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from Jim Berger, Duke University
“Bayesian Multiplicity Control: i.e., Bayesian methods of controlling for the ‘look elsewhere effect”’

Bayes Forum MPA-Garching, April 4, 2016✬

✫

✩

✪

The need for multiplicity control:
In a recent talk about the drug discovery process, the following numbers

were given in illustration.

• 10,000 relevant compounds were screened for biological activity.

• 500 passed the initial screen and were studied in vitro.

• 25 passed this screening and were studied in Phase I animal trials.

• 1 passed this screening and was studied in a Phase II human trial.

This could be nothing but noise, if screening was done based on ‘significance

at the 0.05 level.’

If no compound had any effect,

• about 10, 000 × 0.05 = 500 would initially be significant at the 0.05 level;

• about 500 × 0.05 = 25 of those would next be significant at the 0.05 level;

• about 25 × 0.05 = 1.25 of those would next be significant at the 0.05 level

• the 1 that went to Phase II would fail with probability 0.95.

4



from Jim Berger, Duke University
“Bayesian Multiplicity Control: i.e., Bayesian methods of controlling for the ‘look elsewhere effect”’

Bayes Forum MPA-Garching, April 4, 2016✬

✫

✩

✪

The need for multiplicity control:
In a recent talk about the drug discovery process, the following numbers

were given in illustration.

• 10,000 relevant compounds were screened for biological activity.

• 500 passed the initial screen and were studied in vitro.

• 25 passed this screening and were studied in Phase I animal trials.

• 1 passed this screening and was studied in a Phase II human trial.

This could be nothing but noise, if screening was done based on ‘significance

at the 0.05 level.’

If no compound had any effect,

• about 10, 000 × 0.05 = 500 would initially be significant at the 0.05 level;

• about 500 × 0.05 = 25 of those would next be significant at the 0.05 level;

• about 25 × 0.05 = 1.25 of those would next be significant at the 0.05 level

• the 1 that went to Phase II would fail with probability 0.95.

4



Scientific knowledge

Scientific knowledge = justified belief.

I The standard definition from philosophy adds the adjective “true.” But as
scientists we understand truth is unproveable without ruling out all other
possible models—something that is feasibly impossible.

I “Belief” is self-explanatory;

I so what is “justification”?

It is embodied in a model that

I is logically consistent and explains known facts,

I and makes testable predictions.

Given several models that fulfil the above, we often apply “Occam’s
razor,” selecting the simplest model as the best. But in the absence of
mathematical differences in their predictive powers, this is only an
aesthetic preference.



Learning



Learning

We factorize the model into two categories:

I The scientific model (“theory” in the diagram)

I predict distributions of physical quantities from parameters

I The statistical model (“modeling of experiment” in the diagram)

I predict measured quantities from physical quantities

These correspond to knowledge:

I Our scientific knowledge consists in knowing

I how to calculate physical quantities from parameters

I the likely values of the parameters (or constraints on them).

I Our stastical knowledge consists in knowing

I how to propagate information (probability distributions) from one step to
the next

By comparing predicted quantities with actual measured quantities in the
appropriate way, we learn about the model and parameters.



Probability

We will focus on the statistical models, which requires we define
probability.

We define probability according to the axioms of Kolmogorov:

1. Define:

I S , the set of all possible states.

I S, the space of subsets of S

2. Probability is a mapping fulfilling

2.1 P : S→ R≥0, That is:
P(A) ≥ 0, ∀A ⊂ S.

2.2 The probability of S is unity:

P(S) = 1.

2.3 The join probability of disjoint sets is the sum of their individual
probabilities:

P(A ∪ B) = P(A) + P(B), ∀A,B | A ∩ B = ∅



Probability

It is important to understand subtle differences in probabilities.

We illustrate with an easy problem:

Flip a (fair) coin 10 times, resulting in:

A: T H T H H T T H T H

Repeat, resulting in:

B: T T T T T T T T T T

Which one is more likely? What do I mean by that?



Probability

A: T H T H H T T H T H

B: T T T T T T T T T T

1. The probability of the sequence:

P(A) =

(
1

2

)10

P(B) =

(
1

2

)10

2. The probability of the set (regardless of sequence):

P(A) =

(
10

5

)(
1

2

)5(
1

2

)5

= 252/1024

P(B) =

(
10

10
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1
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)10(
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2

)0

= 1/1024
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Bayes’ Theorem

1. We can relate the joint probability to the conditional probability two
ways

1.1 Kolmogorov definition of conditional probability:

P(A|B) ≡
P(A ∩ B)

P(B)

1.2 Axiom of conditional probability:

P(A ∩ B) = P(A|B)P(B)

2. Note that joint probability is commutative:

P(A ∩ B) = P(B ∩ A)

3. From which Bayes’ theorem practically falls out:

P(A|B)P(B) = P(B|A)P(A)

P(A|B) =
P(B|A)P(A)

P(B)
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Bayes’ Theorem

We can expand the theorem using the law of total probability, which
states

P(X ) =
∑
i

P(X |Yi )P(Yi ),

if ∑
i

P(Yi ) = 1 and Yi ∩ Yj = ∅, ∀i , j

That first requirement is the same as requiring ∪iYi spans all possible
states.

