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Neural Networks
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 Powerful and very flexible 

machine learning algorithms

 originally inspired by 

modelling the brain functions

 huge revival with success of ‘deep networks/learning’

 … still far from ‘intelligent’ though… 



Outline
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 Small recap of yesterdays “y(x)”

 What are neural networks (simple vanilla feed forward nets)

 Loss function

 Backpropagation

 Deep Learning – advances that made it possible

 Weight initialisation

 SDG  momentum  auto tuned learning rates

 Regularisation  Dropout

 Other network types: 

 Auto encoder

 Convolutional Neural Networks

 Examples of their usage in (astro-) particle physics



Classification ↔ y(x)
Classification:

 y(x): RD
R:  “test statistic” in D-

dimensional space of input variables

 y(x)=const: surface defining the decision 

boundary.

y(x): RD
R:
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y(x)

y(B)  0, y(S)  1
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y(x): function whose ‘contour lines’ define 

reasonable (good) decision boundaries



y(x) – the MVA output
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Assume you have found the y(x) which gives ‘perfect’ decision boundaries 

for any desired ‘signal efficiency’ 

pefect == one cannot do any better

 y(x) == 
𝒑𝒅𝒇 (𝒙|𝑺)

𝒑𝒅𝒇 (𝒙|𝑩)
(or a monotonic function thereof)

If y(x) is ‘forced’ to be between 0,1 (e.g. using the logistic/sigmoid function  

y(x)  sigm(y(x))   like in ‘logistic regression’)   AND

𝐿 = 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 binomial loss

Which came from:   y(x) should simply parametrize P(S|x); P(B|x)=1-P(B|x) 

𝐿 = − ෍

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 ) = −෍

𝑖

log(𝑃 𝑆 𝑥𝑖
𝑦𝑖
𝑡𝑟𝑎𝑖𝑛

𝑃 𝐵 𝑥𝑖
1−𝑦𝑖

𝑡𝑟𝑎𝑖𝑛
)

THEN   y(x) parametrizes directly P(S|x) 



Neural Networks
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“arbitrary” non-linear decision boundaries

 y(x) built from set of “basis” functions hk(x) 

 h(x) is sufficiently general (i.e. non linear),

 Can model any function

Imagine you chose do the following:

there are also mathematical proves for  this statement.

Ready is the Neural Network

Now we “only” need to find the appropriate “weights” w 

1
A(x)= :

1+e

the sigm oid function

 x

A non linear (sigmoid) function of

a linear combination of

non linear function(s) of

linear combination(s) of

the input data

hk(x)

𝑦 Ԧ𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ෍

𝑘

𝑀

𝑤𝑘ℎ𝑘( Ԧ𝑥)

𝑦 𝑥 = 𝑤𝑘0 +෍

𝑗=1

𝐷

𝑤𝑘𝑗𝑥𝑗𝑦 𝑥 = ෍

𝑘

𝑀

𝑤𝑘 𝐴 𝑤𝑘0 +෍

𝑗=1

𝐷

𝑤𝑘𝑗𝑥𝑗𝑦 𝑥 = 𝐴 𝑤𝑘0 +෍

𝑗=1

𝐷

𝑤𝑘𝑗𝑥𝑗𝑦 𝑥 = 𝐴 ෍

𝑘

𝑀

𝑤𝑘 𝐴 𝑤𝑘0 +෍

𝑗=1

𝐷

𝑤𝑘𝑗𝑥𝑗



Neural Networks:

Multilayer Perceptron MLP
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But before talking about the weights, let’s try to “interpret” the formula as a Neural Network:

 Nodes in hidden layer represent the “activation functions” whose arguments are linear 

combinations of input variables  non-linear response to the input

 The output is a linear combination of the output of the activation functions at the internal nodes

 It is straightforward to extend this to “several” input layers

 Input to the layers from preceding nodes only  feed forward network (no backward loops)

input layer hidden layer ouput layer

output:

Dvar

discriminating 
input variables
as input 
+ 1 offset  

1

( ) 1
x

A x e



 

“Activation” function
e.g. sigmoid:

or tanh
or …

M
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Neural Networks: 

Multilayer Perceptron MLP
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nodesneurons

links(weights)synapses

Neural network: try to simulate reactions of 

a brain to certain stimulus (input data)

input layer hidden layer ouput layer

output:

Dvar

discriminating 
input variables
as input 
+ 1 offset  

1

( ) 1
x

A x e



 

