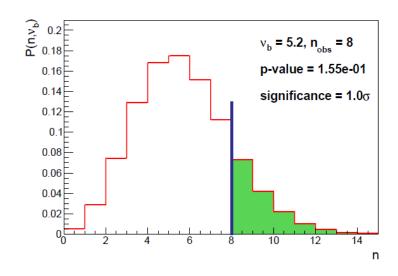


Basic concepts – part 2

Compatibility test – cont'd

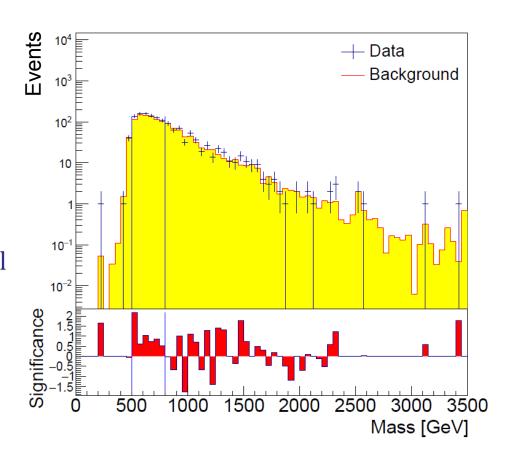


Example: BumpHunter algorithm

Software used to search for excess or deficit in a spectrum.

- G. Choudalakis 1101.0390
- No assumptions are made on the signal shape or yield
- Just test data against background-only hypothesis
 - → Compute the p-value for all possible intervals.
 - → Select the interval with smallest p-value.

This gives the local p-value: Pmin

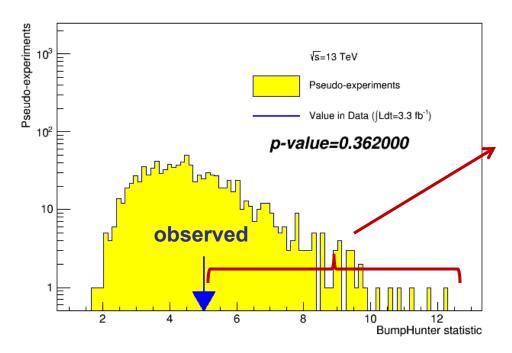


SOS 2016

Example: BumpHunter algorithm

Since many intervals are considered there is a increasing probability that an excess is found due to statistical fluctuations

- This is the (in)famous (and misnamed) Look Elsewhere Effect: LEE
- To cope for this effect a global p-value is calculated
 - \rightarrow The global p-value is extracted by comparing $-\log(P_{\min}^{local})$ to a set of
 - $-\log(P_{\min}^{local})$ generated using background-only pseudo-experiments



Pglobal: fraction of PE that gives a result higher than the one observed

$$P^{global} = fraction of (P^{PE}_{min} > P^{obs}_{min})$$

SOS 2016

Pearson's χ^2 test: estimate global compatibility between data and a model

- The data is regrouped in an **histogram** of N bins
- A goodness-of-fit test K² is computed as follows

$$K^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{\nu_i}$$
 n_i : number of observed events in bin i ν_i : expected number of events in bin i

If the data n_i are **Poisson** distributed with mean values v_i and $n_i > \sim 5$ then: K^2 is a random variable following a χ^2 distribution with N degrees of freedom.

A variant of this test statistics is the **Neyman's** χ^2

$$K^2 = \sum_{i=1}^{N} \frac{(n_i - \nu_i)^2}{n_i}$$

Easier to code (in particular for fits) Asymptotically equivalent to Pearson's χ^2 Follows χ^2 with **N-1** degrees of freedom

χ^2 distribution

Probability density function

k degrees of freedom, x>0

$$\chi^{2}(x;k) = \frac{x^{\frac{k}{2}-1}e^{-\frac{x}{2}}}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}$$

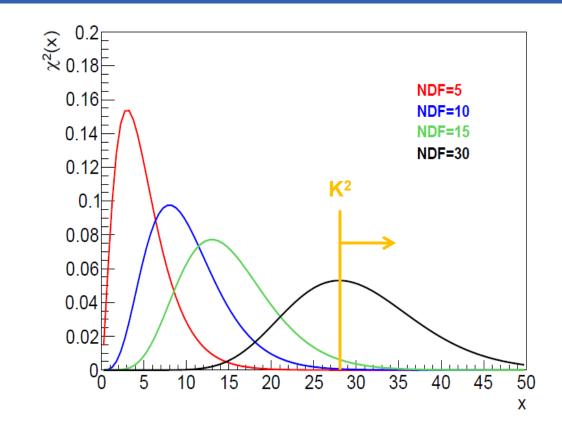
Cumulative distribution

$$F(x;k) = \frac{\gamma\left(\frac{k}{2}, \frac{x}{2}\right)}{\Gamma\left(\frac{k}{2}\right)}$$

Mean: k Variance: 2k

With:
$$\gamma(s,x) = \int_0^x t^{s-1}e^{-t}dt$$

$$\Gamma(s) = \int_0^{+\infty} t^{s-1}e^{-t}dt$$



The p-value of a χ^2 test is obtained by integrating the χ^2 distribution above the measured K² value.

