒ 𝑤 ∝ 𝑊−1( Ԧ𝑥 𝑆 − Ԧ𝑥 𝐵)



Linear Discriminant and non linear 

correlations

assume the following non-linear correlated data:

 the Linear discriminant obviously doesn’t do a very good job here:

Of course, these can easily be de-

correlated:

here: linear discriminator works 

perfectly on de-correlated data

l 2 2

|

var 0 var 0 var 1

var 0
var 1 a tan

var 1

 

 
  

 
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Linear Discriminant with Quadratic input:

A simple to “quadratic” decision boundary:

 var0 * var0

 var1 * var1

 var0 * var1

 quadratic decision boundaries in  var0,var1

Performance of Fisher Discriminant:

 linear decision boundaries in  var0,var1while:
 var0

 var1

Performance of Fisher Discriminant

with quadratic input:

Fisher

Fisher with decorrelated variables

Fisher with quadratic input

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 41

‘feature 

engineering’



Classifier Training and Loss-Function
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What about a more ‘general approach’  than ‘constructing 𝐽 𝑤 ’ ?

 minimize the expectation value of a “Loss function” 𝐿(𝑦𝑡𝑟𝑎𝑖𝑛, 𝑦 𝑥 )

𝐿(𝑦𝑡𝑟𝑎𝑖𝑛 , 𝑦 𝑥 ) :  penalizing prediction errors for training events

• Regression:

𝐸[𝐿] = 𝐸
1

2
(𝑦𝑡𝑟𝑎𝑖𝑛 − 𝑦 𝑥

2

] squared error loss 

• Classification:

𝐸 𝐿 = 𝐸[𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 ) binomial loss

regression: 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 = the functional value of training event 𝑖 which

happens to have the measured observables 𝑥𝑖

classification: 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 =1 for signal, =0 (-1) background



Classifier Training and Loss-Function
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• Regression: 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 : Gaussian distributed around a mean value

• Remember: Maximum Likelihood estimatior

• Maximise: log probability of the observed training data:  

𝐿 = − log ෑ

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑃 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦(𝑥𝑖) = − ෍

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 ) = ෍

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 − 𝑦 𝑥𝑖

2

𝐸[𝐿] = 𝐸
1

2
(𝑦𝑡𝑟𝑎𝑖𝑛−𝑦 𝑥

2

] squared error loss (regression)

• Classification: now: 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 (i.e. is it ‘signal’ or ‘background’) is  Bernoulli distributed

𝐿 = − ෍

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 ) = −෍

𝑖

log(𝑃 𝑆 𝑥𝑖
𝑦𝑖
𝑡𝑟𝑎𝑖𝑛

𝑃 𝐵 𝑥𝑖
1−𝑦𝑖

𝑡𝑟𝑎𝑖𝑛
)

If we now say y(x) should simply parametrize P(S|x); P(B|x)=1-P(B|x) 

𝐸 𝐿 = 𝐸[𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 ) binomial loss



Logistic Regression*
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*although called ‘regression’ it is a ‘classification’ algorithm!

Fisher Discriminant: 
 equivalent to Linear Discriminant with ‘squared loss function’

 Ups: didn’t we just show that “classification” would naturally use ‘binomial loss’ ?

 build a linear classifier that maximizes ‘binomial loss’:
 y(x) to parameterize P(S|x), we clearly cannot ‘use a linear function for ‘y(x)’

 ‘squeeze’ any linear function 𝑤0 + ∑𝑤𝑗𝑥
𝑗 = Wx into the proper interval  0 ≤

𝑦(𝑥) ≤ 1 using the ‘logistic function’ (i.e. sigmoid function)

𝑦 𝑥 = 𝑃 𝑆 𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊𝑥 =
1

1+𝑒−𝑊𝑥

 𝐿𝑜𝑔 𝑂𝑑𝑑𝑠 = 𝐿𝑜𝑔
𝑃 𝑆 𝑥
𝑃 𝐵 𝑥

= 𝑊𝑥 is linear! 