“Activation” function
e.g. sigmoid:

or tanh
or …

M
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‘activation’ of output node:  linear(regression)   sigmoid( classification)



y(x) from Neural Network
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“NN” with two input variables and ‘one node’ 

x1

x2
w02

w01

=y(x1,x2)

Choose those weights where contourlines == good decision boundaries



Training  Minimize Loss Function
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where

i.e. use usual “sum of squares” 

true predicted  (the network output)

𝐿 𝑤 =
1

2
෍

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 − 𝑦 𝑥𝑖; 𝑤

2

𝐿 𝑤 = ෍

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖; 𝑤 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log(1 − 𝑦 𝑥𝑖; 𝑤 )

𝑦𝑡𝑟𝑎𝑖𝑛 = ቊ
1, 𝑠𝑖𝑔𝑛𝑎𝑙
0, 𝑏𝑎𝑐𝑘𝑔𝑟

classification: Binomial loss 

regression:  



Back-propagation
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• recursive formulation of the gradient 
𝜕𝐿

𝜕𝑤𝑖𝑗
using ‘chain rule’

 ‘adjust’ weights w to minimize the “loss function”

For any internal node: i.e. node l in layer k

𝒚𝟏
𝒏−𝟏

𝒚𝒌
𝒏−𝟏

𝒘𝒌𝒍
𝒏−𝟏

𝒘𝟏𝒍
𝒏−𝟏

𝒚𝒍
𝒏

=

𝝏𝑳

𝝏𝒘𝒌𝒍
=

𝝏𝒛𝒍
𝝏𝒘𝒌𝒍

𝝏𝒉

𝝏𝒛𝒍

𝝏𝑳

𝝏𝒉
= 𝒚𝒌

𝒏−𝟏 𝝏𝒉

𝝏𝒛𝒍

𝝏𝑳

𝝏𝒉

𝒛𝒍
𝒏 = ∑𝒘

𝒉(𝒛)

… etc…



Back-propagation
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• recursive formulation of the gradient 
𝜕𝐿

𝜕𝑤𝑖𝑗
using ‘chain rule’

 For the ‘last layer’ we get:

𝑳 =
𝟏

𝟐
(𝒚 − 𝒚(𝒙))𝟐 and linear output neuron:   𝐲 𝐱 = ∑𝒘𝒏𝒌𝒚𝒌 = 𝒛

𝝏𝑳

𝝏𝒘𝒏𝒌
=
𝝏𝒚(𝒙)

𝝏𝒘𝒏𝒌

𝝏𝑳

𝝏𝒚(𝒙)
= 𝒚𝒌 (𝒚 − 𝒚 𝒙 )

Output of k-th node in 

previous layer 

And: for ‘binomial loss function’ and ‘sigmoid ouput neuron’

 Same result 
𝝏𝑳

𝝏𝒘𝒏𝒌
= ⋯ = 𝒚𝒌 (𝒚 − 𝒚 𝒙 )



(Stochastic) Gradient Descent  SDG
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𝒘𝒊𝒋 → 𝒘𝒊𝒋 − 𝜼
𝝏𝑬(𝑳)

𝝏𝒘𝒊𝒋
: gradient decent

and if you don’t want to evaluate the expectation 

value every time for the whole sample:

stochastic gradient decent:  event by event

𝒘𝒊𝒋 → 𝒘𝒊𝒋 − 𝜼
𝝏𝑳(𝒆𝒗𝒆𝒏𝒕𝒌)

𝝏𝒘𝒊𝒋
: 

mostly: something in between  mini-batches

 Assume ‘average’ of mini-batch gradients 

approximates the ‘gradient’ of the E(L) (i.e.full sample)

learning rate

𝒘𝟎𝟏

𝒘𝟎𝟐

Contour plot of 𝐸(𝐿 𝑤 ) or 𝐿 𝑤 𝒙𝑘 for event 𝑘

Sounds simple and if error- surface looks THAT simple…… BUT: 



Stochastic Gradient Decent
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Add “Momentum”  

- accelerate when gradient direction stays ‘constant’ 

𝑣 → 𝜇𝑣 − 𝜂𝛻𝐿 ; 𝑤𝑖𝑗 → 𝑤𝑖𝑗 + 𝑣 (𝜇 called momentum)

 y(x) and L(x;w) are nasty, heavily non-parabolic functions

difficult to minimize

Long time people thought to be trapped in local minima:

But were more likely walking 

slowly along narrow valleys 



Neural Networks and Local Minima
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large NNs are difficult to ‘train’!

 but due trapping in local minima?