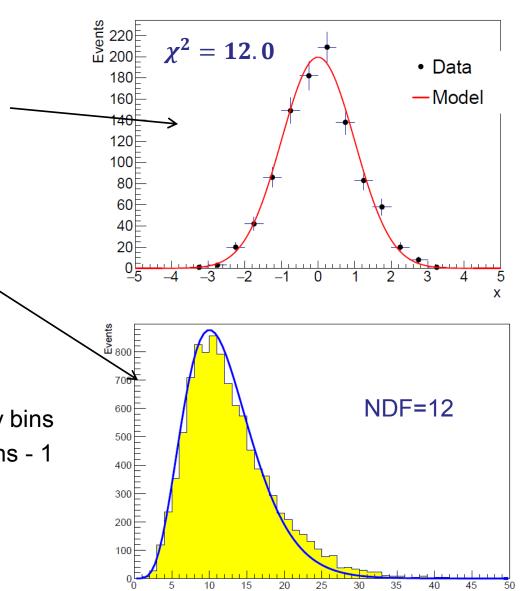
$$p-value = \int_{K^2}^{+\infty} \chi^2(x;k) dx$$

Example

Procedure

- Generate events following a Gaussian distribution
- Calculate (Neyman's) K²
- Repeat 10k time and plot the distribution of K²
- Compare to χ^2 distribution

K² is calculated only with non-empty bins NDF is the number of non-empty bins - 1



SOS 2016

Kolmogorov-Smirnov test

The KS test is an **unbinned** method that uses **all the measured values** of variable **x** to test the compatibility of the data to a model.

- The M measured values x_i are first sorted in ascending order: x₁<x₂<...<x_M
- The sample cumulative distribution is calculated as:

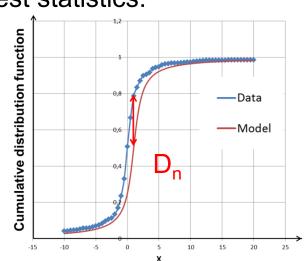
$$F_{\text{data}}(x) = \begin{cases} 0 \text{ if } x \le x_1\\ \text{i/M if } x_i \le x < x_{i+1}\\ 1 \text{ if } x \ge x_M \end{cases}$$

The test compares **cumulative distribution** of the sample to that of the model. The **maximum distance** D_n between the two is the test statistics:

$$D_n = \sup_{x} |F_{\text{model}}(x) - F_{\text{data}}(x)|$$

The **p-value** of the KS test is given (for large M) by:

p-value =
$$2\sum_{r=1}^{+\infty} (-1)^{r-1} e^{-2Mr^2 D_n^2}$$



Example

Exponential p.d.f

$$f(x;\lambda) = \lambda e^{-\lambda x}, x > 0$$

- Data: λ=0.4 (500 events)
- Model: λ=0.35

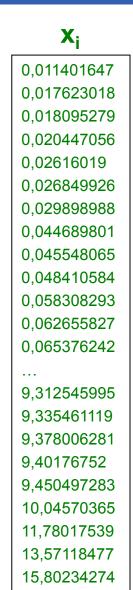
$$F_{\text{data}}(x) = \begin{cases} 0 & x \le x_1 \\ i/n & x_i \le x < x_{i+1} \\ 1 & x \ge x_M \end{cases}$$

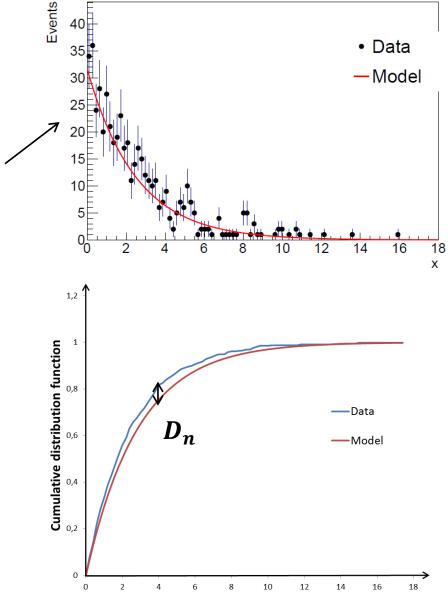
$$F_{\text{model}}(x) = 1 - e^{-\lambda x}$$

