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Neural Networks
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 Powerful and very flexible 

machine learning algorithms

 originally inspired by 

modelling the brain functions

 huge revival with success of ‘deep networks/learning’

 … still far from ‘intelligent’ though… 



Outline
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 Small recap of yesterdays “y(x)”

 What are neural networks (simple vanilla feed forward nets)

 Loss function

 Backpropagation

 Deep Learning – advances that made it possible

 Weight initialisation

 SDG  momentum  auto tuned learning rates

 Regularisation  Dropout

 Other network types: 

 Auto encoder

 Convolutional Neural Networks

 Examples of their usage in (astro-) particle physics



Classification ↔ y(x)
Classification:

 y(x): RD
R:  “test statistic” in D-

dimensional space of input variables

 y(x)=const: surface defining the decision 

boundary.

y(x): RD
R:
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y(x): function whose ‘contour lines’ define 

reasonable (good) decision boundaries



y(x) – the MVA output
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Assume you have found the y(x) which gives ‘perfect’ decision boundaries 

for any desired ‘signal efficiency’ 

pefect == one cannot do any better

 y(x) == 
𝒑𝒅𝒇 (𝒙|𝑺)

𝒑𝒅𝒇 (𝒙|𝑩)
(or a monotonic function thereof)

If y(x) is ‘forced’ to be between 0,1 (e.g. using the logistic/sigmoid function  

y(x)  sigm(y(x))   like in ‘logistic regression’)   AND

𝐿 = 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log 1 − 𝑦 𝑥𝑖 binomial loss

Which came from:   y(x) should simply parametrize P(S|x); P(B|x)=1-P(B|x) 

𝐿 = − 

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖 ) = −

𝑖

log(𝑃 𝑆 𝑥𝑖
𝑦𝑖
𝑡𝑟𝑎𝑖𝑛

𝑃 𝐵 𝑥𝑖
1−𝑦𝑖

𝑡𝑟𝑎𝑖𝑛
)

THEN   y(x) parametrizes directly P(S|x) 



Neural Networks
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“arbitrary” non-linear decision boundaries

 y(x) built from set of “basis” functions hk(x) 

 h(x) is sufficiently general (i.e. non linear),

 Can model any function

Imagine you chose do the following:

there are also mathematical proves for  this statement.

Ready is the Neural Network

Now we “only” need to find the appropriate “weights” w 

1
A(x)= :

1+e

the sigm oid function

 x

A non linear (sigmoid) function of

a linear combination of

non linear function(s) of

linear combination(s) of

the input data

hk(x)

𝑦 Ԧ𝑥 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 

𝑘
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𝐷
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𝑘

𝑀

𝑤𝑘 𝐴 𝑤𝑘0 +

𝑗=1

𝐷

𝑤𝑘𝑗𝑥𝑗𝑦 𝑥 = 𝐴 𝑤𝑘0 +

𝑗=1

𝐷

𝑤𝑘𝑗𝑥𝑗𝑦 𝑥 = 𝐴 

𝑘

𝑀

𝑤𝑘 𝐴 𝑤𝑘0 +

𝑗=1

𝐷

𝑤𝑘𝑗𝑥𝑗



Neural Networks:

Multilayer Perceptron MLP
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But before talking about the weights, let’s try to “interpret” the formula as a Neural Network:

 Nodes in hidden layer represent the “activation functions” whose arguments are linear 

combinations of input variables  non-linear response to the input

 The output is a linear combination of the output of the activation functions at the internal nodes

 It is straightforward to extend this to “several” input layers

 Input to the layers from preceding nodes only  feed forward network (no backward loops)

input layer hidden layer ouput layer

output:

Dvar

discriminating 
input variables
as input 
+ 1 offset  

1

( ) 1
x

A x e
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or …
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Neural Networks: 

Multilayer Perceptron MLP
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nodesneurons

links(weights)synapses

Neural network: try to simulate reactions of 

a brain to certain stimulus (input data)

input layer hidden layer ouput layer

output:

Dvar

discriminating 
input variables
as input 
+ 1 offset  

1

( ) 1
x

A x e



 

“Activation” function
e.g. sigmoid:

or tanh
or …
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‘activation’ of output node:  linear(regression)   sigmoid( classification)



y(x) from Neural Network
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“NN” with two input variables and ‘one node’ 

x1

x2
w02

w01

=y(x1,x2)

Choose those weights where contourlines == good decision boundaries



Training  Minimize Loss Function
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where

i.e. use usual “sum of squares” 

true predicted  (the network output)

