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Compatibility test – cont’d 
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Example: BumpHunter algorithm 
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Software used to search for excess or deficit in a spectrum. 

• No assumptions are made on the signal shape or yield 

• Just test data against background-only hypothesis 

G. Choudalakis 

1101.0390 

 Compute the p-value for  

     all possible intervals. 

 

 Select the interval with 

smallest p-value. 

This gives the local p-value: Pmin
local 

E
v
e
n
ts
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Example: BumpHunter algorithm 
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Since many intervals are considered there is a increasing probability that an 

excess is found due to statistical fluctuations 

• This is the (in)famous (and misnamed) Look Elsewhere Effect: LEE 

• To cope for this effect a global p-value is calculated 

 The global p-value is extracted by comparing −log(Pmin
local) to a set of 

− log Pmin
local  generated using background-only pseudo-experiments 

Pglobal = fractionof(Pmin
PE > Pmin

obs) 

Pglobal: fraction of PE that gives a 

result higher than the one observed 

observed 
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χ2 test 

5 

Pearson’s χ2 test: estimate global compatibility between data and a model 

• The data is regrouped in an histogram of N bins 

• A goodness-of-fit test K2 is computed as follows 

𝐾2 = 
𝑛𝑖 − 𝜈𝑖

2

𝜈𝑖

𝑁

𝑖=1

 
𝑛𝑖: number of observed events in bin i 

𝜈𝑖: expected number of events in bin i  

If the data  𝑛𝑖 are Poisson distributed with mean values 𝜈𝑖  and 𝒏𝒊 > ~𝟓 then: 

K2 is a random variable following a χ2 distribution with N degrees of freedom. 

𝐾2 = 
𝑛𝑖 − 𝜈𝑖

2

𝑛𝑖

𝑁

𝑖=1

 

A variant of this test statistics is the Neyman’s χ2  

Easier to code (in particular for fits) 

Asymptotically equivalent to Pearson’s χ2 

Follows χ2 with N-1 degrees of freedom 
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χ2 distribution 
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𝜒2 𝑥; 𝑘 =
𝑥
𝑘
2
−1𝑒−

𝑥
2

2
𝑘
2Γ

𝑘
2

 

𝐹 𝑥; 𝑘 =
𝛾

𝑘
2
,
𝑥
2

Γ
𝑘
2

 

Probability density function  

k degrees of freedom, x>0 

Cumulative distribution 

Mean: k Variance: 2k 

With: 𝛾 𝑠, 𝑥 =  𝑡𝑠−1𝑒−𝑡𝑑𝑡
𝑥

0
 

         Γ 𝑠 =  𝑡𝑠−1𝑒−𝑡𝑑𝑡
+∞

0
 

The p-value of a χ2 test is obtained by integrating 

the χ2 distribution above the measured K2 value. 

p−value =  𝜒2 𝑥; 𝑘
+∞

𝐾2
𝑑𝑥 

K2 
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𝝌𝟐 = 𝟏𝟐. 𝟎 

NDF=12 
Note: 

K2 is calculated only with non-empty bins 

NDF is the number of non-empty bins - 1 

Procedure 

- Generate events following a 

Gaussian distribution 

- Calculate (Neyman’s) K2 

- Repeat 10k time and plot the 

distribution of K2 

- Compare to 𝝌𝟐 distribution 
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Kolmogorov-Smirnov test 
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The KS test is an unbinned method that uses all the measured values of 

variable x to  test the compatibility of the data to a model. 

• The M measured values xi are first sorted in ascending order: x1<x2<…<xM 

• The sample cumulative distribution is calculated as: 

𝐹data 𝑥 =  

0if𝑥 ≤ 𝑥1 

i/M if𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1 

1𝑖𝑓𝑥 ≥ 𝑥𝑀 

 

The test compares cumulative distribution of the sample to that of the model. 