Max distance between cumulative distributions:

$$D_n = 0.0646$$

→ p-value = 0,03





Х

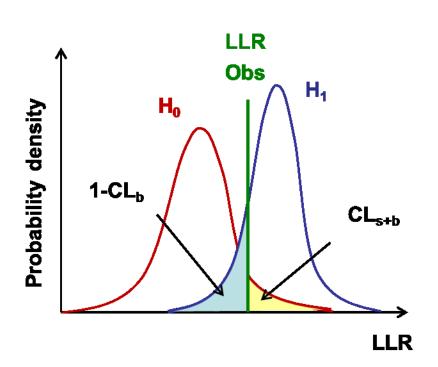
Hypothesis test: CLs method

Test of two hypothesis H₀ and H₁ using data

Likelihood of data given an hypothesis: $L(data|H_0)$ or $L(data|H_1)$

Neyman-Pearson lemma: optimal **test statistics** for hypothesis testing is given by (log) likelihood ratio

$$LLR = -2\log \frac{L(\text{data}|H_0)}{L(\text{data}|H_1)}$$



$$\int_{LLR_{obs}}^{\infty} f(t|H_0)dt = CL_{s+b}$$

$$\int_{-\infty}^{LLR_{obs}} f(t|H_1)dt = 1 - CL_b$$

 H_0 rejected at $(1-\alpha)$ $CL_{s+b} < \alpha$ confidence level if

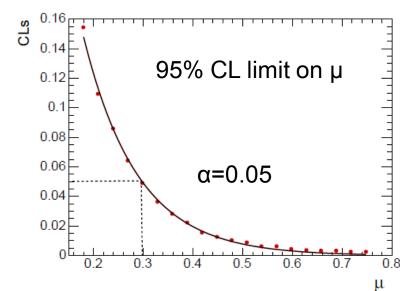
More robust test
$$CL_s = \frac{CL_{s+b}}{CL_b} < \alpha$$

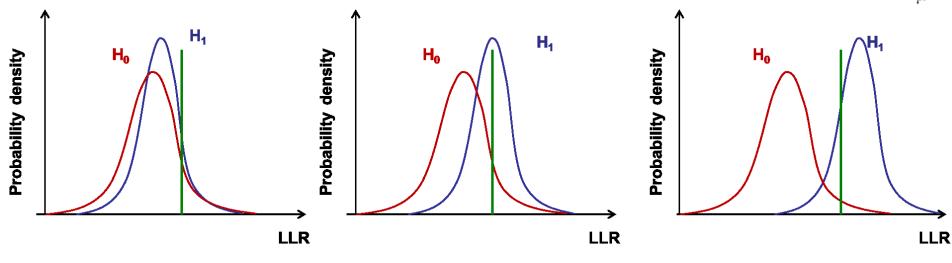
SOS 2016 10

Hypothesis test: CLs method

Testing signal strenght (μ):

- Express number of event of signal as
 s = µ×s_{nominal}
- CLs test can be performed for increasing values of µ
- Exclusion limit on μ when CLs<α





Samples and parameter estimation

A random variable X can be described by its p.d.f f(x)

f depends of (generally unknown) parameters $\vec{\theta} = \{\theta_1, \dots, \theta_P\}$: $f(\mathbf{x}; \vec{\theta})$

An **experiment** measuring X provides a **sample** of values $\vec{x} = \{x_1, ..., x_N\}$ One can construct a function of \vec{x} to **infer** the properties of the p.d.f

- This function is called an estimator
- The estimator for a parameter θ is often written: $\widehat{\theta}$
- Parameter fitting: estimate θ using estimator $\hat{\theta}$ and data \vec{x}
- $\widehat{\boldsymbol{\theta}}(\vec{x})$ is itself a random variable following a p.d.f $g(\widehat{\boldsymbol{\theta}}; \boldsymbol{\theta})$

A good estimator should be

Consistent: $\widehat{\boldsymbol{\theta}}$ converges to $\boldsymbol{\theta}$ for infinite sample $(N \to +\infty)$

Unbiased: average of $\widehat{\boldsymbol{\theta}}$ for infinite number of measurements is $\boldsymbol{\theta}$

$$\rightarrow$$
 that is: $E[\widehat{\theta}(\vec{x})] - \theta = b = 0$

Basic estimators

Consider a **sample** of size N of a random variable X: $\vec{x} = \{x_1, ..., x_N\}$ X follows a p.d.f f(x) of truth mean μ and variance σ^2

A simple estimator is the **arithmetic mean** of values x_i : $\bar{x} = \frac{1}{N} \sum x_i$

$$E[\bar{x}] = \frac{1}{N} \sum_{i=1}^{N} E[x_i] = \mu$$
 \rightarrow Unbiased estimator of μ

$$V[\bar{x}] = E[\bar{x}^2] - E[\bar{x}]^2 = \frac{\sigma^2}{N}$$

 $V[\bar{x}] = E[\bar{x}^2] - E[\bar{x}]^2 = \frac{\sigma^2}{N}$ This implies that the uncertainty on the sample mean \bar{x} is: σ/\sqrt{N}

Estimator of the variance: $v = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \overline{x^2} - \bar{x}^2$

Expected value of the estimator: $E[v] = \sigma^2 - \frac{\sigma^2}{N} = \frac{N-1}{N}\sigma^2$

 \rightarrow Biased estimator of σ^2 !