So:

P(A|B) =
P(B|A)P(B)∑
i P(B|Ai )P(Ai )

In the context of data (D) and a model (M) we write this:

P(M|D)︸ ︷︷ ︸
posterior

=
P(D|M)

prior︷ ︸︸ ︷
P0(M)∑

m

P(D|m)P0(m)︸ ︷︷ ︸
evidence (Z)



Simple example of Bayes’ Theorem

Let us explore the theorem in a simple example:

I We have a sensor that detects only samples of type A or type B.

It is efficient at detecting A’s and inefficient at detecting B’s

P(signal|A) = 95% P(signal|B) = 2% P(signal|A or B) = 0

I We use the sensor on an unknown sample and it produces a signal (S).

What do we know?

What is P(A|S)?

What is P(B|S)?



Simple example of Bayes’ Theorem

P(signal|A) = 95% P(signal|B) = 2% P(signal|A or B) = 0

Apply Bayes’ theorem:

P(X |S) =
P(S |X )P0(X )

P(S |A)P0(A) + P(S |B)P0(B) + P(S |A or B)︸ ︷︷ ︸
0

P0(A or B)

X = A or B

Obviously we need to know the priors!



Simple example of Bayes’ theorem

P(signal|A) = 95% P(signal|B) = 2%

P(X |S) =
P(S |X )P0(X )

P(S |A)P0(A) + P(S |B)P0(B)

Let us try a couple of scenarios:

1. Given no information, we reasonably choose

P0(A) = P0(B)

So the priors cancel and:

P(A|S) =
95%

95% + 2%
= 97.9% P(B|S) = 2.1%

2. We know that B’s are far more likely than A’s:

P0(B)/P0(A) = 1000

So:

P(A|S) =
95%

95% + 2% · 100
= 4.5%, P(B|S) = 95.5%
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Efficiencies

Efficiency calculations illustate where the naive calculation breaks down:

Suppose we have N trials of which H are successes.

Naively:

ε =
H

N
±
√
H

N

Suppose out of 100 trials, 98 are successes:

ε = 98%± 9.9%

What does it mean for an efficiency to be above 100%?

The Bayesian formulation is a little more complicated.

We expand our formulation of the theorem for parameters in an assumed
model:

P(~λ|M,D) =
P(D|M, ~λ)P0(λ)∫

P(D|M, ~λ′)P0(~λ′)d~λ′

And let us first discuss the binomial distribution
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Binomial distribution

P(n|N, r) =

(
N

n

)
pn(1− p)N−n

The binomial distribution is used when there are

I two possible outcomes, with fixed probabilities: p and (1− p);

I and a fixed number of trials (N)

(perfect to describe efficiencies)

There are obvious constraints:

1. 0 ≤ p ≤ 1

2. 0 ≤ N ≤ ∞

3. 0 ≤ n ≤ N, n the number of outcomes occuring with prob. p



Binomial distribution

P(n|N, r) =

(
N

n

)
pn(1− p)N−n

n
0 2 4 6 8 10 12 14

P
(n

|N
,p

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
N = 15

(N+1)p = 1 (N+1)p = 5
(N+1)p = 8 (N+1)p = 12



Binomial distribution
Certain properties useful to know:

1. The binomial distribution is normalized:

N∑
n=0

P(n|N, p) = 1

2. The expectation value for n is

E [n] =
N∑

n=0

nP(n|N, p) = Np

3. The variance of n is

V [n] =
N∑

n=0

n2P(n|N, p)− E [n]2 = Np(1− p)

4. The mode of n, n∗, depends on N and p:

4.1 n∗ = 0 for p = 0;

4.2 n∗ = N for p = 1;

4.3 n∗ = b(N + 1)pc; for 0 ≤ p ≤ 1 and (N + 1)p /∈ Z;

4.4 n∗ = b(N + 1)pc and b(N + 1)pc − 1; for 0 ≤ p ≤ 1 and (N + 1)p ∈ Z;



Bayesian Efficiency

P(ε|N,H) =

(
N
H

)
εH(1− ε)N−H · P0(ε)∫ 1

0

(
N
H

)
ε′H(1− ε′)N−H · P0(ε′)dε′

Again, we require information about the prior.

Let’s try a flat flat prior

P0(ε) = 1

So

P(ε|N,H) =
εH(1− ε)N−H∫ 1

0

ε′H(1− ε′)N−Hdε′︸ ︷︷ ︸

β(H+1,N−H+1)=
H!(N−H)!