The maximum distance Dn between the two is the test statistics: 

𝐷𝑛 = sup𝑥|𝐹model 𝑥 − 𝐹data 𝑥 | 

The p-value of the KS test is given (for large M) by: 

p−value = 2 −1 𝑟−1𝑒−2𝑀𝑟2𝐷𝑛
2

+∞

𝑟=1

 
Dn 
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KS Test 

Data

Model

• Data: λ=0.4 (500 events) 

• Model: λ=0.35 

𝑓 𝑥; 𝜆 = 𝜆𝑒−𝜆𝑥, 𝑥 > 0 
0,011401647 

0,017623018 

0,018095279 

0,020447056 

0,02616019 

0,026849926 

0,029898988 

0,044689801 

0,045548065 

0,048410584 

0,058308293 

0,062655827 

0,065376242 

… 

9,312545995 

9,335461119 

9,378006281 

9,40176752 

9,450497283 

10,04570365 

11,78017539 

13,57118477 

15,80234274 

Exponential p.d.f xi 

𝑫𝒏 

𝐷𝑛 = 0,0646 

 p-value = 0,03 

Max distance between 

cumulative distributions: 

𝐹data 𝑥 =  
0 
i/n

1 
 

𝐹model 𝑥 = 1 − 𝑒−𝜆𝑥 

𝑥 ≤ 𝑥1 

𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1 

𝑥 ≥ 𝑥𝑀  
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Hypothesis test: CLs method 
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Test of two hypothesis H0 and H1 using data 

• Likelihood of data given an hypothesis: 𝐿(data|𝐻0) or 𝐿(data|𝐻1) 

Neyman-Pearson lemma: optimal test statistics for 

hypothesis testing is given by (log) likelihood ratio 
LLR = −2log

𝐿(data|𝐻0)

𝐿(data|𝐻1)
 

H0 rejected at (1-α) 

confidence level if  

 𝑓 𝑡 𝐻0 𝑑𝑡
∞

𝐿𝐿𝑅𝑜𝑏𝑠

= CL𝑠+𝑏 

More robust test 

 𝑓 𝑡 𝐻1 𝑑𝑡
𝐿𝐿𝑅𝑜𝑏𝑠

−∞

= 1 − CL𝑏 

CL𝑠+𝑏 < 𝛼 

CL𝑠 =
CL𝑠+𝑏
CL𝑏

< 𝛼 
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Hypothesis test: CLs method 
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Testing signal strenght (μ): 

• Express number of event of signal as 

s = μ×snominal 

• CLs test can be performed for 

increasing values of μ 

• Exclusion limit on μ when CLs<α 

μ 

95% CL limit on μ 

α=0.05 
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Samples and parameter estimation 
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A random variable X can be described by its p.d.f 𝒇(𝒙) 

f depends of (generally unknown) parameters 𝜽 = 𝜽𝟏, … , 𝜽𝑷 : 𝐟(𝐱; 𝜽) 

An experiment measuring X provides a sample of values 𝒙 = {𝒙𝟏, … , 𝒙𝑵} 

One can construct a function of 𝑥  to infer the properties of the p.d.f 

• This function is called an estimator 

• The estimator for a parameter 𝜽 is often written: 𝜽  

• Parameter fitting: estimate 𝜽 using estimator 𝜽  and data 𝒙 

• 𝜽 𝒙  is itself a random variable following a p.d.f 𝒈(𝜽 ; 𝜽) 

A good estimator should be 

     Consistent: 𝜽  converges to 𝜽 for infinite sample (𝑁 → +∞) 

     Unbiased: average of 𝜽  for infinite number of measurements is 𝜽 

            → that is: 𝑬 𝜽 𝒙 − 𝜽 = 𝒃 = 𝟎 
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Basic estimators 
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Consider a sample of size N of a random variable X: 𝒙 = {𝒙𝟏, … , 𝒙𝑵} 

X follows a p.d.f 𝑓(𝑥) of truth mean 𝝁 and variance 𝝈𝟐 

A simple estimator is the arithmetic mean of values 𝑥𝑖: 𝑥 =
1

𝑁
 𝑥𝑖

𝑁

𝑖=1

 