Basic estimators

Consider a **sample** of size N of a random variable X: $\vec{x} = \{x_1, ..., x_N\}$ X follows a p.d.f f(x) of truth mean μ and variance σ^2

A simple estimator is the **arithmetic mean** of values x_i : $\bar{x} = \frac{1}{N} \sum x_i$

$$E[\bar{x}] = \frac{1}{N} \sum_{i=1}^{N} E[x_i] = \mu$$
 \rightarrow Unbiased estimator of μ

$$V[\bar{x}] = E[\bar{x}^2] - E[\bar{x}]^2 = \frac{\sigma^2}{N}$$

 $V[\bar{x}] = E[\bar{x}^2] - E[\bar{x}]^2 = \frac{\sigma^2}{N}$ This implies that the uncertainty on the sample mean \bar{x} is: σ/\sqrt{N}

Estimator of the variance: $v = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \frac{N}{N-1} (\overline{x^2} - \bar{x}^2)$

Expected value of the estimator: $E[v] = \sigma^2$

 \rightarrow Unbiased estimator of σ^2

Maximum Likelihood estimator (ML)

Suppose a random variable **X** distributed according to a p.d.f $f(x; \vec{\theta})$

- The form of f being know but not the parameters $\vec{\theta} = \{\theta_1, \dots, \theta_P\}$
- Consider a **sample** of X of N values: $\vec{x} = \{x_1, ..., x_N\}$

The method of ML is a technique to estimate $\vec{\theta}$ given data \vec{x}

Joint likelihood function (the x_i are fixed here)

$$L(\overrightarrow{\theta}) = \prod_{i=1}^{N} f(x_i; \overrightarrow{\theta})$$

The **estimators** $\widehat{\theta_i}$ are given by: $\frac{\partial L}{\partial \theta_i} = 0$, $i = 1 \dots P$

$$\frac{\partial L}{\partial \theta_i} = 0, i = 1 \dots P$$

Notes:

- maximizing the likelihood provides and estimate of parameters θ
- In practice the log of L (log likelihoood) is often used
- The likelihood is not a p.d.f!
- Bayesian do transform the likelihood in a p.d.f

SOS 2016 15

Simple examples

Exponential distribution $f(x;\tau) = \frac{1}{\tau}e^{-\frac{x}{\tau}}$

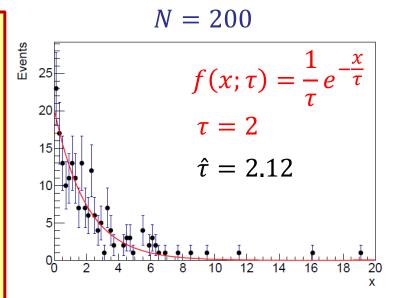
Likelihood:
$$L(\tau) = \prod_{i=1}^{N} \frac{1}{\tau} e^{-\frac{x_i}{\tau}}$$

Log-likelihood:

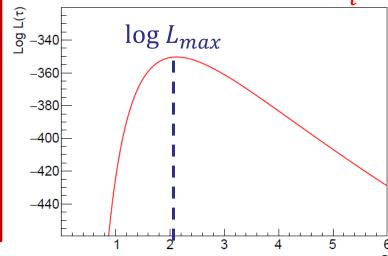
$$\log L(\tau) = \sum_{i=1}^{N} \log f(x_i; \tau) = -N \log \tau - \sum_{i=1}^{N} \frac{x_i}{\tau}$$

Estimator:
$$\frac{d \log L}{d\tau} = 0 \Leftrightarrow \tau = \hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

 $E[\hat{\tau}] = \tau$ (unbiased estimator)



$$\log L(\tau) = -N \log \tau - N \frac{\hat{\tau}}{\tau}$$

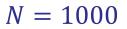


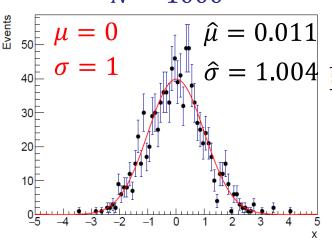
Simple examples

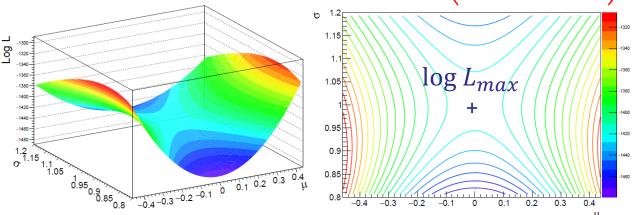
Gaussian distribution
$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
, $\log L(\vec{\theta}) = \sum_{i=1}^{N} \log f(x_i; \mu, \sigma)$

Estimators:

$$\begin{cases} \frac{\partial \log L}{\partial \mu} = 0 \iff \widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i & E[\widehat{\mu}] = \mu \quad \text{(unbiased)} \\ \frac{\partial \log L}{\partial \sigma^2} = 0 \iff \widehat{\sigma^2} = \frac{1}{N} \sum_{i=1}^{N} (x_i - \widehat{\mu})^2 & E[\widehat{\sigma^2}] = \frac{N-1}{N} \sigma^2 \text{ (biased)} \end{cases}$$







Uncertainty of ML estimator

Variance of estimator, $V[\hat{\tau}]$, can be tricky to estimate. Several methods exist:

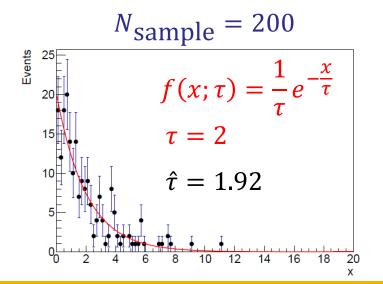
1) Analytical method

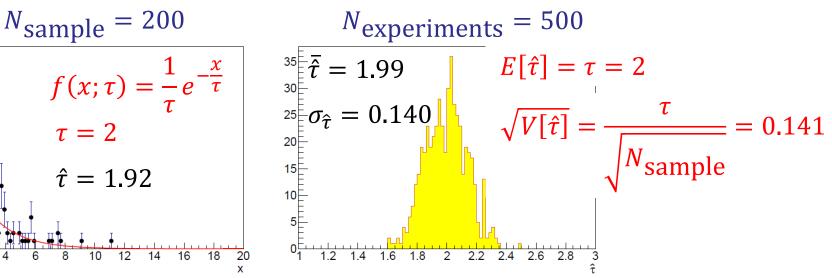
For example for the previous exponential distribution

$$\hat{\tau} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 and $V[\hat{\tau}] = (...) = \frac{\tau^2}{N}$

2) Monte-Carlo method

Very useful for complex cases (multiparameters, systematic uncertainties) Ex: generate samples distributed exponentially





Uncertainty of ML estimator

3) Cramér-Rao bound

Gives a lower bound on any estimator variance (not only ML)

$$V[\theta] \ge rac{\left(1 + rac{\partial b}{\partial heta}
ight)^2}{E\left[-rac{\partial^2 \log L}{\partial heta^2}
ight]}$$
, $(b: bias)$ Equality: estimator is **efficient** ML are asymptotically efficient

For multiple parameters $\vec{\theta} = \{\theta_1, ..., \theta_P\}$: $(V^{-1})_{ij} = E \left[-\frac{\partial^2 \log L}{\partial \theta_i \partial \theta_i} \right]$ (and assuming efficiency and b=0)

For large samples: an estimate of the $(\widehat{V^{-1}})_{ij} = -\frac{\partial^2 \log L}{\partial \theta_i \partial \theta_i} (\theta = \hat{\theta})$ inverse covariant matrix V-1 is:

$$\left(\widehat{V^{-1}}\right)_{ij} = -\frac{\partial^2 \log L}{\partial \theta_i \partial \theta_j} (\theta = \widehat{\theta})$$

1 parameter:
$$\widehat{\sigma^2} = \frac{-1}{\frac{\partial^2 \log L}{\partial \theta^2}(\widehat{\theta})}$$

Uncertainty of ML estimator

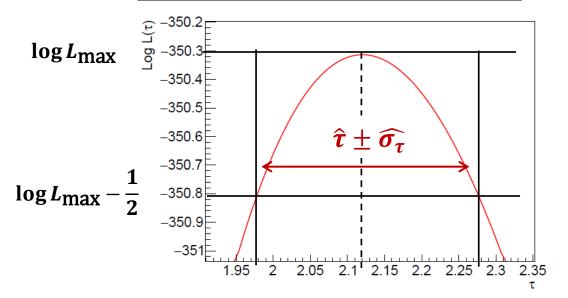
4) Graphical method

Taylor expansion of log L on estimate $\hat{\theta}$:

$$\log L(\theta) = \log L(\hat{\theta}) + (\theta - \hat{\theta}) \frac{\partial \log L}{\partial \theta} (\hat{\theta}) + \frac{1}{2} (\theta - \hat{\theta})^2 \frac{\partial^2 \log L}{\partial \theta^2} (\hat{\theta})$$
$$= \log L_{\text{max}} - \frac{1}{2\widehat{\sigma^2}} (\theta - \hat{\theta})^2$$

$$\Rightarrow \log L(\hat{\theta} \pm \hat{\sigma}) = \log L_{\max} - \frac{1}{2}$$

 $\widehat{ au} \pm \widehat{\sigma_{ au}}$ corresponds to a 68.3% confidence interval



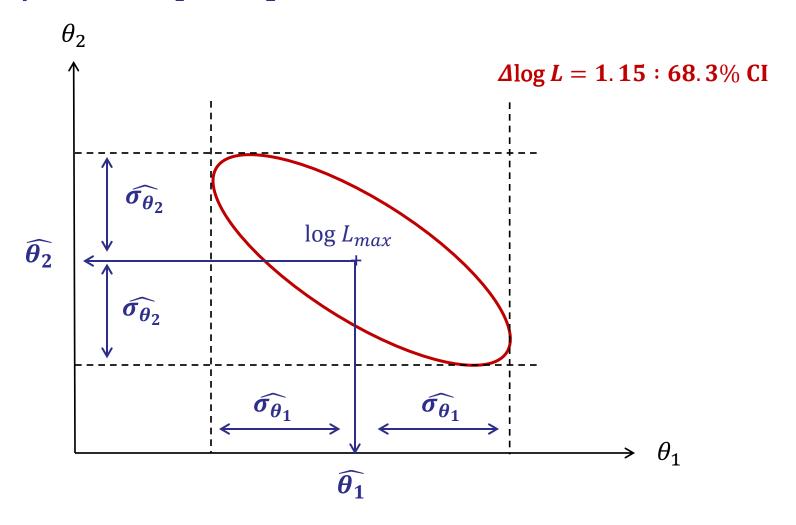
$$\Delta \log L = 0.5 : 68.3\% \text{ CI}$$