Logistic Regression

Note: Now y(x) has a ‘probability’ interpretation. y(x) of the Fisher discriminant was ‘just’ a 

discriminator.



Logistic Regression
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𝑦 𝑥 = 𝑃 𝑆 𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑊𝑥 =
1

1+𝑒−𝑊𝑥

1D example:

y(x) =sigm(wx)

y(x) =wx

x

Note: decision boundaries are still ‘linear’, just the ‘contour lines’ (y(x)=const) 

are non-linear, parametrizing the probability of the event being y=0 or y=1 as 

‘distance’ from the boundary….



Logistic Regression
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Difference between ‘linear classifier’ and ‘logistic regression’

 distribution of decision boundaries 

a ‘monotonous’ transformation of y(x) 

 does not change ‘relative overlap’ 

for pdfs of yS and yB

 Does not change performance



(Stochastic) Gradient Decent  SDG
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minimize the “loss function”  “W” ?

e.g. 𝐸 𝐿(𝑾) = 𝐸[𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 )

with   𝑦 𝑥 =
1

1+𝑒−𝑾𝒙 ;

𝑾 → 𝑾− 𝜼
𝝏𝑬(𝑳)

𝝏𝒘
: gradient decent

and if you don’t want to evaluate the 

expectation value every time for the whole 

sample:

𝑾 → 𝑾− 𝜼
𝝏𝑳

𝝏𝒘
: stochastic gradient decent

mostly: something in between  mini-batches

learning rate



Support Vector Machine
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 There are methods to create linear decision boundaries using only measures of 

distances  (= inner (scalar) products)

  leads to quadratic optimisation problem

 The decision boundary in the end is defined only by training events that are 

closest to the boundary

 suitable variable transformations into a higher dimensional space may allow   

separation with linear decision boundaries non linear problems

 Support Vector Machine



Support Vector Machines
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x1

x2

margin 

support 

vectors

S
e

p
a

ra
b

le
 d

a
ta

 hyperplane that  separates S from B

 Linear decision boundary

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane
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a
ra
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 d
a

ta

 Solution of largest margin depends only on  

inner product of support vectors (distances) 

 quadratic minimisation problem

1

2

4

3 If data non-separable add misclassification cost

parameter C·ii to minimisation function



Support Vector Machines
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 Non-linear cases:
 Transform variables into higher dimensional feature space where again a linear 

boundary (hyperplane) can separate the data

(x1,x2)S
e
p
a

ra
b
le

 d
a
ta

N
o
n

-s
e
p
a
ra

b
le

 d
a
ta hyperplane that  separates S from B

 Linear decision boundary

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane

 largest margin - inner product of support vectors 

(distances)  quadratic minimisation problem

 If data non-separable add misclassification cost

parameter C·ii to minimisation function



Support Vector Machines
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x1

x2

x1

x3

x1

x2

 Non-linear cases:

Kernel size paramter typically needs careful tuning!   (Overtraining!)

 non linear  variable transformation  linear separation in transformed feature space

 no explicit transformation specified  Only its “scalar product”  x·x  Ф(x)·Ф(x) needed.

 certain Kernel Functions can be interpreted as scalar products between transformed 

vectors in the higher dimensional feature space. e.g.: Gaussian, Polynomial, Sigmoid

 Choose Kernel and fit the hyperplane using the linear techniques developed above

(x1,x2)S
e

p
a

ra
b

le
 d

a
ta

N
o
n

-s
e
p
a
ra

b
le

 d
a
ta Find hyperplane that best separates signal 

from background 

 Linear decision boundary

 Best separation: maximum distance (margin) 

between closest events (support) to hyperplane

 largest margin - inner product of support vectors 

(distances)  quadratic minimisation problem

 If data non-separable add misclassification cost

parameter C·ii to minimisation function



Support Vector Machines
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 How does this “Kernel” business work?