𝐸 𝑥 =
1

𝑁
 𝐸[𝑥𝑖]

𝑁

𝑖=1

= 𝜇  Unbiased estimator of μ 

𝑉 𝑥 = 𝑬 𝑥 𝟐 − 𝑬 𝑥 𝟐 =
𝝈𝟐

𝑵
 

This implies that the uncertainty 

on the sample mean 𝑥  is: 𝝈 𝑵  

Estimator of the variance: 𝑣 =
1

𝑁
 𝑥𝑖 − 𝑥 2 = 𝑥2 − 𝑥 2
𝑁

𝑖=1

 

𝐸 𝑣 = 𝜎2 −
𝜎2

𝑁
=
𝑁 − 1

𝑁
𝜎2 Expected value of the estimator:  

 Biased estimator of σ2 ! 
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Basic estimators 
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Consider a sample of size N of a random variable X: 𝒙 = {𝒙𝟏, … , 𝒙𝑵} 

X follows a p.d.f 𝑓(𝑥) of truth mean 𝝁 and variance 𝝈𝟐 

Estimator of the variance: 

𝐸 𝑣 = 𝜎2 Expected value of the estimator:  

 Unbiased estimator of σ2  

𝑣 =
1

𝑁 − 1
 𝑥𝑖 − 𝑥 2
𝑁

𝑖=1

=
𝑁

𝑁 − 1
(𝑥2 − 𝑥 2) 

A simple estimator is the arithmetic mean of values 𝑥𝑖: 𝑥 =
1

𝑁
 𝑥𝑖

𝑁

𝑖=1

 

𝐸 𝑥 =
1

𝑁
 𝐸[𝑥𝑖]

𝑁

𝑖=1

= 𝜇  Unbiased estimator of μ 

𝑉 𝑥 = 𝑬 𝑥 𝟐 − 𝑬 𝑥 𝟐 =
𝝈𝟐

𝑵
 

This implies that the uncertainty 

on the sample mean 𝑥  is: 𝝈 𝑵  
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Maximum Likelihood estimator (ML) 
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Suppose a random variable X distributed according to a p.d.f 𝒇(𝒙; 𝜽) 

• The form of 𝑓 being know but not the parameters 𝜃 = {𝜃1, … , 𝜃𝑃} 

• Consider a sample of X of N values: 𝒙 = {𝒙𝟏, … , 𝒙𝑵} 

The method of ML is a technique to estimate 𝜽 given data 𝒙 

Joint likelihood function 

(the 𝑥𝑖 are fixed here)   
𝑳 𝜽 = 𝒇(𝒙𝒊; 𝜽)

𝑵

𝒊=𝟏

 

The estimators 𝜽𝒊 are given by: 
𝝏𝑳

𝝏𝜽𝒊
= 𝟎, 𝒊 = 𝟏…𝑷 

Notes:  

• maximizing the likelihood provides and estimate of parameters 𝜃 

• In practice the log of L (log likelihoood) is often used 

• The likelihood is not a p.d.f ! 

• Bayesian do transform the likelihood in a p.d.f 
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Simple examples 
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Exponential distribution 𝑓 𝑥; 𝜏 =
1

𝜏
𝑒−

𝑥
𝜏  

𝐿 𝜏 = 
1

𝜏
𝑒−

𝑥𝑖
𝜏

𝑁

𝑖=1

 

log𝐿 𝜏 = log

𝑁

𝑖=1

𝑓 𝑥𝑖 ; 𝜏 = −𝑁 log 𝜏 − 
𝑥𝑖
𝜏

𝑁

𝑖=1

 

𝑑log𝐿

𝑑𝜏
= 0 ⟺ 𝝉 = 𝝉 =

𝟏

𝑵
 𝒙𝒊

𝑵

𝒊=𝟏

 

𝐸 𝜏 = 𝜏  (unbiased estimator) 