(N+1)!

=
(N + 1)!

H!(N − H)!
εH(1−ε)N−H = (N+1)·P(H|N, ε)



Bayesian Efficiency

P(ε|N,H) =

(
N
H

)
εH(1− ε)N−H · P0(ε)∫ 1

0

(
N
H

)
ε′H(1− ε′)N−H · P0(ε′)dε′

Again, we require information about the prior.

Let’s try a flat flat prior

P0(ε) = 1

So

P(ε|N,H) =
εH(1− ε)N−H∫ 1

0

ε′H(1− ε′)N−Hdε′︸ ︷︷ ︸
β(H+1,N−H+1)=

H!(N−H)!
(N+1)!

=
(N + 1)!

H!(N − H)!
εH(1−ε)N−H = (N+1)·P(H|N, ε)



Bayesian Efficiency

P(ε|N,H) =

(
N
H

)
εH(1− ε)N−H · P0(ε)∫ 1

0

(
N
H

)
ε′H(1− ε′)N−H · P0(ε′)dε′

Again, we require information about the prior.

Let’s try a flat flat prior

P0(ε) = 1

So

P(ε|N,H) =
εH(1− ε)N−H∫ 1

0

ε′H(1− ε′)N−Hdε′︸ ︷︷ ︸
β(H+1,N−H+1)=

H!(N−H)!
(N+1)!

=
(N + 1)!

H!(N − H)!
εH(1−ε)N−H

= (N+1)·P(H|N, ε)



Bayesian Efficiency

P(ε|N,H) =

(
N
H

)
εH(1− ε)N−H · P0(ε)∫ 1

0

(
N
H

)
ε′H(1− ε′)N−H · P0(ε′)dε′

Again, we require information about the prior.

Let’s try a flat flat prior

P0(ε) = 1

So

P(ε|N,H) =
εH(1− ε)N−H∫ 1

0

ε′H(1− ε′)N−Hdε′︸ ︷︷ ︸
β(H+1,N−H+1)=

H!(N−H)!
(N+1)!

=
(N + 1)!

H!(N − H)!
εH(1−ε)N−H = (N+1)·P(H|N, ε)



Bayesian Efficiency

P(ε|N,H) = (N + 1) · P(H|N, ε)

∈
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|N
,H
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∈

P
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6 N = 15
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Bayesian Efficiency

P(ε|N,H) = (N + 1) · P(H|N, ε)

∈
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|N
,H

)
∈

P
(

0

1

2

3

4

5

6 N = 15
H = 1 H = 5
H = 8 H = 12
H = 14

The mode of this distribution is

ε∗ =
H

N

The mean is

E [ε] =
H + 1

N + 2

The variance is

V [ε] =
E [ε](1− E [ε])

N + 3



Bayesian Efficiency

P(ε|N,H) = (N + 1) · P(H|N, ε)

∈
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|N
,H

)
∈

P
(

0

1

2

3

4

5

6 N = 15
H = 1 H = 5
H = 8 H = 12
H = 14

N H H
N
±

√
H

N
E [ε] ± (V [ε])

1
2

15 1 6.7% ± 6.7% 11.8% ± 7.6%
15 5 33.3% ± 14.9% 35.3% ± 11.3%
15 8 53.3% ± 18.9% 52.9% ± 11.8%
15 12 80.0% ± 23.1% 76.5% ± 10.0%
15 14 93.3% ± 24.9% 88.2% ± 7.6%

Notice that the uncertainty grows with H in the naive calculation!

But it’s symmetric for the Bayesian calculation.



Bayesian Efficiency

P(ε|N,H) = (N + 1) · P(H|N, ε)

∈
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

|N
,H

)
∈

P
(

0

1

2

3

4

5

6 N = 15
H = 1 H = 5
H = 8 H = 12
H = 14

N H H
N
±

√
H

N
E [ε] ± (V [ε])

1
2

15 14 93.3% ± 24.9% 88.2% ± 7.6%
30 28 93.3% ± 17.6% 90.6% ± 5.1%
45 42 93.3% ± 14.4% 91.5% ± 4.0%
60 56 93.3% ± 12.5% 91.9% ± 3.4%
75 70 93.3% ± 11.2% 92.2% ± 3.0%

Keeping the mode, ε∗ = H/N, fixed



Poisson distribution

The Poisson distribution can be obtained from the binomial distribution
via

N →∞ p → 0

while maintaining
Np = finite

We introduce
ν ≡ Np

so:

P(n|N, ν) =
N!

n!(N − n)!

( ν
N

)n (
1− ν

N

)N−n

We have (if n remains finite)

lim
N→∞

N!