 Kernel function  == scalar product in “some transformed” variable space

 standard:   Ԧ𝑥 ∙ Ԧ𝑦 = ∑𝑥𝑖 𝑦𝑖 = 𝑥 𝑦 ∗ 𝑐𝑜𝑠(𝜃)

 large if :   Ԧ𝑥 ∙ Ԧ𝑦 are in the same “direction”

 zero if :   Ԧ𝑥 ∙ Ԧ𝑦 are orthogonal  (i.e. point along different axes / dimension)

 e.g. Gauss kernel:   Φ Ԧ𝑥 ∙ Φ Ԧ𝑦 = 𝐾 Ԧ𝑥, Ԧ𝑦 = 𝑒𝑥𝑝(−
Ԧ𝑥−𝑦 2

2𝜎2
)

 zero if points: Ԧ𝑥 𝑎𝑛𝑑 Ԧ𝑦 “far apart” in original data space

 large only in “vicinity” of each other

 𝜎 < distance between training data points:

 each data point is “lifted” into its “own” dimension

 full separation of “any” event configuration with decision boundary along 

coordinate axis

 well, that would of course be:  overtraining  



Overtraining
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S

B

x1

x2

S

B

x1

x2

Classifier is too flexible

 overtraining

True performance 

(independent test sample)

training cycles

c
la

s
s
if
ic

a
io

n
 e

rr
o
r

training sample

a𝛼𝑜𝑝𝑡𝑖𝑚𝑎𝑙

Bias if ‘performance’ is estimated 

from the training sample

Or ?

possible overtraining is concern for 

every “tunable parameter” a of 

classifiers: Smoothing parameter,   

n-nodes…

verify on independent “test” sample



Regularisation
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𝐿 = log( ෑ

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑃 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦(𝑥𝑖) ∗ 𝑝 𝑤 )

=෍
𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 ) + log 𝑝 𝑤

often (e.g if  y = polynomial or y = neural network)

w “small”  model is less ‘flexible’

 reasonable prior 𝑝 𝑤 would be: Gaussian with mean zero

𝐿 = 𝐿 +
1

2
𝛼∑𝑤2 α: factor of ‘how much you want to penalize”

Minimize loss function:   e.g. 𝐯𝐢𝐚 𝑾 → 𝑾− 𝜼
𝝏𝑳

𝝏𝒘
:   SDG 

Include prior distribution on ‘weights’/’parameters’  w: 



Digression 
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Kolmogorov Smirnov Test:
Tests if two sample distributions are compatible with coming from the same 

parent distribution

 Statistical test: if they are  indeed random samples of the same parent distribution, then 

the KS-test gives an uniformly distributed  value between 0 and 1  !!

 Note: that means an average value of 0.5  !!

Please: don’t misunderstand the

title of this plot as: 

𝑲𝑺 = ቊ
~𝟏: 𝒐𝒌
𝒆𝒍𝒔𝒆: 𝒕𝒓𝒐𝒖𝒃𝒍𝒆

Was meant as  quick sanity check ONLY!!



Cross Validation
parameters “a”  control performance

 #training cycles, #nodes, #layers, regularisation parameter (neural net)

 smoothing parameter h  (kernel density estimator)

….

more training data  better training results

division of data set into  “training” and “test” and “validation” sample? 

Train TrainTrainTrainTest Train

Cross Validation: divide the data sample into say 5 sub-sets

Train TrainTrainTrainTest TrainTrain TrainTrainTrain TestTrain TrainTrain TestTrainTrain TrainTrainTrain TestTrain

 train 5  classifiers:  yi(x,a) : i=1,..5, 

 i-th classifier is trained without the i-th sub sample  used as ‘test/validation’

 calculate the test error:
events

i k

kevents

1
CV( ) L(y (x , )) L : loss function

N
a a 

use a for which CV(a) is minimum  train the final classifier using all data
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General Advice for (MVA) Analyses

 no magic in MVA- or ML-Methods:
no “artificial intelligence”  … just “fitting decision boundaries” in a given 

model

 most important:  finding good observables
good separation power between S and B

little correlations amongst each other  have ‘new information’

no correlation with the parameters you try to measure in your signal sample!