Likelihood: 

Log-likelihood: 

Estimator: 

𝑓 𝑥; 𝜏 =
1

𝜏
𝑒−

𝑥
𝜏  

𝜏 = 2 

𝜏 = 2.12 

𝑁 = 200 

log𝐿 𝜏 = −𝑁 log 𝜏 − 𝑁
𝜏 

𝜏
 

log𝐿𝑚𝑎𝑥 
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Simple examples 
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Gaussian distribution 𝑓 𝑥; 𝜇, 𝜎 =
1

2𝜋𝜎
𝑒
−
1
2
𝑥−𝜇
𝜎

2

 ,log𝐿 𝜃 =  log

𝑁

𝑖=1

𝑓 𝑥𝑖; 𝜇, 𝜎  

𝜕log𝐿

𝜕𝜇
= 0 ⟺ 𝝁 =

𝟏

𝑵
 𝒙𝒊

𝑵

𝒊=𝟏

 

𝜕log𝐿

𝜕𝜎2
= 0 ⟺ 𝝈𝟐 =

𝟏

𝑵
 (𝒙𝒊−𝝁 )

𝟐

𝑵

𝒊=𝟏

 

𝐸 𝜇 = 𝜇 

𝐸 𝜎2 =
𝑁 − 1

𝑁
𝜎2 

Estimators: 

 (unbiased) 

 (biased) 

log𝐿 𝜇, 𝜎 = −𝑁 log 2𝜋𝜎 −
1

2𝜎2
 𝑥𝑖

2 − 𝑁𝜇2  

𝜇 = 0 𝜇 = 0.011 

𝜎 = 1 𝜎 = 1.004 

log𝐿𝑚𝑎𝑥 
+ 

𝑁 = 1000 
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Uncertainty of ML estimator 
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Variance of estimator, 𝑉 𝜏 , can be tricky to estimate. Several methods exist: 

1) Analytical method 

    For example for the previous exponential distribution 

𝑉 𝜏 = … =
𝜏2

𝑁
 𝜏 =

1

𝑁
 𝑥𝑖

𝑁

𝑖=1

 and 

2) Monte-Carlo method 

    Very useful for complex cases (multiparameters, systematic uncertainties) 

    Ex: generate samples distributed exponentially  

 

𝑓 𝑥; 𝜏 =
1

𝜏
𝑒−

𝑥
𝜏  

𝜏 = 2 

𝜏 = 1.92 

𝜎𝜏 = 0.140 𝑉 𝜏 =
𝜏

𝑁sample

= 0.141 

𝑁sample = 200 𝑁experiments = 500 

𝜏  = 1.99 𝐸 𝜏 = 𝜏 = 2 
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Uncertainty of ML estimator 
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3) Cramér-Rao bound 

    Gives a lower bound on any estimator variance (not only ML) 

𝑉 𝜃 ≥
1 +

𝜕𝑏
𝜕𝜃

2

𝐸 −
𝜕2 log 𝐿
𝜕𝜃2

, (𝑏: bias) 
Equality: estimator is efficient 

ML are asymptotically efficient 

For multiple parameters 𝜃 = 𝜃1, … , 𝜃𝑃  :  

(and assuming efficiency and b=0) 

𝑉−1 𝑖𝑗 = 𝐸 −
𝜕2 log 𝐿

𝜕𝜃𝑖𝜕𝜃𝑗
 

For large samples: an estimate of the 

inverse covariant matrix V-1 is: 
𝑉−1 

𝑖𝑗
= −

𝜕2 log 𝐿

𝜕𝜃𝑖𝜕𝜃𝑗
(𝜃 = 𝜃 ) 

1 parameter:  𝜎2 =
−1

𝜕2 log 𝐿
𝜕𝜃2

(𝜃 )
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Uncertainty of ML estimator 
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4) Graphical method 