(N − n)!
→ Nn

and

lim
N→∞

(
1− ν

N

)N−n

→ e−ν

So

P(n|ν) =
νne−ν

n!
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Poisson distribution

P(n|ν) =
νne−ν

n!
, ν ∈ R≥0, n ∈ N0

n
0 2 4 6 8 10 12 14 16 18 20

)ν
P

(n
|

0

0.1

0.2

0.3

0.4

0.5

0.6
 = 0.5ν  = 1.5ν
 = 5.0ν  = 10.0ν



Poisson distribution

P(n|ν) =
νne−ν

n!
, ν ∈ R≥0, n ∈ N0

The expectation value of n is

E [n] =
∞∑
n=0

n
νne−ν

n!

= νe−ν
∞∑
n=1︸︷︷︸

n=0 negl.

νn−1

(n − 1)!
= νe−ν

∞∑
m=0

νm

m!︸ ︷︷ ︸
eν

= ν

other useful properties:

1. Normalization:
∞∑
n=0

=
νne−ν

n!
= e−ν

νn

n!
= 1

2. V [n] = ν (also check as an exercise)

3. n∗ = bνc, if ν /∈ Z
n∗ = ν and ν − 1, if ν ∈ Z
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2. V [n] = ν (also check as an exercise)

3. n∗ = bνc, if ν /∈ Z
n∗ = ν and ν − 1, if ν ∈ Z
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Poisson distribution in Bayesian context

P(n|ν) is distribution of n. What about ν?

Bayes theorem!

P(ν|n) =
P(n|ν)P0(ν)∫∞

0
P(n|ν′)P0(ν′)dν′

Again, we need info about the prior.

Let us take a flat prior:

P0(ν) =
1

ν∞
, for 0 ≤ ν ≤ ν∞

0 otherwise.

ν∞ � n finite but large: finite ν∞ → nonzero prior!

P(ν|n) =
νne−ν∫ ν∞

0

ν′ne−ν
′
dν︸ ︷︷ ︸

≈n!

=
νne−ν

n!
= P(n|ν)
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Poisson distribution in Bayesian context

P0(ν) = flat→ P(ν|n) = P(n|ν)
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Poisson distribution in Bayesian context

P0(ν) = flat→ P(ν|n) = P(n|ν)

Properties:

I Normalized: ∫ ∞
0

νne−ν

n!
dν = 1

I ν∗ = n

I E [ν] =
∫ ν∞

0
ν ν

ne−ν

n!
dν = (n+1)!

n!
= n + 1

I V [ν] = E [ν2]− E [ν]

=

∫ ν∞

0

ν2P(ν|n)dν − (n + 1)2

=
(n + 2)!

n!
− (n + 1)2 = n + 1



Poisson distribution in Bayesian context

What if we measure n = 0?

ν∗ = ?, E [ν] = ?

Remember n = 0 is a measurement!

P(ν|0) = e−ν

And remember this is still a big change from the prior:

E0[ν] =

∫ ν∞

0

νP0(ν)dν =

[
ν2

2ν∞

]ν∞
0

=
ν∞
2

So:
E0[ν]→ E [ν] =

ν∞
2
→ 1
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Poisson distribution in Bayesian context

No let’s look at the cumulative distribution:

F (ν|n) =

∫ ν

0

ν′ne−ν
′

n!
dν′ =

[
−ν
′ne−ν

′

n!

]ν
0

−
∫ ν

0

ν′n−1e−ν
′

(n − 1)!
dν′ = . . .

repeat until denominator in integral = −1!, since (−1!)−1 = 0

F (ν|n) = 1− e−ν
n∑

m=0

νm

m!

So if we measure n = 0, what is the 95%-credibility upper limit?

F (ν95|0) = 1− e−ν95 = 0.95 → ν95 = − ln 0.05 ≈ 3



Cautionary interlude!

If you want to use the so-called “poisson uncertainty”, remember this only
applies at large n!

The 68% probability region is [n −
√
n, n +

√
n] (for large n)



Poisson distribution in Bayesian context

What about a nonflat prior?

In general we cannot analytically solve the problem.

(Generally solve numerically—as we’ll see in the exercises with BAT.)

But let us take one example:

P0(ν) =
1

ν0
e−ν/ν0

This is normalized: ∫ ∞
0

1

ν0
e−ν/ν0 dν = 1

And has expectation value:
E0[ν] = ν0



Poisson distribution in Bayesian context

ν
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Poisson distribution in Bayesian context

P0(ν) =
1

ν0
e−ν/ν0

So:

P(ν|n) =
νne
−ν ν0+1

ν0∫∞
0
νne
−ν ν0+1

ν0

=

(
ν0 + 1

ν0

)n+1
νne
−ν ν0+1

ν0

n!