 combination of variables  feature engineering !
eliminate correlations:   you are MUCH more intelligent than the algorithm

 scale features to similar numeric range

 apply pure pre-selection cuts yourself.

 avoid “sharp features”  numerical problems, binning loss 
often simple variable transformations (i.e. log(variable) ) do the trick

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 57

 treat regions with different features “independent”
Introduces  unnecessary correlations, ‘kinks’ in decision boundaries



MVA Categories

 one classifier per ‘region’

 ‘regions’ in the detector (data)  with different features treated independent

improves performance

avoids additional correlations where otherwise the variables would be 

uncorrelated!
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Recover optimal performance after 

splitting into categories
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About Systematic Errors
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 Typical worries are:  

What happens if the estimated “Probability Density” is wrong ?

 Can the Classifier, i.e. the discrimination function y(x), introduce systematic uncertainties?

What happens if the training data do not match “reality” 

Any wrong PDF leads to imperfect discrimination function

Imperfect (calling it “wrong” isn’t “right”)  y(x)   loss of discrimination power

that’s all!

classical cuts face exactly the same problem, however:

in addition to cutting on features that are not correct, now you can also “exploit” 

correlations that are in fact not correct

P(x | S )
y(x )

P(x | B )


 Systematic error are only introduced once “Monte Carlo events” with imperfect modeling are 

used for 

 efficiency; purity

#expected events 

 same problem with classical “cut” analysis

 use control samples to test MVA-output distribution (y(x))

 Combined variable (MVA-output, y(x)) might “hide” problems in ONE individual variable more 

than if looked at alone  train classifier with few variables only and compare with data
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About Systematic Errors



MVA and Systematic Uncertainties

Multivariate Classifiers  THEMSELVES  don’t have systematic uncertainties 

 even if trained on a “phantasy Monte Carlo sample”

 there are only “bad” and “good” performing classifiers !

 OVERTRAINING is NOT a systematic uncertainty !!

 difference between two classifiers resulting from two different training runs 

DO NOT CAUSE SYSTEMATIC ERRORS

 same as with “well” and “badly” tuned classical cuts

 MVA classifiers:  only select regions in observable space 

 Efficiency estimate (Monte Carlo)  statistical/systematic uncertainty
 involves “estimating” (uncertainties in ) distribution of 𝑃𝐷𝐹𝑦𝑆(𝐵)

 statistical “fluctuations”  re-sampling  (Bootstrap)

 “smear/shift/change” input distributions and determine 𝑃𝐷𝐹𝑦𝑆(𝐵)
 estimate systematic error/uncertainty on efficiencies

 Only involves “test” sample..

 systematic uncertainties have nothing to do with the training !!
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Summary
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 MVA or ML algorithms 

 parametrize likelihood ratio (or a monotonic function thereof) 

decision boundaries or ‘event weights’

Parametrize the ‘target function’

 ‘regression’

Generative or discriminative algorithms

Multidimensional/projective Likelihood  (rec. pdf)

 (Linear) discriminators etc.  minimize a loss function 

Take care in training, validation and testing 

Don’t want over/’under’-training  but the best classifier! 



Backup
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MVA and Systematic Uncertainties

 Don’t be afraid of correlations!
 typically “kinematically generated”  easily modeled correctly

 “classical cuts” are also affected by “wrongly modeled correlations”

 MVA method let’s you spot mis-modeled correlations! 

