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Compatibility test – cont’d 
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Example: BumpHunter algorithm 
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Software used to search for excess or deficit in a spectrum. 

• No assumptions are made on the signal shape or yield 

• Just test data against background-only hypothesis 

G. Choudalakis 

1101.0390 

 Compute the p-value for  

     all possible intervals. 

 

 Select the interval with 

smallest p-value. 

This gives the local p-value: Pmin
local 

E
v
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Example: BumpHunter algorithm 
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Since many intervals are considered there is a increasing probability that an 

excess is found due to statistical fluctuations 

• This is the (in)famous (and misnamed) Look Elsewhere Effect: LEE 

• To cope for this effect a global p-value is calculated 

 The global p-value is extracted by comparing −log⁡(Pmin
local) to a set of 

− log Pmin
local  generated using background-only pseudo-experiments 

Pglobal = fraction⁡of⁡(Pmin
PE > Pmin

obs) 

Pglobal: fraction of PE that gives a 

result higher than the one observed 

observed 
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χ2 test 

5 

Pearson’s χ2 test: estimate global compatibility between data and a model 

• The data is regrouped in an histogram of N bins 

• A goodness-of-fit test K2 is computed as follows 

𝐾2 = 
𝑛𝑖 − 𝜈𝑖

2

𝜈𝑖

𝑁

𝑖=1

 
𝑛𝑖: number of observed events in bin i 

𝜈𝑖: expected number of events in bin i  

If the data  𝑛𝑖 are Poisson distributed with mean values 𝜈𝑖  and 𝒏𝒊 > ~𝟓 then: 

K2 is a random variable following a χ2 distribution with N degrees of freedom. 

𝐾2 = 
𝑛𝑖 − 𝜈𝑖

2

𝑛𝑖

𝑁

𝑖=1

 

A variant of this test statistics is the Neyman’s χ2  

Easier to code (in particular for fits) 

Asymptotically equivalent to Pearson’s χ2 

Follows χ2 with N-1 degrees of freedom 
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χ2 distribution 
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𝜒2 𝑥; 𝑘 =
𝑥
𝑘
2
−1𝑒−

𝑥
2

2
𝑘
2Γ

𝑘
2

 

𝐹 𝑥; 𝑘 =
𝛾

𝑘
2
,
𝑥
2

Γ
𝑘
2

 

Probability density function  

k degrees of freedom, x>0 

Cumulative distribution 

Mean: k Variance: 2k 

With: 𝛾 𝑠, 𝑥 =  𝑡𝑠−1𝑒−𝑡𝑑𝑡⁡
𝑥

0
 

         Γ 𝑠 =  𝑡𝑠−1𝑒−𝑡𝑑𝑡⁡
+∞

0
 

The p-value of a χ2 test is obtained by integrating 

the χ2 distribution above the measured K2 value. 

p−value =  𝜒2 𝑥; 𝑘
+∞

𝐾2
𝑑𝑥 

K2 
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Example 
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𝝌𝟐 = 𝟏𝟐. 𝟎 

NDF=12 
Note: 

K2 is calculated only with non-empty bins 

NDF is the number of non-empty bins - 1 

Procedure 

- Generate events following a 

Gaussian distribution 

- Calculate (Neyman’s) K2 

- Repeat 10k time and plot the 

distribution of K2 

- Compare to 𝝌𝟐 distribution 
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Kolmogorov-Smirnov test 
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The KS test is an unbinned method that uses all the measured values of 

variable x to  test the compatibility of the data to a model. 

• The M measured values xi are first sorted in ascending order: x1<x2<…<xM 

• The sample cumulative distribution is calculated as: 

𝐹data 𝑥 =  

0⁡if⁡𝑥 ≤ 𝑥1 

i/M if⁡𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1 

1⁡𝑖𝑓⁡𝑥 ≥ 𝑥𝑀 

 

The test compares cumulative distribution of the sample to that of the model. 