    Taylor expansion of log L on estimate 𝜃 : 

log 𝐿 𝜃 = log 𝐿(𝜃 ) + 𝜃 − 𝜃 
𝜕 log 𝐿

𝜕𝜃
𝜃 +

1

2
𝜃 − 𝜃 

2 𝜕2 log 𝐿

𝜕𝜃2
𝜃  

= log 𝐿max −
1

2𝜎2 
𝜃 − 𝜃 

2
 

⇒ log𝐿 𝜃 ± 𝜎 = log 𝐿max −
1

2
 

𝐥𝐨𝐠𝑳max −
𝟏

𝟐
 

𝐥𝐨𝐠𝑳max 

𝝉 ± 𝝈𝝉  

𝝉 ± 𝝈𝝉  corresponds to a 

68.3% confidence interval 

𝜟log𝑳 = 𝟎. 𝟓 ∶ 𝟔𝟖. 𝟑%𝐂𝐈 

𝜟log𝑳 = 𝟐 ∶ 𝟗𝟓. 𝟒%𝐂𝐈 

𝜟log𝑳 = 𝟒. 𝟓 ∶ 𝟗𝟗. 𝟕%𝐂𝐈 
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Error ellipse 
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log𝐿𝑚𝑎𝑥 
+ 

𝜃1 

𝜃2 

𝜽𝟐  

𝝈𝜽𝟐  

𝝈𝜽𝟐  

𝜽𝟏  

𝝈𝜽𝟏  𝝈𝜽𝟏  

𝜟log𝑳 = 𝟏. 𝟏𝟓 ∶ 𝟔𝟖. 𝟑%𝐂𝐈 

Case for 2 parameter 𝜽𝟏 and 𝜽𝟐: 
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Error ellipse 
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log𝐿𝑚𝑎𝑥 
+ 

𝜃1 

𝜃2 

𝜟log𝑳 = 𝟏. 𝟏𝟓 ∶ 𝟔𝟖. 𝟑%𝐂𝐈 

𝜟log𝑳 = 𝟑. 𝟎𝟗 ∶ 𝟗𝟓. 𝟒%𝐂𝐈 

𝜟log𝑳 = 𝟓. 𝟗𝟐 ∶ 𝟗𝟗. 𝟕%𝐂𝐈 

Case for 2 parameter 𝜽𝟏 and 𝜽𝟐: 
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Chi-square method 
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Consider N independent variables yi 

function of a another variable xi 

• The yi are Gaussian distributed of 

mean μi and (known) std σi 

• Suppose that μ = 𝒇(𝒙; 𝜽) with 

unknow parameters 𝜽 

𝐿 𝜃 = 
1

2𝜋𝜎𝑖
𝑒
−
1
2
𝑦𝑖−𝑓(𝑥𝑖;𝜃)

𝜎𝑖

2
𝑁

𝑖=1

 

𝜒2 𝜃 = 
𝑦𝑖 − 𝑓 𝑥𝑖; 𝜃 

𝜎𝑖

𝑁

𝑖=1

2

 

Likelihood: 

Maximizing log 𝐿 𝜃  to estimate parameters𝜃  is equivalent to minimize:  
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Simple example 
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Fit data with a line 𝑓 𝑥; 𝑎, 𝑏 = 𝑎𝑥 + 𝑏 

 

Simple linear regression: minimize 

the variance of 𝑦𝑖 − 𝑓(𝑥𝑖 ; 𝑎, 𝑏) 

(r: correlation factor 

between x and y) 



SOS 2016 

Simple example 
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Fit data with a line 𝑓 𝑥; 𝑎, 𝑏 = 𝑎𝑥 + 𝑏 

 

Chi-square fit: minimize 𝜒2(𝑎, 𝑏) 

𝜒2 𝑎, 𝑏 = 
𝑦𝑖 − 𝑓 𝑥𝑖; 𝑎, 𝑏

𝜎𝑖

𝑁

𝑖=1

2

 