 “projections” of input variables 

 + the combined MVA test statistic “y(x)” !
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Systematic “Error” in Correlations

• Use as training sample events that have correlatetions

• optimize CUTs

• train an propper MVA (e.g. Likelihood, BDT)

• Assume in “real data” there are NO correlations    SEE what happens!!
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Systematic “Error” in Correlations
•Compare “Data” (TestSample)  and Monte-Carlo

(both taken from the same underlying distribution)
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Systematic “Error” in Correlations
•Compare “Data” (TestSample)  and Monte-Carlo

(both taken from the same underlying distributions 

that  differ by the correlation!!! )

Differences are ONLY visible in the MVA-output plots (and if you’d look at cut sequences….)
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Robustness against systematic Uncertainties

 minimize “systematic” uncertainties  (robustness)

 “classical cuts” : do not cut near steep edges, or in regions 

of large sys. uncertainty

 hard to translate to MVAs:
 artificially degrade discriminative power (shifting/smearing) of 

systematically “uncertain” observables  IN THE TRAINING

 remove/smooth the ‘edges’  MVA does not try to exploit them

Signal Background

 Note: if I KNEW about the error, I’d correct for it. I’m talking about 

‘unknown’ systematics
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How does this look in 2D?

MVA-decision boundaries

• Looser MVA-cut  wider 

boundaries in BOTH variables 

• You actually want a boundary 

like THIS

• Tight boundaries in var1

• Loose boundaries in var0

 YES it works !

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 69

 train MVA algorithm with ‘problematic 

variables’ transformed to make them less 

discriminant:



Another example..

 Hmm… also here, I’d still say it does exactly what I want it to do

 The difficulty is to ‘evaluate’ or ‘estimate’ the advantage 

(reduction in systematic  loss in performance)
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bad decsision boundary better 



other examples..

Seems to work but:

difficult  to ‘evaluate’ or 

‘estimate’ the advantage 

(reduction in systematic 

 loss in performance)
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bad decsision boundary better 



How does this look in 2D?

MVA-decision boundaries

• Looser MVA-cut  wider 

boundaries in BOTH variables 

What if you are sure about the 

peak’s position in var1, but less 

sure about var0 ?

• You actually want a boundary 

like THIS

• Tight boundaries in var1

• Loose boundaries in var0
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Reduce information content

 Here: one would for example “shift” 

such that signal and backgr. are less 

separated

 However, that’s not “universal” 

 Looking for a general tool to ‘force’ any MVA algorithm, not to rely 

too much on exact feature:

 Similar: early stopping techniques in Neural networks to avoid overtraining

 reduce difference between “signal” and “background”

 or  reduce information content in each, “signal” and “background”
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Reduce information content

 Looking for a general tool to ‘force’ any MVA algorithm, not to rely 

too much on exact feature:

 Similar: early stopping techniques in Neural networks to avoid overtraining

 reduce difference between “signal” and “background”

 or  reduce information content in each, “signal” and “background”

shift

smear

turn
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Back to my “complicated” 3D 

example
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ROC Cuve - Zoom

 compare: difference between red (what you think you have) and 

black (what your algorithm applied to nature might actually provide)

 do this for solid (smeared) and dashed (unsmeared) classifiers 
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Boosted Decision Trees
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 Decision Tree: Sequential application of cuts splits 

the data into nodes, where the final nodes (leafs) 

classify an event as signal or background

 Boosted Decision Trees (1996):
combine a whole forest of Decision Trees, 

derived from the same sample, e.g. using  

different event weights.

 overcomes the stability problem

 increases  performance

 became popular in HEP since 

MiniBooNE, B.Roe et.a., NIM 543(2005)

 Each branch  one standard “cut” 
sequence

 easy to interpret, visualised

 Disadvatage  very sensitive to 
statistical fluctuations in training data



Boosting
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Training Sample
classifier 

C(0)(x)

Weighted 

Sample

re-weight

classifier 

C(1)(x)

Weighted 

Sample

re-weight

classifier 

C(2)(x)

Weighted 

Sample

re-weight

Weighted 

Sample

re-weight

classifier 

C(3)(x)

classifier 

C(m)(x)

ClassifierN

( i)

i

i

y(x ) w C (x ) 



Adaptive Boosting (AdaBoost)
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Training Sample
classifier 

C(0)(x)

Weighted 

Sample

re-weight

classifier 

C(1)(x)

Weighted 

Sample

re-weight

classifier 

C(2)(x)

Weighted 

Sample

re-weight

Weighted 

Sample

re-weight

classifier 

C(3)(x)

classifier 

C(m)(x)