𝐿 𝑤 =
1

2


𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 − 𝑦 𝑥𝑖; 𝑤

2

𝐿 𝑤 = 

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑦𝑖
𝑡𝑟𝑎𝑖𝑛 log 𝑦 𝑥𝑖; 𝑤 + 1 − 𝑦𝑖

𝑡𝑟𝑎𝑖𝑛 log(1 − 𝑦 𝑥𝑖; 𝑤 )

𝑦𝑡𝑟𝑎𝑖𝑛 = ቊ
1, 𝑠𝑖𝑔𝑛𝑎𝑙
0, 𝑏𝑎𝑐𝑘𝑔𝑟

classification: Binomial loss 

regression:  



Back-propagation
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• recursive formulation of the gradient 
𝜕𝐿

𝜕𝑤𝑖𝑗
using ‘chain rule’

 ‘adjust’ weights w to minimize the “loss function”

For any internal node: i.e. node l in layer k

𝒚𝟏
𝒏−𝟏

𝒚𝒌
𝒏−𝟏

𝒘𝒌𝒍
𝒏−𝟏

𝒘𝟏𝒍
𝒏−𝟏

𝒚𝒍
𝒏

=

𝝏𝑳

𝝏𝒘𝒌𝒍
=

𝝏𝒛𝒍
𝝏𝒘𝒌𝒍

𝝏𝒉

𝝏𝒛𝒍

𝝏𝑳

𝝏𝒉
= 𝒚𝒌

𝒏−𝟏 𝝏𝒉

𝝏𝒛𝒍

𝝏𝑳

𝝏𝒉

𝒛𝒍
𝒏 = ∑𝒘

𝒉(𝒛)

… etc…



Back-propagation
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• recursive formulation of the gradient 
𝜕𝐿

𝜕𝑤𝑖𝑗
using ‘chain rule’

 For the ‘last layer’ we get:

𝑳 =
𝟏

𝟐
(𝒚 − 𝒚(𝒙))𝟐 and linear output neuron:   𝐲 𝐱 = ∑𝒘𝒏𝒌𝒚𝒌 = 𝒛

𝝏𝑳

𝝏𝒘𝒏𝒌
=
𝝏𝒚(𝒙)

𝝏𝒘𝒏𝒌

𝝏𝑳

𝝏𝒚(𝒙)
= 𝒚𝒌 (𝒚 − 𝒚 𝒙 )

Output of k-th node in 

previous layer 

And: for ‘binomial loss function’ and ‘sigmoid ouput neuron’

 Same result 
𝝏𝑳

𝝏𝒘𝒏𝒌
= ⋯ = 𝒚𝒌 (𝒚 − 𝒚 𝒙 )



(Stochastic) Gradient Descent  SDG
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𝒘𝒊𝒋 → 𝒘𝒊𝒋 − 𝜼
𝝏𝑬(𝑳)

𝝏𝒘𝒊𝒋
: gradient decent

and if you don’t want to evaluate the expectation 

value every time for the whole sample:

stochastic gradient decent:  event by event

𝒘𝒊𝒋 → 𝒘𝒊𝒋 − 𝜼
𝝏𝑳(𝒆𝒗𝒆𝒏𝒕𝒌)

𝝏𝒘𝒊𝒋
: 

mostly: something in between  mini-batches

 Assume ‘average’ of mini-batch gradients 

approximates the ‘gradient’ of the E(L) (i.e.full sample)

learning rate

𝒘𝟎𝟏

𝒘𝟎𝟐

Contour plot of 𝐸(𝐿 𝑤 ) or 𝐿 𝑤 𝒙𝑘 for event 𝑘

Sounds simple and if error- surface looks THAT simple…… BUT: 



Stochastic Gradient Decent
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Add “Momentum”  

- accelerate when gradient direction stays ‘constant’ 

𝑣 → 𝜇𝑣 − 𝜂𝛻𝐿 ; 𝑤𝑖𝑗 → 𝑤𝑖𝑗 + 𝑣 (𝜇 called momentum)

 y(x) and L(x;w) are nasty, heavily non-parabolic functions

difficult to minimize

Long time people thought to be trapped in local minima:

But were more likely walking 

slowly along narrow valleys 



Neural Networks and Local Minima
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large NNs are difficult to ‘train’!

 but due trapping in local minima?

You might have seen analogies 

such as this here..…

… recent research suggests:

arXiv:1412.0233, LeCun et.al.

Different in ‘many dimensions’ !