And

E [ν] = (n + 1)

(
ν0

ν0 + 1

)
Again, let’s look at n = 0:

P(ν|0) =

(
ν0 + 1

ν0

)
e
−ν ν0+1

ν0

and

F (ν|0) = 1− e
−ν ν0+1

ν0

so
ν95 ≈ 3 · ν0

ν0 + 1
< νflat

95

Why is it less than the upper limit with the flat prior?



Superposition of Poisson distributions

We often have several Poisson processes contributing signals.

Basic scenario: signal (S) and background (B)

Then

P(n|νS, νB) =
n∑

nS=0

P(nS|νS)P(n − nS|νB)

= e−(νS+νB)
n∑

nS=0

νnSS νnBB

nS!(n − nS)!

pull out a factor of
(νS + νB)n

n!

= e−(νS+νB) (νS + νB)n

n!

n∑
nS=0

n!

nS!(n − nS)!

(
νS

νS + νB

)nS
(

νB

νS + νB

)n−nS

︸ ︷︷ ︸

∑n
nS=0 ( n

nS
)pnS (1−p)n−nS=1

= e−(νS+νB) (νS + νB)n

n!

= P(n|νS + νB)
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Superposition of Poisson distributions in Bayesian context

Let’s take the prior on the signal flat:

P(νS) = constant

And look at when the background is perfectly known:

prior for background is a delta function:

P0(ν) = δ(νB − ν∗B)

and so the posterior for νS is

P(νS|n, ν∗B) =
e−(νS+νB)(νS + ν∗B)n∫∞

0
e−(ν′S+νB)(ν′S + ν∗B)ndν′S

=
e−νS(νS + ν∗B)n

n!

/
n∑

m=0

νmB
m!



Superposition of Poisson distributions in Bayesian context

P(νS) = constant, P0(ν) = δ(νB − ν∗B)
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Superposition of Poisson distributions in Bayesian context

P(νS) = constant, P0(ν) = δ(νB − ν∗B)

P(νS|n, ν∗B) =
e−νS(νS + ν∗B)n

n!

/
n∑

m=0

νmB
m!

So the cumulative is:

F (νS|n, ν∗B) = 1− e−νS
n∑

m=0

(νS + νB)m

m!

/
n∑

m=0

νmB
m!



Superposition of Poisson distributions in Bayesian context

P(νS) = constant, P0(ν) = δ(νB − ν∗B)

F (νS|n, ν∗B) = 1− e−νS
n∑

m=0

(νS + νB)m

m!

/
n∑

m=0

νmB
m!
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Superposition of Poisson distributions in Bayesian context

Now let’s look at when we we have imprecise knowledge of the
background:

P0(νB) = N (νB|ν∗B, σ2
B) · P0(ν∗B, σ

2
B)

with delta priors for the parameters ν∗B and σ2
B; and again a flat prior for the

signal:
P0(νS) = constant

our posterior is

P(νS, νB|n; ν∗B, σ
2
B) ∝ P(n|νS, νB) · N (νB|ν∗B, σ2

B)



Superposition of Poisson distributions in Bayesian context

P(νS, νB|n; ν∗B, σ
2
B) ∝ P(n|νS, νB) · N (νB|ν∗B, σ2

B)
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Superposition of Poisson distributions in Bayesian context

P(νS, νB|n; ν∗B, σ
2
B) ∝ P(n|νS, νB) · N (νB|ν∗B, σ2

B)
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Superposition of Poisson distributions in Bayesian context

Now let us suppose we have two independent pieces of data:

1. b : data containing background only

2. n : data containing background and signal.

And correspondingly, two independent probabilities:

1. P(b|νB) =

νbBe
−νB

/
b!

2. P(n|νS, νB) =

P(n|νS + νB) = (νS + νB)ne−(νS+νB)
/

n!
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Superposition of Poisson distributions in Bayesian context

Now let us suppose we have two independent pieces of data:

1. b : data containing background only

2. n : data containing background and signal.

And correspondingly, two independent probabilities:
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Superposition of Poisson distributions in Bayesian context

P(νS, νB|b, n) ∝ P(b|νB)P(n|νS + νB)

we can marginalize the 2D dist. to get information about the 1D dists:
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Superposition of Poisson distributions in Bayesian context

P(νS, νB|b, n) ∝ P(b|νB)P(n|νS + νB)

And can then calculate the cumulatives:
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Bayes factor

In the last example we had two measurements: b and n

And we presumed:

1. b was measured with only background contributing

2. n was measured with background and signal constributing

This is a model!