$$\Delta \log L = 2 : 95.4\% \text{ CI}$$

$$\Delta \log L = 4.5 : 99.7\% \text{ CI}$$

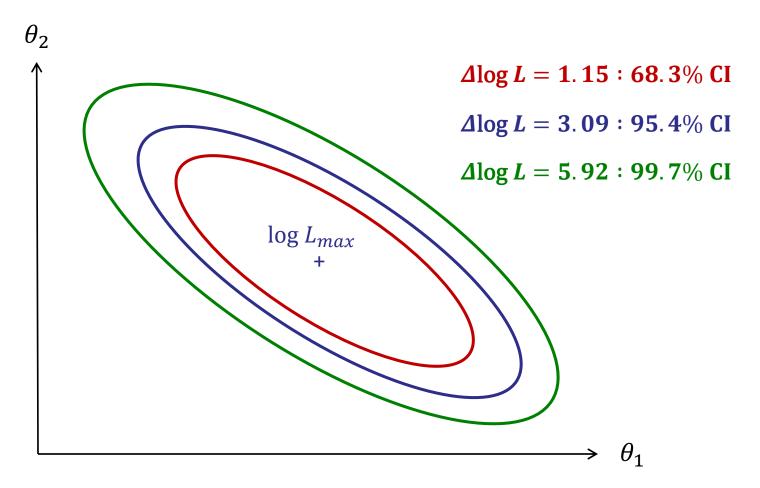
Error ellipse

Case for 2 parameter θ_1 and θ_2 :



Error ellipse

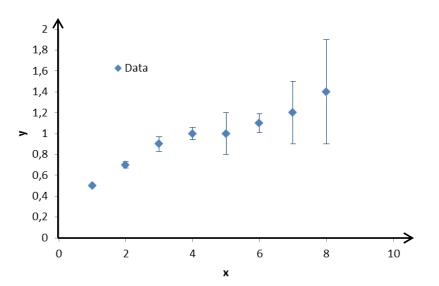
Case for 2 parameter θ_1 and θ_2 :



Chi-square method

Consider N independent variables y_i function of a another variable x_i

- The y_i are **Gaussian** distributed of mean μ_i and (known) std σ_i
- Suppose that $\mu = f(x; \vec{\theta})$ with unknow parameters $\vec{\theta}$



Likelihood:
$$L(\vec{\theta}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma_i} e^{-\frac{1}{2}\left(\frac{y_i - f(x_i; \vec{\theta})}{\sigma_i}\right)^2}$$

Maximizing $\log L(\vec{\theta})$ to estimate parameters $\vec{\theta}$ is equivalent to **minimize**:

$$\chi^{2}(\vec{\theta}) = \sum_{i=1}^{N} \left(\frac{y_{i} - f(x_{i}; \vec{\theta})}{\sigma_{i}} \right)^{2}$$

Simple example

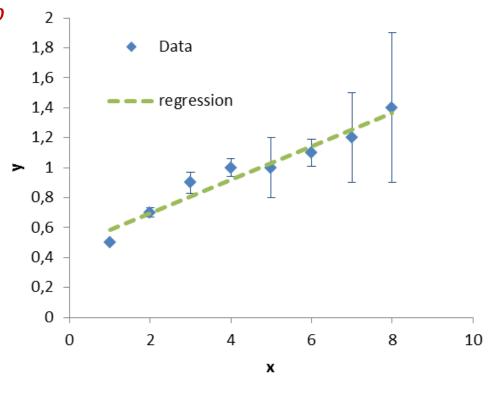
Fit data with a line $f(x; a, b) = ax + \overline{b}$

Simple **linear regression**: minimize the variance of $y_i - f(x_i; a, b)$

$$w(a,b) = \sqrt{\frac{1}{n} \sum_{i} (y_i - (ax_i + b))^2}$$

$$\begin{cases} \frac{\partial w(a,b)}{\partial a} = 0\\ \frac{\partial w(a,b)}{\partial b} = 0 \end{cases}$$

$$\begin{cases} a = \frac{\text{cov}(x,y)}{\text{var}(x)} = r \frac{\sigma(y)}{\sigma(x)} \\ b = \bar{y} - r \frac{\sigma(y)}{\sigma(x)} \bar{x} \end{cases}$$



(r: correlation factor between x and y)