• For large networks: most local minimal are equivalent

• Probability for finding a bad (high value) local minimum is non zero for small-size 

networks but decreases quickly with network size

• Global minimum is not useful  represents overtraining

• Bad critical points (much higher than global minimum) are mostly ‘saddle points’

It’s very unlikely that all 
𝒅𝟐𝑳

𝒅𝒘𝟐 > 𝟎 at the same time 



Gradient Descent
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StandfordLectureCS231:Image AlecRadford



Gradient Decent 

 escaping the saddle points

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 17

StandfordLectureCS231:Image AlecRadford



Nesterov Accelerated Momentum
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StandfordLectureCS231

Idea: Yurii Nesterov (1983) …

First look where you would ‘end up’ following your 

‘momentum’ and correct for gradient you would ‘see there’



RMSProp
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http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

 “change of sign”  more 

important than “size” of the 

gradient

 Rprop (resiliant backpropagation 1993)

Rprop: problems with large fluctuations in minibatches

 RMSprop: scaling weight update by ‘running RMS’ of 

gradients 



Neural Network Training
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NN with ‘many hidden layers’    used to be ‘impossible to train’ 

 due to vanishing gradient problem:  
𝜕𝐿

𝜕𝑤𝑖𝑗
≈ 0 for all but the last layer(s)

 Enormous progress in recent years

 Layerwise pre-training using ‘auto-encoders’ or ‘restricted-

Boltzman machines’

 ‘new’  activation functions whose gradient do not vanish

 ‘intelligent’ random weight initialisation

 Stochastic gradient decent with ‘momentum’





Weight initialisation
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 Used to set all weights, randomly with small value 

 almost linear classifier

 Set weight via ‘pretraining’ each layer seperatly using 

auto-encoder

 Set weights randomly but such that in each layer 

(regardless of #inputs to the nodes) the node 

activations are normally distributed with ‘same’ 

variance



Neural Network Regularisation
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control model complexity: (deep networks can have O(millions) of weights!) 

 #nodes and # layers

 early stopping  very first (old) NN ‘regularizer’ 
 Start with small random weights  sigmoid approximately linear 

essentially a linear model  stop before it deviates too much from that

 Weight decay:  

 add ‘regularizing’ term to the loss function 𝐿 = 𝐿 +
1

2
∑𝑤2

 == ‘Gaussian prior centered at zero’ for the weights

 Favours small weights  i.e. simpler models



Regularisation: weight decay
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𝐿 = − log( ෑ

𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

𝑃 𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦(𝑥𝑖;𝑊) ∗ 𝑝 𝑊 )

= −(
𝑖

𝑒𝑣𝑒𝑛𝑡𝑠

log(𝑃(𝑦𝑖
𝑡𝑟𝑎𝑖𝑛|𝑦 𝑥𝑖;𝑊 ) − log 𝑝 𝑊

often (e.g if  y = polynomial or y = neural network)

W “small”  model is less ‘flexible’

 reasonable prior 𝑝 𝑊 would be: Gaussian with mean zero

𝐿 = 𝐿 +
1

2
∑𝑤2 called ‘weight decay’

Minimize loss function:   e.g. 𝐯𝐢𝐚 𝑾 → 𝑾− 𝜼𝛁𝒘𝑳:   SDG 

Include prior distribution on ‘weights’/’parameters’  W: 



Neural Network Regularisation
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control model complexity: (deep networks can have O(millions) of weights!) 

 #nodes and # layers

 early stopping  very first (old) NN ‘regularizer’ 
 Start with small random weights  sigmoid approximately linear 

essentially a linear model  stop before it deviates too much from that

 Weight decay:  

 add ‘regularizing’ term to the loss function 𝐿 = 𝐿 +
1

2
∑𝑤2

 == ‘Gaussian prior centered at zero’ for the weights

 Favours small weights  i.e. simpler models

 Dropout

 Randomly remove nodes during 

each training step

 Avoid co-adaptation of nodes

 Essentially a large model 

averaging procedure like ‘bagging”



Deep Networks == Networks with 

many hidden layers

That’s at first sight “all” it means…
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Deep Learning 
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NN:  ‘many hidden layers’   hierarchy of features

 Getting rid of “hand crafted features”  revolutionized:

 Image recognition

 Speech recognition, Natural Language Processing

 HEP ?