Another valid model is:

1. b was measured with only background contributing

2. n was also measured with only background contributing

How can we compare them?
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Bayes Factor

Again, turn to Bayes’ theorem:

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

Recall the evidence (now for each model separately):

Z1 = P(D|M1) =

∫

P(D|~λ1;M1)P0(~λ1|M1)

d~λ1

Z2 = P(D|M2) =

∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2

And (total) marginalization:

P(M1|D) =

∫
P(~λ1;M1|D)d~λ1

P(M2|D) =

∫
P(~λ2;M2|D)d~λ2
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Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

The posteriors are:

P(M1|D) =

∫
P(D|~λ1;M1)P0(~λ1|M1)P0(M1)

Z1P0(M1) + Z2P0(M2)

d~λ1

=
P0(M1)

Z1︷ ︸︸ ︷∫
P(D|~λ1;M1)P0(~λ1|M1)d~λ1

Z1P0(M1) + Z2P0(M2)

and similarly

P(M2|D) =
P0(M2)

Z2︷ ︸︸ ︷∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2

Z1P0(M1) + Z2P0(M2)
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Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2

=
P(D|M1)

P(D|M2)
=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2

=
P(D|M1)

P(D|M2)
=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2

=
P(D|M1)

P(D|M2)
=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2

=
P(D|M1)

P(D|M2)
=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2

=
P(D|M1)

P(D|M2)
=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2

=
P(D|M1)

P(D|M2)
=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2

=
P(D|M1)

P(D|M2)
=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2

=
P(D|M1)

P(D|M2)
=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2
=

P(D|M1)

P(D|M2)

=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor

Let’s say we have two models: M1 and M2,
each with parameters ~λ1 and ~λ2

To compare the models, we compare their posteriors:

P(M1|D)

P(M2|D)
=

Z1

Z2

P0(M1)

P0(M2)

the denominators, Z = Z1P0(M1) + Z2P0(M2), cancel.

To quarantine the “subjective” assignment of prior beliefs in the models, we
factorize this into two terms

1. The ratio of prior beliefs in the two models: P0(M1)/P0(M2)

You must decide this!

2. The ratio of evidence: Z1/Z2

This is the Bayes factor

So the Bayes factor is

K12 ≡
Z1

Z2
=

P(D|M1)

P(D|M2)
=

∫
P(D|~λ1;M1)P0(~λ1|M2)d~λ1∫
P(D|~λ2;M2)P0(~λ2|M2)d~λ2



Bayes Factor Interlude

Everyon’s favorite example:

Superluminal Neutrinos!

Let us presume that a Bayesian analysis produces a Bayes factor equivalent to
the original 6σ result:

K =
Neutrinos move faster than the speed of light

neutrinos don’t move faster than the speed of light

= equivalent of 6σ
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Let us say 6σ is at the threshold of “decisive”:
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What do we require now to say we believe neutrinos move faster than the
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= K ∗ P0(super)

P0(sub)
> 1

So:
P0(super)

P0(sub)
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Bayes Factor

Let us return to our example of two models for the two measurements:

1. “SB” : b contains background only, n contains background and signal

2. “B” : both b and n contain background only

and calculate the evidences

ZB =

∫ ν∞

0

νbBe
−νB

b!
· ν

n
Be
−νB

n!
· 1

ν∞
dνB

ZSB =

∫ ν∞

0

∫ ν∞

0

νbBe
−νB

b!
· (νS + νB)ne−(νS+νB)

n!
· 1

ν∞
· 1

ν∞
dνBdνS

and the Bayes factor:

K =
ZSB

ZB

We have to do this numercally.



Bayes factor
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K = P(D|S+B) / P(D|B)



Think carefully about your prior

As we saw in the previous examples, the prior has an impact on the
posterior.

Let us look at an example of how to carefully choose the prior.

We measure an energy with a calorimeter, which has a Gaussian
resolution:

P(Emeas|Etrue) =
1√
2πσ

exp

(
− (Emeas − Etrue)2

2σ2

)
We make several measurements from which we want to construct a
spectrum.

We need to know Etrue:

P(Etrue|Emeas) ∝ P(Emeas|Etrue) · P0(Etrue)

We commonly make the implicit assumption of a flat prior:

P(Etrue|Emeas) = P(Emeas|Etrue)



Think carefully about your prior

But in many applications, the underlying spectrum is very much not flat. For
example,

f (Etrue) ∝ E−6
true

leading to:
P(Etrue|Emeas) ∝ P(Emeas|Etrue) · E−6

true

This affects the posterior.



Think carefully about your prior
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Building a larger model

Now let us extend the previous example to build a larger model:

What we’d probably like to learn about is not Etrue, but the power of the
underlying spectrum:

f (Etrue) ∝ Eλ

And our data is a series of independent measurements:

~Emeas = {E (1)
meas,E

(2)
meas, . . . }

each of which is related to a true value:

P(E (i)
meas|E

(i)
true) = N (E (i)

meas|E
(i)
true, σ

2)

So now we apply Bayes’ theorem:

P(λ|~Emeas) ∝

(∏
i

P(E (i)
meas|λ)

)
P0(λ)

But what is P(Emeas|λ)?