The maximum distance Dn between the two is the test statistics: 

𝐷𝑛 = sup𝑥|𝐹model 𝑥 − 𝐹data 𝑥 | 

The p-value of the KS test is given (for large M) by: 

p−value = 2 −1 𝑟−1𝑒−2𝑀𝑟2𝐷𝑛
2

+∞

𝑟=1

 
Dn 
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KS Test 

Data

Model

• Data: λ=0.4 (500 events) 

• Model: λ=0.35 

𝑓 𝑥; 𝜆 = 𝜆𝑒−𝜆𝑥, 𝑥 > 0 
0,011401647 

0,017623018 

0,018095279 

0,020447056 

0,02616019 

0,026849926 

0,029898988 

0,044689801 

0,045548065 

0,048410584 

0,058308293 

0,062655827 

0,065376242 

… 

9,312545995 

9,335461119 

9,378006281 

9,40176752 

9,450497283 

10,04570365 

11,78017539 

13,57118477 

15,80234274 

Exponential p.d.f xi 

𝑫𝒏 

𝐷𝑛 = 0,0646 

 p-value = 0,03 

Max distance between 

cumulative distributions: 

𝐹data 𝑥 =  ⁡⁡
0 
i/n

1⁡ 
 

𝐹model 𝑥 = 1 − 𝑒−𝜆𝑥 

𝑥 ≤ 𝑥1 

𝑥𝑖 ⁡≤ 𝑥 < 𝑥𝑖+1 

𝑥 ≥ 𝑥𝑀  
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Hypothesis test: CLs method 
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Test of two hypothesis H0 and H1 using data 

• Likelihood of data given an hypothesis: 𝐿(data|𝐻0) or 𝐿(data|𝐻1) 

Neyman-Pearson lemma: optimal test statistics for 

hypothesis testing is given by (log) likelihood ratio 
LLR = −2log

𝐿(data|𝐻0)

𝐿(data|𝐻1)
 

H0 rejected at (1-α) 

confidence level if  

 𝑓 𝑡 𝐻0 𝑑𝑡
∞

𝐿𝐿𝑅𝑜𝑏𝑠

= CL𝑠+𝑏 

More robust test 

 𝑓 𝑡 𝐻1 𝑑𝑡
𝐿𝐿𝑅𝑜𝑏𝑠

−∞

= 1 − CL𝑏 

CL𝑠+𝑏 < 𝛼 

CL𝑠 =
CL𝑠+𝑏
CL𝑏

< 𝛼 
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Hypothesis test: CLs method 
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Testing signal strenght (μ): 

• Express number of event of signal as 

s = μ×snominal 

• CLs test can be performed for 

increasing values of μ 

• Exclusion limit on μ when CLs<α 

μ 

95% CL limit on μ 

α=0.05 
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Samples and parameter estimation 
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A random variable X can be described by its p.d.f 𝒇(𝒙) 

f depends of (generally unknown) parameters 𝜽 = 𝜽𝟏, … , 𝜽𝑷 : 𝐟(𝐱; 𝜽) 

An experiment measuring X provides a sample of values 𝒙 = {𝒙𝟏, … , 𝒙𝑵} 

One can construct a function of 𝑥  to infer the properties of the p.d.f 

• This function is called an estimator 

• The estimator for a parameter 𝜽 is often written: 𝜽  

• Parameter fitting: estimate 𝜽 using estimator 𝜽  and data 𝒙 

• 𝜽 𝒙  is itself a random variable following a p.d.f 𝒈(𝜽 ; 𝜽) 

A good estimator should be 

     Consistent: 𝜽  converges to 𝜽 for infinite sample (𝑁 → +∞) 

     Unbiased: average of 𝜽  for infinite number of measurements is 𝜽 

            → that is: 𝑬 𝜽 𝒙 − 𝜽 = 𝒃 = ⁡𝟎 
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Basic estimators 
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Consider a sample of size N of a random variable X: 𝒙 = {𝒙𝟏, … , 𝒙𝑵} 

X follows a p.d.f 𝑓(𝑥) of truth mean 𝝁 and variance 𝝈𝟐 

A simple estimator is the arithmetic mean of values 𝑥𝑖: 𝑥 =
1

𝑁
 𝑥𝑖

𝑁

𝑖=1

 