𝜕𝜒2

𝜕𝑎
= 0 

𝜕𝜒2

𝜕𝑏
= 0 
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Chi-square: generalization 
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If yi measurements are not independent but related by their cov. matrix Vij 

log 𝐿 𝜃 = −
1

2
 (𝑦𝑖 − 𝑓(𝑥𝑖;

𝑁

𝑖,𝑗=1

𝜃 )) 𝑉−1 𝑖𝑗(𝑦𝑗 − 𝑓(𝑥𝑗; 𝜃 )) + additiveterms 

𝜒2 𝜃 =  (𝑦𝑖 − 𝑓(𝑥𝑖 ;

𝑁

𝑖,𝑗=1

𝜃 )) 𝑉−1 𝑖𝑗(𝑦𝑗 − 𝑓(𝑥𝑗; 𝜃 ) 

log 𝐿 𝜃  is maximized by minimizing: 

𝜒2 𝜃 = 𝑦 − 𝑓 
𝑇
𝑉−1(𝑦 − 𝑓 ) Written in matrix notation: 

If 𝑓 𝑥𝑖 ; 𝜃  is linear in the parameters 𝜃 :  1-σ uncertainty contour given by: 

𝜒2 𝜃 = 𝜒2 𝜃  + 1 = 𝜒𝑚𝑖𝑛
2 + 𝑞 

N param. 1 2 3 

q 1.00 2.30 3.53 
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BLUE method 

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110 

• Find linear (unbiased) combination of results: x = Σ wixi 

    with weights wi that give minimum possible variance σx
2 

• Account properly of correlations between measurements 

• For Gaussian errors: method equivalent to 𝜒2 minimization 

• Two measurements: x1±σ1, x2±σ2 with correlation ρ 

• The weights that minimize the χ2: 

 

 

 

 are: 

 

 

Cov. matrix 

(w1+w2=1) 

27 
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BLUE method 

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110 

• Find linear (unbiased) combination of results: x = Σ wixi 

    with weights wi that give minimum possible variance σx
2 

• Account properly of correlations between measurements 

• For Gaussian errors: method equivalent to χ2 minimization 

 

• Two measurements: x1±σ1, x2±σ2 with correlation ρ 

•  The combined result is:   

•  And the uncertainty on the combined measurement is: 

 

 

 

28 
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BLUE method 

Iterative method 

 Biases could appear when uncertainties depend on central value of 

each measurement (L. Lyons et al., Phys. Rev. D41 (1990) 982985) 

 Reduced if covariance matrix determined as if the central value is 

the one obtained from combination 

• Rescale uncertainties to combined value 

         ex: for measurement 1, and category i: σi,1
rescaled = σi,1 . x1/xblue 

• Iterate until central value converges to stable value 
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Single-top t-channel 8 TeV results 
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ATLAS [ATLAS-CONF-2012-132, 5.8 fb-1]: 

σt(t-ch.) = 95 ± 2 (stat.) ± 18 (syst.) pb = 95 ± 18 pb 

 Multivariate analysis with limited assumptions on simulations 

 Fit of NN distribution in the data in e/μ+2/3 jet events, with 1-btag 

CMS [CMS PAS TOP-12-011, 5.0 fb-1]: 

σt(t-ch.) = 80.1 ± 5.7(stat.) ± 11.0(syst.) ± 4.0(lumi.) pb = 80.1 ± 12.8 pb 

 Cut-based analysis, data-driven background estimates (shapes, rates) 

 Fit |η| distribution of forward jet in μ+2 jet events, with 1-btag 
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Uncertainties categories and correlations 

31 

6 categories of uncertainties. Correlation factor between ATLAS/CMS estimated for each. 
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Result 

Combined t-channel single-top cross section 
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Breakdown of uncertainties 

Sum covariance matrices in 

each category to obtain total 

covariance matrix. 

With wATLAS = 0.35 and wCMS = 0.65, χ2 = 0.79/1 

Overall correlation of measurements is ρtot = 0.38. 

Σ 
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Summary plot 
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(19.0%) 

(16.2%) 

(14%) 