Simple example

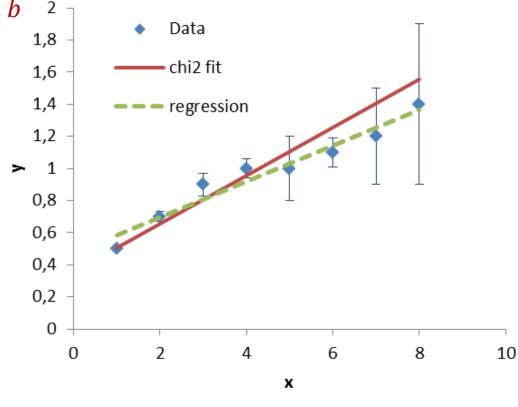
Fit data with a line f(x; a, b) = ax + b

Chi-square fit: minimize $\chi^2(a,b)$

$$\chi^{2}(a,b) = \sum_{i=1}^{N} \left(\frac{y_{i} - f(x_{i}; a, b)}{\sigma_{i}} \right)^{2} \rightarrow 1$$
_{0,8}

$$\frac{\partial \chi^2}{\partial a} = 0 \qquad \frac{\partial \chi^2}{\partial b} = 0$$

$$a = \frac{AE - DC}{BE - C^2} \quad b = \frac{DB - AC}{BE - C^2}$$



$$A = \sum_{i} \frac{x_{i} y_{i}}{(\Delta y_{i})^{2}}, \ B = \sum_{i} \frac{x_{i}^{2}}{(\Delta y_{i})^{2}}, \ C = \sum_{i} \frac{x_{i}}{(\Delta y_{i})^{2}}, D = \sum_{i} \frac{y_{i}}{(\Delta y_{i})^{2}}, \ E = \sum_{i} \frac{1}{(\Delta y_{i})^{2}}$$

Chi-square: generalization

If y_i measurements are not independent but related by their cov. matrix V_{ij}

$$\log L(\vec{\theta}) = -\frac{1}{2} \sum_{i,j=1}^{N} (y_i - f(x_i; \vec{\theta}))(V^{-1})_{ij} (y_j - f(x_j; \vec{\theta})) + \text{additive terms}$$

 $\log L(\vec{\theta})$ is maximized by minimizing:

$$\chi^{2}(\vec{\theta}) = \sum_{i,j=1}^{N} (y_{i} - f(x_{i}; \vec{\theta}))(V^{-1})_{ij}(y_{j} - f(x_{j}; \vec{\theta}))$$

Written in matrix notation: $\chi^2(\vec{\theta}) = (\vec{y} - \vec{f})^T V^{-1} (\vec{y} - \vec{f})$

If $f(x_i; \vec{\theta})$ is linear in the parameters $\vec{\theta}$: 1- σ uncertainty contour given by:

$$\chi^{2}(\vec{\theta}) = \chi^{2}(\vec{\hat{\theta}}) + 1 = \chi_{min}^{2} + q$$

N param.	1	2	3
q	1.00	2.30	3.53

BLUE method

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110

- Find linear (unbiased) combination of results: $x = \sum w_i x_i$ with weights w_i that give minimum possible variance σ_x^2
- Account properly of correlations between measurements
- For Gaussian errors: method equivalent to χ^2 minimization

- Two measurements: $x_1 \pm \sigma_1$, $x_2 \pm \sigma_2$ with correlation ρ
- The weights that minimize the χ²:

 Cov. matrix

$$\chi^2 = \begin{pmatrix} x_1 - x & x_2 - x \end{pmatrix} \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}^{-1} \begin{pmatrix} x_1 - x \\ x_2 - x \end{pmatrix}$$

are:

$$w_1 = \frac{\sigma_2^2 - \rho \sigma_1 \sigma_2}{\sigma_1^2 - 2\rho \sigma_1 \sigma_2 + \sigma_2^2} \qquad w_2 = \frac{\sigma_1^2 - \rho \sigma_1 \sigma_2}{\sigma_1^2 - 2\rho \sigma_1 \sigma_2 + \sigma_2^2} \qquad (w_1 + w_2 = 1)$$

BLUE method

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110

- Find linear (unbiased) combination of results: $x = \sum w_i x_i$ with weights w_i that give minimum possible variance σ_x^2
- Account properly of correlations between measurements
- For Gaussian errors: method equivalent to χ² minimization

- Two measurements: $x_1 \pm \sigma_1$, $x_2 \pm \sigma_2$ with correlation ρ
- The combined result is: $x = w_1x_1 + w_1x_2$
- And the uncertainty on the combined measurement is:

$$\sigma_x = \sqrt{\frac{\sigma_1^2 \sigma_2^2 (1 - \rho^2)}{\sigma_1^2 - 2\rho \sigma_1 \sigma_2 + \sigma_2^2}}$$

BLUE method

Iterative method

- Biases could appear when uncertainties depend on central value of each measurement (L. Lyons et al., Phys. Rev. D41 (1990) 982985)
- Reduced if covariance matrix determined as if the central value is the one obtained from combination
 - Rescale uncertainties to combined value ex: for measurement 1, and category i: $\sigma_{i,1}^{rescaled} = \sigma_{i,1} \cdot x_1/x_{blue}$
 - Iterate until central value converges to stable value