𝐸 𝑥 =
1

𝑁
 𝐸[𝑥𝑖]

𝑁

𝑖=1

= 𝜇  Unbiased estimator of μ 

𝑉 𝑥 = 𝑬⁡ 𝑥 𝟐 − 𝑬 𝑥 𝟐 =
𝝈𝟐

𝑵
 

This implies that the uncertainty 

on the sample mean 𝑥  is: 𝝈 𝑵  

Estimator of the variance: 𝑣 =
1

𝑁
 𝑥𝑖 − 𝑥 2 = 𝑥2 − 𝑥 2
𝑁

𝑖=1

 

𝐸 𝑣 = 𝜎2 −
𝜎2

𝑁
=
𝑁 − 1

𝑁
𝜎2 Expected value of the estimator:  

 Biased estimator of σ2 ! 
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Basic estimators 
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Consider a sample of size N of a random variable X: 𝒙 = {𝒙𝟏, … , 𝒙𝑵} 

X follows a p.d.f 𝑓(𝑥) of truth mean 𝝁 and variance 𝝈𝟐 

Estimator of the variance: 

𝐸 𝑣 = 𝜎2 Expected value of the estimator:  

 Unbiased estimator of σ2  

𝑣 =
1

𝑁 − 1
 𝑥𝑖 − 𝑥 2
𝑁

𝑖=1

=
𝑁

𝑁 − 1
(𝑥2 − 𝑥 2) 

A simple estimator is the arithmetic mean of values 𝑥𝑖: 𝑥 =
1

𝑁
 𝑥𝑖

𝑁

𝑖=1

 

𝐸 𝑥 =
1

𝑁
 𝐸[𝑥𝑖]

𝑁

𝑖=1

= 𝜇  Unbiased estimator of μ 

𝑉 𝑥 = 𝑬⁡ 𝑥 𝟐 − 𝑬 𝑥 𝟐 =
𝝈𝟐

𝑵
 

This implies that the uncertainty 

on the sample mean 𝑥  is: 𝝈 𝑵  
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Maximum Likelihood estimator (ML) 
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Suppose a random variable X distributed according to a p.d.f 𝒇(𝒙; 𝜽) 

• The form of 𝑓 being know but not the parameters 𝜃 = {𝜃1, … , 𝜃𝑃} 

• Consider a sample of X of N values: 𝒙 = {𝒙𝟏, … , 𝒙𝑵} 

The method of ML is a technique to estimate 𝜽 given data 𝒙 

Joint likelihood function 

(the 𝑥𝑖 are fixed here)   
𝑳 𝜽 = 𝒇(𝒙𝒊; 𝜽)

𝑵

𝒊=𝟏

 

The estimators 𝜽𝒊 ⁡are given by: 
𝝏𝑳

𝝏𝜽𝒊
= 𝟎, 𝒊 = 𝟏…𝑷 

Notes:  

• maximizing the likelihood provides and estimate of parameters 𝜃 

• In practice the log of L (log likelihoood) is often used 

• The likelihood is not a p.d.f ! 

• Bayesian do transform the likelihood in a p.d.f 
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Simple examples 
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Exponential distribution 𝑓 𝑥; 𝜏 =
1

𝜏
𝑒−

𝑥
𝜏  

𝐿 𝜏 = 
1

𝜏
𝑒−

𝑥𝑖
𝜏

𝑁

𝑖=1

 

log⁡𝐿 𝜏 = log

𝑁

𝑖=1

𝑓 𝑥𝑖 ; 𝜏 = −𝑁 log 𝜏 − 
𝑥𝑖
𝜏

𝑁

𝑖=1

 

𝑑log𝐿

𝑑𝜏
= 0 ⟺ 𝝉 = 𝝉 =

𝟏

𝑵
 𝒙𝒊

𝑵

𝒊=𝟏

 

𝐸 𝜏 = 𝜏  (unbiased estimator) 

Likelihood: 

Log-likelihood: 

Estimator: 