Building a larger model

P(λ|~Emeas) ∝

(∏
i

P(E (i)
meas|λ)

)
P0(λ)

But what is P(Emeas|λ)?

We can apply the law of total probability to get it:

P(E (i)
meas|λ) =

∫
P(E (i)

meas|Etrue)P(Etrue|λ)dEtrue

And our full posterior is

P(λ|~Emeas) ∝

(∏
i

∫
N (E (i)

meas|Etrue, σ
2)EλtruedEtrue

)
P0(λ)

Simplest approach: numerically integrate the term in the product during
parameter scan.

(This can be expensive if the data set is very large.)



Models

Your model need not just calculate numbers of events and apply such matching
of model to data.

Let us look at a different problem:

Here is a data set where we have a particle pass through segmented layers of
scintilating material slowing down, producing scintilation light:

In-Beam Measurement of a Down-Scaled Prototype

04/30/2015 T. Pöschl | TUM 25

Modeling of the Energy Deposition

Numerical model:

� based on NIST stopping tables

� detailed model of the detector volume

� includes saturation effects:

� ionization quenching (Birks’ quenching):

� saturation of SiPMs:

𝑑𝐿
𝑑𝑥

=

𝑑𝐸
𝑑𝑥

1 + 𝑘𝐵 𝑑𝐸
𝑑𝑥

𝑁𝑎𝑣 = 𝑁𝑝𝑖𝑥𝑒𝑙 ∙ (1 − 𝑒
−
𝜀𝑃𝐷𝐸∙𝑁𝛾
𝑁𝑝𝑖𝑥𝑒𝑙 )
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We have a multi-step model:

1. The particle slows down, according to the stopping power, producing a
charecteristic “Bragg peak” (blue squares)

This is dependent on the particle species, and its incoming energy

2. The scintilator produces photons, with non-linear dependence on the
energy (red triangles)

This is dependent on “Birks’ coefficient”—a property of the scintilator

3. Finally the light sensor detects the photons with non-linear dependence on
the number of photons (green triangles)

This is dependent on a “photo-detection efficiency”—a property of the
detector.
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Modeling of the Energy Deposition

Numerical model:

� based on NIST stopping tables

� detailed model of the detector volume

� includes saturation effects:

� ionization quenching (Birks’ quenching):

� saturation of SiPMs:

𝑑𝐿
𝑑𝑥

=

𝑑𝐸
𝑑𝑥

1 + 𝑘𝐵 𝑑𝐸
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We match the predictions (pi ) against the measurements (mi ), using the
measurement uncertainties (σ2

i ):

P(~λ|D) ∝

(∏
i

N
(
pi (~λ)|mi , σ

2
i

))
P0(~λ)



Models

We sample from the posterior using BAT, and marginalize to measure Birk’s
coefficient:

In-Beam Measurement of a Down-Scaled Prototype

04/30/2015 T. Pöschl | TUM 28

Results of the Bayesian Analysis

Extraction of free parameters:

� initial kinetic energies:

� 300 MeV/c beam Æ 37.2−0.6+0.7 MeV

� 325 MeV/c beam Æ 46.2−0.8+0.8 MeV

� 350 MeV/c beam Æ 55.5−0.4+0.3 MeV

� 375 MeV/c beam Æ 62.8−0.3+0.7 MeV

� Birks’ coefficient: 

� 𝑘𝐵 = 0.127 ± 0.030 mm/MeV

� Number of photons at SiPM

� 𝑁𝑝ℎ
𝑒𝑓𝑓 ≈ 220 photons/MeV (visible energy)

BUT: precision of measurement limited by 
energy straggling before the detector



Credibility Intervals

Let us take a look at the possible intervals we could quote to summarize a
posterior:

BUT: The actual distribution is still more important than the summarizing
interval!



Markov Chain Monte Carlo

We have seen that only the simplest of Bayesian analyses can be solved
analytically.

Nearly all problems we encounter in physics require a numerical
solution.

We need to

1. Sample parameter points from our posterior distribution to understand
what it looks like

2. Marginalize over (integrate out) some parameters to project onto
subspaces . . .

. . . typically 1D and 2D subspaces.

Markov Chain Monte Carlo algorithms are well suited to both these
tasks.



Markov Chain Monte Carlo

Monte Carlo = stochastic process

Markov Chain = a sequence of points in which the conditional probability for
a point given all those before it, depends only on the point directly preceding
it:

P(~xn+1|~x1, . . . , ~xn) = P(~xn+1|~xn)

As well, P(~xn+1|~xn) need not depend on ~xn:

This is typical of the most naive algorithms. For example: Hit or Miss.