 No ‘high’ level features neede anymore, just 4-vectors?

https://developer.nvidia.com/deep-learning-course



Learning HEP features
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Search for exotic particles in high energy physics with deep learning
P.Baldi, P. Sadowski, D. Whiteson, Nature Communications 5, Article: 4308 (2014)

ttbar  WbWb : background

signal

 High level features: 

mjj, mlv, mjlv, mjbb



Deep Learning for SUSY
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 Puh… physicists still did 

a good job

 Little BUT statistically 

significant gain using 

Deep Neural Network

 Note: High level features were hardly ‘needed’ in DNN

P.Baldi, P. Sadowski, D. Whiteson, Nature Communications 5, Article: 4308 (2014)



Deep Learning for SUSY
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 These Deep learning studies using ‘4-vectors’ used very large fast 

simulated MC samples

 Might be ‘infeasible’ for ‘real’ analysis

 Perhaps ‘revive’ idea of auto-encoder pre-training using ‘real data’  ??

Auto-encoder:

 network that ‘reproduces’ its input

 hidden layer < input layer

 hidden layer ‘dimensionality reduction’

needs to ‘focus/learn’ the important features that 

make up the input

 Hidden layer > input layer + sparcity enforced 

 interesting features



Deep Neural Networks and HEP
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Typically in high-energy physics, non-linearities are reasonably simple, 

 1 layer with a larger number of nodes probably enough

 still worth trying 2 (3?) layers (and less nodes in each layer)

We (TMVA) used to say:

But  Higgs ML Challenge:But  Higgs ML Challenge: 

 Won by a ‘Deep Neural Network’

 well… 3 hidden layers with 600 

nodes each



Deep Learning
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Luke de Oliveira

 Obviously, I only scratched the ‘tip of the iceberg’



Convolutional Neural Networks
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https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vImage/ConvolutionOperat

ions/ConvolutionOperations.html

Images are 2D arrays of ‘numbers’

 neighbouring pixels in images are ‘correlated’ 

 Convolutional Neural Network: same kernel applied over the 

whole image



Convolutional Neural Networks
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http://cs231n.github.io/convolutional-networks/

Example:

In practice: often followed by ‘down sampling’ – pooling step



Convolutional Neural Networks
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Deep Learning
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(L.Oliveira, M.Kagan… arXiv:1511.05190)

 Jet images in the calorimeter



‘Images’ from LArTPC in DUNE

Helge Voss SOS  2016, Autrans France,  Multivariate Analysis – Machine Learning 36

 Neutrino Experiment: Type + Energy of interacting neutrino

 TPC: Tracker, ParticleID and Calorimeter

 Fully automated reconstruction using 

Deep Neural Network?



‘Images’ from   LArTPC
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Initial toy study: event (track) reconstruction

Amir Farbin, University of Texas



More ‘Images’:    LArTPC
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 The model used:  Network in a Network instead of simple 

convolution filters

 Google’s winning entry to the ImageNet 2014 competition



example: NOnA
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arXiv:1604.01444

feed 2 projections of 3D image into ‘siamese’ GoogLeNet

type of network

ne –CC effrec: 35%  49% 

efficiency increase 

(same background) 



More Exotic Stuff .. e.g. LSTMs
(LongSortTermMemory recurrent networks)
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 recurrent networks  loops  input of (time) sequences

 natural language processing

 image segmentation (captioning/digitsnumbers)

 distinguish up/down going muons in NOnA

http://karpathy.github.io/2015/05/21/rnn-effectiveness/



Summary
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 massive improvements Neural Networks done recently

 evaluate and “re-think” how to do 

 Event reconstruction

 Event classification

 Computing?
Optimize data storage according to popularity 

(http://pos.sissa.it/archive/conferences/239/008/ISGC2015_008.pdf)

 Trigger using “Light/Fast  algorithms with ‘dark 

knowledge’ ?

 play with neural networks in your browser!

 http://playground.tensorflow.org/

http://pos.sissa.it/archive/conferences/239/008/ISGC2015_008.pdf


Finding Cats
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 10 million random Youtube screenshots 

 huge Neural Network  reonstruct input (auto-encoder)



Training deep networks

 The new trick is: pre-training  + final backpropagation to “fine-tune”  

 initialize the weights not ‘random’ but ‘sensibly” by

 ‘unsupervised training of’ each individual layer, one at the time, 

as an:

: auto-encoder  (definite patterns)

: restricted-Boltzmann-machine  (probabilistic patterns)
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Auto-Encoder

 network that ‘reproduces’ its input

 hidden layer < input layer

 hidden layer ‘dimensionality reduction’

needs to ‘focus/learn’ the important 

features that make up the input
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