𝑓 𝑥; 𝜏 =
1

𝜏
𝑒−

𝑥
𝜏  

𝜏 = 2 

𝜏 = 2.12 

𝑁 = 200 

log⁡𝐿 𝜏 = −𝑁 log 𝜏 − 𝑁
𝜏 

𝜏
 

log⁡𝐿𝑚𝑎𝑥⁡⁡ 
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Simple examples 
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Gaussian distribution 𝑓 𝑥; 𝜇, 𝜎 =
1

2𝜋𝜎
𝑒
−
1
2
𝑥−𝜇
𝜎

2

 ,⁡log⁡𝐿 𝜃 =  log

𝑁

𝑖=1

𝑓 𝑥𝑖; 𝜇, 𝜎  

𝜕log𝐿

𝜕𝜇
= 0 ⟺ 𝝁 =

𝟏

𝑵
 𝒙𝒊

𝑵

𝒊=𝟏

 

𝜕log𝐿

𝜕𝜎2
= 0 ⟺ 𝝈𝟐 =

𝟏

𝑵
 (𝒙𝒊−𝝁 )

𝟐⁡⁡

𝑵

𝒊=𝟏

 

𝐸 𝜇 = 𝜇 

𝐸 𝜎2 =
𝑁 − 1

𝑁
𝜎2 

Estimators: 

 (unbiased) 

 (biased) 

log⁡𝐿 𝜇, 𝜎 = −𝑁 log 2𝜋𝜎 −
1

2𝜎2
 𝑥𝑖

2 − 𝑁𝜇2  

𝜇 = 0 𝜇 = 0.011 

𝜎 = 1 𝜎 = 1.004 

log⁡𝐿𝑚𝑎𝑥⁡⁡ 
+ 

𝑁 = 1000 



SOS 2016 

Uncertainty of ML estimator 
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Variance of estimator, 𝑉 𝜏 , can be tricky to estimate. Several methods exist: 

1) Analytical method 

    For example for the previous exponential distribution 

𝑉 𝜏 = … =
𝜏2

𝑁
 𝜏 =

1

𝑁
 𝑥𝑖

𝑁

𝑖=1

 and 

2) Monte-Carlo method 

    Very useful for complex cases (multiparameters, systematic uncertainties) 

    Ex: generate samples distributed exponentially  

 

𝑓 𝑥; 𝜏 =
1

𝜏
𝑒−

𝑥
𝜏  

𝜏 = 2 

𝜏 = 1.92 

𝜎𝜏 = 0.140 𝑉 𝜏 =
𝜏

𝑁sample

= 0.141 

𝑁sample = 200 𝑁experiments = 500 

𝜏  = 1.99 𝐸 𝜏 = 𝜏 = 2 
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Uncertainty of ML estimator 
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3) Cramér-Rao bound 

    Gives a lower bound on any estimator variance (not only ML) 

𝑉 𝜃 ≥
1 +

𝜕𝑏
𝜕𝜃

2

𝐸 −
𝜕2 log 𝐿
𝜕𝜃2

, (𝑏: bias) 
Equality: estimator is efficient 

ML are asymptotically efficient 

For multiple parameters 𝜃 = 𝜃1, … , 𝜃𝑃  :  

(and assuming efficiency and b=0) 

𝑉−1 𝑖𝑗 = 𝐸 −
𝜕2 log 𝐿

𝜕𝜃𝑖𝜕𝜃𝑗
 

For large samples: an estimate of the 

inverse covariant matrix V-1 is: 
𝑉−1 

𝑖𝑗
= −

𝜕2 log 𝐿

𝜕𝜃𝑖𝜕𝜃𝑗
(𝜃 = 𝜃 ) 

1 parameter:  𝜎2 =
−1

𝜕2 log 𝐿
𝜕𝜃2

(𝜃 )
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Uncertainty of ML estimator 
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4) Graphical method 