Single-top t-channel 8 TeV results

ATLAS [ATLAS-CONF-2012-132, 5.8 fb⁻¹]:

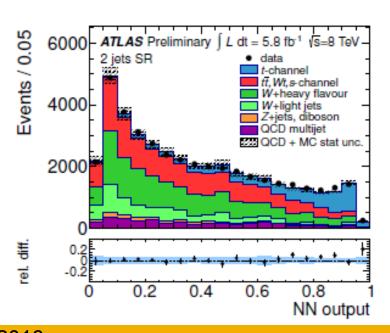
$$\sigma_t(t-ch.) = 95 \pm 2 \text{ (stat.)} \pm 18 \text{ (syst.)} \text{ pb} = 95 \pm 18 \text{ pb}$$

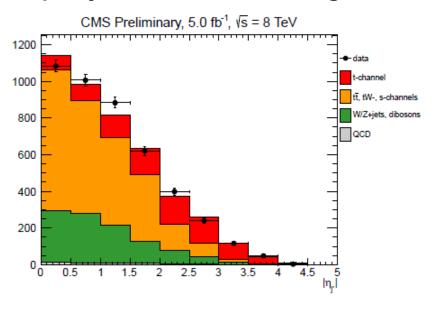
- Multivariate analysis with limited assumptions on simulations
- Fit of NN distribution in the data in e/µ+2/3 jet events, with 1-btag

CMS [CMS PAS TOP-12-011, 5.0 fb⁻¹]:

$$\sigma_t(t-ch.) = 80.1 \pm 5.7(stat.) \pm 11.0(syst.) \pm 4.0(lumi.) pb = 80.1 \pm 12.8 pb$$

- Cut-based analysis, data-driven background estimates (shapes, rates)
- Fit |η| distribution of forward jet in μ+2 jet events, with 1-btag





Uncertainties categories and correlations

6 categories of uncertainties. Correlation factor between ATLAS/CMS estimated for each.

Category	ATLAS		CMS		ρ
Statistics	Stat. data	2.4%	Stat. data	7.1%	0
	Stat. sim.	2.9%	Stat. sim.	2.2%	0
Total	3.8%			7.5%	0
Luminosity	Calibration	3.0%	Calibration	4.1%	1
	Long-term stability	2.0%	Long-term stability	1.6%	0
Total		3.6%		4.4%	0.78
Simulation and modelling	ISR/FSR	9.1%	Q^2 scale	3.1%	1
	PDF	2.8%	PDF	4.6%	1
	t-ch. generator	7.1%	t-ch. generator	5.5%	1
	tt generator	3.3%			0
	Parton shower/had.	0.8%			0
Total	12.3%			7.8%	0.83
Jets	JES	7.7%	JES	6.8%	0
	Jet res. & reco.	3.0%	Jet res.	0.7%	0
Total		8.3%		6.8%	0
Backgrounds	Norm. to theory	1.6%	Norm. to theory	2.1%	- 1
	Multijet (data-driven)	3.1%	Multijet (data-driven)	0.9%	0
			W+jets, tt (data-driven)	4.5%	0
Total		3.5%		5.0%	0.19
Detector modelling	b-tagging	8.5%	b-tagging	4.6%	0.5
	$E_{ m T}^{ m miss}$	2.3%	Unclustered E _T ^{miss}	1.0%	0
	Jet Vertex fraction	1.6%	-		0
			pile up	0.5%	0
	lepton eff.	4.1%			0
			μ trigger + reco.	5.1%	0
	lepton res.	2.2%			0
	lepton scale	2.1%			0
Total		10.3%		6.9%	0.27
Total uncert.		19.2%		16.0%	0.38

Combined t-channel single-top cross section

Sum covariance matrices in each category to obtain total covariance matrix.

$$\mathbf{C} = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} 269 & 84 \\ 84 & 182 \end{pmatrix} \mathbf{p} \mathbf{b}^2$$

Source	Uncertainty (pb)		
Statistics	4.1		
Luminosity	3.4		
Simulation and modelling	7.7		
Jets	4.5		
Backgrounds	3.2		
Detector modelling	5.5		
Total systematics (excl. lumi)	11.0		
Total systematics (incl. lumi)	11.5		
Total uncertainty	12.2		

Breakdown of uncertainties

$$\sigma_i^2 = w_1^2 \sigma_{i,1}^2 + 2w_1 w_2 \rho_i \sigma_{i,1} \sigma_{i,2} + w_2^2 \sigma_{i,2}^2$$

$$\sigma_{\text{t-ch.}} = 85.3 \pm 4.1 \text{ (stat.)} \pm 11.0 \text{ (syst.)} \pm 3.4 \text{ (lumi.)} \text{ pb} = 85.3 \pm 12.2 \text{ pb.}$$

With
$$w_{ATLAS} = 0.35$$
 and $w_{CMS} = 0.65$, $\chi^2 = 0.79/1$

Overall correlation of measurements is $\rho_{tot} = 0.38$.

Summary plot