We will focus on the Metropolis-Hastings algorithm



Metropolis-Hastings algorithm

We want to sample according to a function: f (~x) : X→ R≥0

(for simplicity assume X ⊂ Rn)

1. from a current point ~xi propose a new point ~y

Denote the probability of selecting ~y given ~xi by T (~y |~xi )

2. calculate the Hastings ratio:

r(~xi , ~y) =
f (~y)

T (~y |~xi )

/
f (~xi )

T (~xi |~y)
=

f (~y) · T (~xi |~y)

f (~xi ) · T (~y |~xi )

3. accept/reject ~y with probability min(1, r)

3.1 if r ≥ 1, ~xi+1 = ~y

3.2 else throw uniform random number in unit interval:

a ∼ U(0, 1)

if a ≤ r , ~xi+1 = ~y ;

else ~xi+1 = ~xi
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Metropolis-Hastings algorithm

In this way we scan our parameter space, spending our time wisely:

I concetrating on areas of interest

I but not completely avoiding areas of less interest

by storing the parameters in histograms of the sub-spaces we
marginalize

MARKOV CHAIN MONTE CARLO
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Metropolis-Hastings algorithm

Some things to note:

1. in the accept/reject state we always produce a new point!

if we reject ~y , we accept ~xi as ~xi+1

This of course introduces auto-correlations.

This does not impact marginalizations with large numbers of samples.

But if you need to avoid auto-correlation (say for MC), you cannot simply
change the accept/reject step

It is vital for the functioning of the algorithm.

Instead you apply a lag: take every n’th sample



Metropolis-Hastings algorithm

Some things to note:

2. the algorithm can propose a ~y0 for which f (~y0) = 0

but it will never go to it, since:

r(~xi , ~y0) ∝ f (~y0) = 0

So from a point for which f (·) 6= 0 you can never reach a point f (·) = 0,
regardless of the proposal function



Metropolis-Hastings algorithm

Some things to note:

3. r is undefined if

T (~xi |~y) = 0, for some ~xi , ~y |T (~y |~xi ) 6= 0

since:

r(~xi , ~y) ∝ T (~y |~xi )
T (~xi |~y)

SO: the proposal function must be reversible!
If the transition ~xi → ~y can occur,
then the transition ~y → ~xi must be able to occur

In fact, the proposal function is usually chosen symmetric:

B~r (~xi ), ~xi +N (0,Σ), hypercube(~xi )

This is the original Metropolis algorithm



Metropolis-Hastings algorithm

Some things to note:

4. finally, r(~xi , ~y) is undefined if f (~xi ) = 0

but since we can never accept a new point for which f (·) = 0, we need
only insure:

f (~x0) 6= 0



MCMC in practice

1. we will need to tune the proposal function so that the algorithm is efficient.

most common:

I Gaussian,

I Cauchy,

I Student’s t

All require radius:

I If radius is too large: too often select unlikely points → chain becomes
ineffecient

I If radius is too small: though efficient, we take small steps, move too slowly,
see only part of parameter space

So we monitor efficiency:

I if efficiency is too low, decrease radius

I if efficiency is too large, increase radius



MCMC in practice

2. It takes some initial number of iterations before the Markov Chain
converges to its equilbrium distribution

There are many methods for judging whether a chain has converged.

Many judge graphically.

Analysis of Markov Chain 

!  the full chain(s) can be stored for further analysis and parameter 
tuning as ROOT  TTree(s) 
�  allows direct usage of standard ROOT tools for analysis 

!  Markov Chain contains the complete information about the posterior 
(except for the normalization) 

 

par0 vs. iteration 

par0 vs. par1 
for every 
iteration 

convergence reached�

SOS  42 
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MCMC in practice

2. It takes some initial number of iterations before the Markov Chain
converges to its equilbrium distribution

There are many methods for judging whether a chain has converged.

Many judge graphically.

In BAT we judge by modified R values (Brooks Gelman, 1998)

1. run several chains for many iterations

2. for each parameter, calculate

R′(λ) ∝ R(λ) =
variance over all samples in all chains for λ

mean of chains’ individual variances for λ

3. chains have converged when R′ is below threshold for all parameters

What is the threshold? Wait—what even is R ′?

R ′ is a quasi-measurement of the changing of our variance with respect to
the true variance:

R ′ − 1 ≈ the shrinking of our variance towards the true variance if we run
for more iterations

in BAT, we default to requiring R ′ ≤ 1.1



MH MCMC demonstration
Let us look at how well the algorithm attacks equations with multiple peaking
structures and dead spaces:
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MH MCMC demonstration
Let us look at how well the algorithm attacks equations with multiple peaking
structures and dead spaces:

f (x , y) = x4 sin2(x)y 6 cos2(y)
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MH MCMC demonstration
Let us look at how well the algorithm attacks equations with multiple peaking
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More practical experience

And in the tutorial, we’ll explore using the

Bayesian Analysis Toolkit (BAT)

to run MCMC to sample from posteriors.