    Taylor expansion of log L on estimate 𝜃 : 

log 𝐿 𝜃 = log 𝐿(𝜃 ) + 𝜃 − 𝜃 
𝜕 log 𝐿

𝜕𝜃
𝜃 +

1

2
𝜃 − 𝜃 

2 𝜕2 log 𝐿

𝜕𝜃2
𝜃  

= log 𝐿max −
1

2𝜎2 
𝜃 − 𝜃 

2
 

⇒ log𝐿 𝜃 ± 𝜎 = log 𝐿max −
1

2
 

𝐥𝐨𝐠𝑳max −
𝟏

𝟐
 

𝐥𝐨𝐠𝑳max 

𝝉 ± 𝝈𝝉  

𝝉 ± 𝝈𝝉  corresponds to a 

68.3% confidence interval 

𝜟log⁡𝑳 = 𝟎. 𝟓 ∶ 𝟔𝟖. 𝟑%⁡𝐂𝐈 

𝜟log⁡𝑳 = 𝟐⁡⁡⁡⁡ ∶ 𝟗𝟓. 𝟒%⁡𝐂𝐈 

𝜟log⁡𝑳 = 𝟒. 𝟓 ∶ 𝟗𝟗. 𝟕%⁡𝐂𝐈 
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Error ellipse 
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log⁡𝐿𝑚𝑎𝑥⁡⁡ 
+ 

𝜃1 

𝜃2 

𝜽𝟐  

𝝈𝜽𝟐  

𝝈𝜽𝟐  

𝜽𝟏  

𝝈𝜽𝟏  𝝈𝜽𝟏  

𝜟log⁡𝑳 = 𝟏. 𝟏𝟓 ∶ 𝟔𝟖. 𝟑%⁡𝐂𝐈 

Case for 2 parameter 𝜽𝟏 and 𝜽𝟐: 
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Error ellipse 
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log⁡𝐿𝑚𝑎𝑥⁡⁡ 
+ 

𝜃1 

𝜃2 

𝜟log⁡𝑳 = 𝟏. 𝟏𝟓 ∶ 𝟔𝟖. 𝟑%⁡𝐂𝐈 

𝜟log⁡𝑳 = 𝟑. 𝟎𝟗 ∶ 𝟗𝟓. 𝟒%⁡𝐂𝐈 

𝜟log⁡𝑳 = 𝟓. 𝟗𝟐 ∶ 𝟗𝟗. 𝟕%⁡𝐂𝐈 

Case for 2 parameter 𝜽𝟏 and 𝜽𝟐: 
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Chi-square method 
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Consider N independent variables yi 

function of a another variable xi 

• The yi are Gaussian distributed of 

mean μi and (known) std σi 

• Suppose that μ = 𝒇(𝒙; 𝜽) with 

unknow parameters 𝜽 

𝐿 𝜃 = 
1

2𝜋𝜎𝑖
𝑒
−
1
2
𝑦𝑖−𝑓(𝑥𝑖;𝜃)

𝜎𝑖

2
𝑁

𝑖=1

 

𝜒2 𝜃 = 
𝑦𝑖 − 𝑓 𝑥𝑖; 𝜃 

𝜎𝑖

𝑁

𝑖=1

2

 

Likelihood: 

Maximizing log 𝐿 𝜃  to estimate parameters⁡𝜃  is equivalent to minimize:  
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Simple example 

24 

Fit data with a line 𝑓 𝑥; 𝑎, 𝑏 = 𝑎𝑥 + 𝑏 

 

Simple linear regression: minimize 

the variance of 𝑦𝑖 − 𝑓(𝑥𝑖 ; 𝑎, 𝑏) 

(r: correlation factor 

between x and y) 
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Simple example 
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Fit data with a line 𝑓 𝑥; 𝑎, 𝑏 = 𝑎𝑥 + 𝑏 

 

Chi-square fit: minimize 𝜒2(𝑎, 𝑏) 

𝜒2 𝑎, 𝑏 = 
𝑦𝑖 − 𝑓 𝑥𝑖; 𝑎, 𝑏

𝜎𝑖

𝑁

𝑖=1

2

 