You might have seen analogies 

such as this here..…

… recent research suggests:

arXiv:1412.0233, LeCun et.al.

Different in ‘many dimensions’ !

• For large networks: most local minimal are equivalent

• Probability for finding a bad (high value) local minimum is non zero for small-size 

networks but decreases quickly with network size

• Global minimum is not useful  represents overtraining

• Bad critical points (much higher than global minimum) are mostly ‘saddle points’

It’s very unlikely that all 
𝒅𝟐𝑳

𝒅𝒘𝟐 > 𝟎 at the same time 



Gradient Descent
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StandfordLectureCS231:Image AlecRadford



Gradient Decent 

 escaping the saddle points
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StandfordLectureCS231:Image AlecRadford



Nesterov Accelerated Momentum
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StandfordLectureCS231

Idea: Yurii Nesterov (1983) …

First look where you would ‘end up’ following your 

‘momentum’ and correct for gradient you would ‘see there’



RMSProp
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http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

 “change of sign”  more 

important than “size” of the 

gradient

 Rprop (resiliant backpropagation 1993)

Rprop: problems with large fluctuations in minibatches

 RMSprop: scaling weight update by ‘running RMS’ of 

gradients 



Neural Network Training
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NN with ‘many hidden layers’    used to be ‘impossible to train’ 

 due to vanishing gradient problem:  
𝜕𝐿

𝜕𝑤𝑖𝑗
≈ 0 for all but the last layer(s)

 Enormous progress in recent years

 Layerwise pre-training using ‘auto-encoders’ or ‘restricted-

Boltzman machines’

 ‘new’  activation functions whose gradient do not vanish

 ‘intelligent’ random weight initialisation

 Stochastic gradient decent with ‘momentum’





Weight initialisation
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 Used to set all weights, randomly with small value 

 almost linear classifier

 Set weight via ‘pretraining’ each layer seperatly using 

auto-encoder

 Set weights randomly but such that in each layer 

(regardless of #inputs to the nodes) the node 

activations are normally distributed with ‘same’ 

variance



Neural Network Regularisation
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control model complexity: (deep networks can have O(millions) of weights!) 

 #nodes and # layers

 early stopping  very first (old) NN ‘regularizer’ 
 Start with small random weights  sigmoid approximately linear 

essentially a linear model  stop before it deviates too much from that

 Weight decay:  

 add ‘regularizing’ term to the loss function 𝐿 = 𝐿 +
1

2
∑𝑤2

 == ‘Gaussian prior centered at zero’ for the weights

 Favours small weights  i.e. simpler models



Regularisation: weight decay
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𝐿 = − log( ෑ

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑃 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦(𝑥𝑖;𝑊) ∗ 𝑝 𝑊 )

= −(෍
𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖;𝑊 ) − log 𝑝 𝑊

often (e.g if  y = polynomial or y = neural network)

W “small”  model is less ‘flexible’

 reasonable prior 𝑝 𝑊 would be: Gaussian with mean zero

𝐿 = 𝐿 +
1

2
∑𝑤2 called ‘weight decay’

Minimize loss function:   e.g. 𝐯𝐢𝐚 𝑾 → 𝑾− 𝜼𝛁𝒘𝑳:   SDG 

Include prior distribution on ‘weights’/’parameters’  W: 



Neural Network Regularisation
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control model complexity: (deep networks can have O(millions) of weights!) 

 #nodes and # layers

 early stopping  very first (old) NN ‘regularizer’ 
 Start with small random weights  sigmoid approximately linear 

essentially a linear model  stop before it deviates too much from that

 Weight decay:  

 add ‘regularizing’ term to the loss function 𝐿 = 𝐿 +
1

2
∑𝑤2

 == ‘Gaussian prior centered at zero’ for the weights

 Favours small weights  i.e. simpler models

 Dropout

 Randomly remove nodes during 

each training step

 Avoid co-adaptation of nodes

 Essentially a large model 

averaging procedure like ‘bagging”



Deep Networks == Networks with 

many hidden layers

That’s at first sight “all” it means…
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Deep Learning 
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NN:  ‘many hidden layers’   hierarchy of features

 Getting rid of “hand crafted features”  revolutionized:

 Image recognition

 Speech recognition, Natural Language Processing

 HEP ?