C lassifie rN ( i )

( i )e rr

( i )

i e rr

1 f
y(x ) log C (x )

f

 
  

 


AdaBoost re-weights events 

misclassified by previous classifier:

𝟏 − 𝒇𝒆𝒓𝒓
𝒇𝒆𝒓𝒓

; 𝒇𝒆𝒓𝒓 =
𝒎𝒊𝒔𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅

𝒂𝒍𝒍 𝒆𝒗𝒆𝒏𝒕𝒔

y(x)





Boosted Decision Trees
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 Are very popular in HEP

 Robust and easy to train, 

 get good results

 But: when we adopted BDTs, 

 In 2006 ANNs just started their big breakthrough in 

the ML community with remarkable advances in 

DEEP Learning !

 Let’s move on to Neural Networks 



Machine Learning -

Multivariate Techniques
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 if we do not know that ‘straight line’ or ‘polynomial’ is a 

good model (particularly in higher dimension) ? 

 general, simple, piecewise models

 fit non-analytic  computer  machine learning



Machine Learning -

Multivariate Techniques
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 fitted non-analytic function may approximate:

 Likelihood ratio: 

• Background

• Signal

𝒚 𝒙 =
𝑷𝑫𝑭(𝒙|𝑺)

𝑷𝑫𝑭(𝒙|𝑩)
; 𝒙 =

𝒗𝒂𝒓𝟎
𝒗𝒂𝒓𝟏
.
.
.

 decision boundary

𝒚 𝒙 = 𝒄𝒐𝒏𝒔𝒕



Event Classification

P(Class=C|x) (or simply P(C|x)) :  probability that the event class is of C, given the 

measured observables x={x1,….,xD}  y(x)  

P(y | C ) P (C)
P (C lass = C | y) =

P(y)

Prior probability to observe an event of “class C”

i.e. the relative abundance of “signal” versus 

“background”   P C = 𝑓𝐶 =
𝑛𝐶

𝑛𝑡𝑜𝑡

Overall probability density to observe the actual 

measurement y(x). i.e.
Classes

P(y) = P(y | Class)P(Class)

Probability density distribution 

according to the measurements x

and the given mapping function

Posterior probability

 It’s a nice “exercise” to show that this application of Bayes’ Theorem 

gives exactly the formula on the previous slide !
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Neyman Pearson Lemma

𝑷 𝒙 𝑯𝟏

𝑷 𝒙 𝑯𝟎
< 𝒌α

Kyle Cranmer

graphical proof of Neyman Pearson’s Lemma:
(graphics/idea taken from Kyle Cranmer)

 the critical region WC given by the likelihood ratio 
𝑷 𝒙 𝑯𝟏

𝑷 𝒙 𝑯𝟎

 for each given size α (risk of e.g. actually making a false discovery) 

= the statistical test with the largest power 𝟏 − β (chances of actually 

discovering something given it’s there)
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Neyman Pearson Lemma

assume we want to modify/find another “critical” region with 

same size (α)  i.e. same probability under H0 

Kyle Cranmer

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

… as size (α) is fixed

Kyle Cranmer

α = න
𝑪

𝑷 𝒙 𝑯𝟎 𝒅𝒙

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

outside “critical 

region” given by 

LL-ratio

Kyle Cranmer

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

outside “critical 

region” given by 

LL-ratio

inside “critical 

region” given by 

LL-ratio

Kyle Cranmer

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

Kyle Cranmer

β = න
!𝑪

𝑷 𝒙 𝑯𝟏 𝒅𝒙

𝑊𝑐:
𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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Neyman Pearson Lemma

The NEW “acceptance” region has less 

power!  (i.e. probability under H1 )    q.e.d

Kyle Cranmer

“critical” region 

(reject H0)

“acceptance” region 

(accept H0 (reject H1)
𝑊𝑐:

𝑃(𝑥|𝐻1)

𝑃(𝑥|𝐻2)
> 𝑘𝛼
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