𝜕𝜒2

𝜕𝑎
= 0 

𝜕𝜒2

𝜕𝑏
= 0 
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Chi-square: generalization 
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If yi measurements are not independent but related by their cov. matrix Vij 

log 𝐿 𝜃 = −
1

2
 (𝑦𝑖 − 𝑓(𝑥𝑖;

𝑁

𝑖,𝑗=1

𝜃 )) 𝑉−1 𝑖𝑗(𝑦𝑗 − 𝑓(𝑥𝑗; 𝜃 )) + additive⁡terms 

𝜒2 𝜃 =  (𝑦𝑖 − 𝑓(𝑥𝑖 ;

𝑁

𝑖,𝑗=1

𝜃 )) 𝑉−1 𝑖𝑗(𝑦𝑗 − 𝑓(𝑥𝑗; 𝜃 ) 

log 𝐿 𝜃  is maximized by minimizing: 

𝜒2 𝜃 = 𝑦 − 𝑓 
𝑇
𝑉−1(𝑦 − 𝑓 ) Written in matrix notation: 

If 𝑓 𝑥𝑖 ; 𝜃  is linear in the parameters 𝜃 :  1-σ uncertainty contour given by: 

𝜒2 𝜃 = 𝜒2 𝜃  + 1 = 𝜒𝑚𝑖𝑛
2 + 𝑞 

N param. 1 2 3 

q 1.00 2.30 3.53 
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BLUE method 

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110 

• Find linear (unbiased) combination of results: x = Σ wixi 

    with weights wi that give minimum possible variance σx
2 

• Account properly of correlations between measurements 

• For Gaussian errors: method equivalent to 𝜒2 minimization 

• Two measurements: x1±σ1, x2±σ2 with correlation ρ 

• The weights that minimize the χ2: 

 

 

 

 are: 

 

 

Cov. matrix 

(w1+w2=1) 

27 
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BLUE method 

Best Linear Unbiased Estimator: L.Lyons et al. NIM A270 (1988) 110 

• Find linear (unbiased) combination of results: x = Σ wixi 

    with weights wi that give minimum possible variance σx
2 

• Account properly of correlations between measurements 

• For Gaussian errors: method equivalent to χ2 minimization 

 

• Two measurements: x1±σ1, x2±σ2 with correlation ρ 

•  The combined result is:   

•  And the uncertainty on the combined measurement is: 
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BLUE method 

Iterative method 

 Biases could appear when uncertainties depend on central value of 

each measurement (L. Lyons et al., Phys. Rev. D41 (1990) 982985) 

 Reduced if covariance matrix determined as if the central value is 

the one obtained from combination 

• Rescale uncertainties to combined value 

         ex: for measurement 1, and category i: σi,1
rescaled = σi,1 . x1/xblue 

• Iterate until central value converges to stable value 
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Single-top t-channel 8 TeV results 
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ATLAS [ATLAS-CONF-2012-132, 5.8 fb-1]: 

σt(t-ch.) = 95 ± 2 (stat.) ± 18 (syst.) pb = 95 ± 18 pb 

 Multivariate analysis with limited assumptions on simulations 

 Fit of NN distribution in the data in e/μ+2/3 jet events, with 1-btag 

CMS [CMS PAS TOP-12-011, 5.0 fb-1]: 

σt(t-ch.) = 80.1 ± 5.7(stat.) ± 11.0(syst.) ± 4.0(lumi.) pb = 80.1 ± 12.8 pb 

 Cut-based analysis, data-driven background estimates (shapes, rates) 

 Fit |η| distribution of forward jet in μ+2 jet events, with 1-btag 
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Uncertainties categories and correlations 
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6 categories of uncertainties. Correlation factor between ATLAS/CMS estimated for each. 
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Result 

Combined t-channel single-top cross section 
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Breakdown of uncertainties 

Sum covariance matrices in 

each category to obtain total 

covariance matrix. 

With wATLAS = 0.35 and wCMS = 0.65, χ2 = 0.79/1 

Overall correlation of measurements is ρtot = 0.38. 

Σ 
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Summary plot 
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(19.0%) 

(16.2%) 

(14%) 