 No ‘high’ level features neede anymore, just 4-vectors?

https://developer.nvidia.com/deep-learning-course



Learning HEP features
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Search for exotic particles in high energy physics with deep learning
P.Baldi, P. Sadowski, D. Whiteson, Nature Communications 5, Article: 4308 (2014)

ttbar  WbWb : background

signal

 High level features: 

mjj, mlv, mjlv, mjbb



Deep Learning for SUSY
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 Puh… physicists still did 

a good job

 Little BUT statistically 

significant gain using 

Deep Neural Network

 Note: High level features were hardly ‘needed’ in DNN

P.Baldi, P. Sadowski, D. Whiteson, Nature Communications 5, Article: 4308 (2014)



Deep Learning for SUSY
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 These Deep learning studies using ‘4-vectors’ used very large fast 

simulated MC samples

 Might be ‘infeasible’ for ‘real’ analysis

 Perhaps ‘revive’ idea of auto-encoder pre-training using ‘real data’  ??

Auto-encoder:

 network that ‘reproduces’ its input

 hidden layer < input layer

 hidden layer ‘dimensionality reduction’

needs to ‘focus/learn’ the important features that 

make up the input

 Hidden layer > input layer + sparcity enforced 

 interesting features



Deep Neural Networks and HEP
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Typically in high-energy physics, non-linearities are reasonably simple, 

 1 layer with a larger number of nodes probably enough

 still worth trying 2 (3?) layers (and less nodes in each layer)

We (TMVA) used to say:

But  Higgs ML Challenge:But  Higgs ML Challenge: 

 Won by a ‘Deep Neural Network’

 well… 3 hidden layers with 600 

nodes each



Deep Learning
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Luke de Oliveira

 Obviously, I only scratched the ‘tip of the iceberg’



Convolutional Neural Networks
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https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperat

ions/ConvolutionOperations.html

Images are 2D arrays of ‘numbers’

 neighbouring pixels in images are ‘correlated’ 

 Convolutional Neural Network: same kernel applied over the 

whole image



Convolutional Neural Networks
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http://cs231n.github.io/convolutional-networks/

Example:

In practice: often followed by ‘down sampling’ – pooling step



Convolutional Neural Networks
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Deep Learning
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(L.Oliveira, M.Kagan… arXiv:1511.05190)

 Jet images in the calorimeter



‘Images’ from LArTPC in DUNE
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 Neutrino Experiment: Type + Energy of interacting neutrino

 TPC: Tracker, ParticleID and Calorimeter

 Fully automated reconstruction using 

Deep Neural Network?



‘Images’ from   LArTPC
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Initial toy study: event (track) reconstruction

Amir Farbin, University of Texas



More ‘Images’:    LArTPC
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 The model used:  Network in a Network instead of simple 

convolution filters

 Google’s winning entry to the ImageNet 2014 competition



example: NOnA
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arXiv:1604.01444

feed 2 projections of 3D image into ‘siamese’ GoogLeNet

type of network

ne –CC effrec: 35%  49% 

efficiency increase 

(same background) 



More Exotic Stuff .. e.g. LSTMs
(LongSortTermMemory recurrent networks)

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 40

 recurrent networks  loops  input of (time) sequences

 natural language processing

 image segmentation (captioning/digitsnumbers)

 distinguish up/down going muons in NOnA

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Summary
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 massive improvements Neural Networks done recently

 evaluate and “re-think” how to do 

 Event reconstruction

 Event classification

 Computing?
Optimize data storage according to popularity 

(http://pos.sissa.it/archive/conferences/239/008/ISGC2015_008.pdf)

 Trigger using “Light/Fast  algorithms with ‘dark 

knowledge’ ?

 play with neural networks in your browser!

 http://playground.tensorflow.org/

http://pos.sissa.it/archive/conferences/239/008/ISGC2015_008.pdf


Finding Cats
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 10 million random Youtube screenshots 

 huge Neural Network  reonstruct input (auto-encoder)



Training deep networks

 The new trick is: pre-training  + final backpropagation to “fine-tune”  

 initialize the weights not ‘random’ but ‘sensibly” by

 ‘unsupervised training of’ each individual layer, one at the time, 

as an:

: auto-encoder  (definite patterns)

: restricted-Boltzmann-machine  (probabilistic patterns)
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Auto-Encoder

 network that ‘reproduces’ its input

 hidden layer < input layer

 hidden layer ‘dimensionality reduction’

needs to ‘focus/learn’ the important 

features that make up the input

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 44


