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= Powerful and very flexible
machine learning algorithms
= originally inspired by

modelling the brain functions

= huge revival with success of ‘deep networks/learning’

= ... still far from ‘intelligent’ though... ®



Small recap of yesterdays “y(x)”

What are neural networks (simple vanilla feed forward nets)
= Loss function
= Backpropagation
Deep Learning — advances that made it possible
= Weight initialisation
= SDG - momentum - auto tuned learning rates
= Regularisation > Dropout
Other network types:
= Auto encoder

= Convolutional Neural Networks

Examples of their usage in (astro-) particle physics
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Assume you have found the y(x) which gives ‘perfect’ decision boundaries
for any desired ‘signal efficiency’

pefect == one cannot do any better

pdf (x|S) . ;
X) == r a monotonic function thereof
2V == s © )

If y(x) is ‘forced’ to be between 0,1 (e.g. using the logistic/sigmoid function

y(x) = sigm(y(x)) like in ‘logistic regression’) AND

L=y log(y(x)) + (1 — yF ) log(1 — y(x;)) binomial loss

Which came from: y(x) should simply parametrize P(S|x); P(B|x)=1-P(B|x)

events
train train

L== ) logPO™"ly(x)) = = ) log(P(Slx)* " P(BLx) 1"

THEN y(x) parametrizes directly P(S|x)



“arbitrary” non-linear decision boundaries

M " y(x) built from set of “basis” functions h,(x)
y(x) = sigmoid 2 wy by (%) " h(x) is sufficiently general (i.e. non linear),
= - Can model any function

there are also mathematical proves for this statement.

Imagine you chose do the following:

h(x)

A outptjlt ’ - A (X ) _

1

" 4 . \ \ / .1+e_lx. |

y(x) = A Zwk,m %*2 o j the sigmoid function
k jE=n ) _

0 acti\.r'atior'n'-=
A non linear (sigmoid) function of

a linear combination of
non linear function(s) of Ready is the Neural Network

linear combination(s) of Now we “only” need to find the appropriate “weights” w
the input data




But before talking about the weights, let’s try to “interpret” the formula as a Neural Network:

Dvar
discriminating
input variables
as input

+ 1 offset

input layer hidden layer ouput layer

4
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/@ T”,@ ................ >Q output: y(x)zz WOiA|\WiO+Z Wij 'Xj |
TR/ i j=1

output
.

o

0

activation

)

“Activation” function
e.g. sigmoid:

-1

A(x) = (1+e’x)

or tanh
or ...

" Nodes in hidden layer represent the “activation functions” whose arguments are linear
combinations of input variables - non-linear response to the input

" The output is a linear combination of the output of the activation functions at the internal nodes

" Input to the layers from preceding nodes only - feed forward network (no backward loops)

" |t is straightforward to extend this to “several” input layers
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input layer hidden layer ouput layer
A M ( D \
---------------- »(0)  output: yO)=> W AW+ woe x|
T i \ j=1 )
Dvar
discriminating DHipME “ Activation” function
input variables < 14 - . L
. / e.g. sigmoid:
as iput
+ 1 offset - Alx) = (1 N e’x)_1
J " or tanh
0  activation
or ...
nodes—=>neurons Neural network: try to simulate reactions of
links(weights)->synapses a brain to certain stimulus (input data)

‘activation’ of output node: linear(->regression) sigmoid(-> classification)
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“NN” with two input variables and ‘one node’

o

]

=Y(X1 ,XZ)

A

Choose those weights where contourlines == good decision boundaries
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regression:

events /
L(w) = % 2 (yerain — y(x w))

i.e. use usual “sum of squares”

true predicted (the network output)

classification: Binomial loss

events
Lw) = ) (7™ log(y(r w)) + (1 = ¥ Ylog(1 — y(xi w)))

o {1, signal

0, backgr

where y



* recursive formulation of the gradient using ‘chain rule’

OWU

- ‘adjust’ weights w to minimize the “loss function”

_ For any internal node: i.e. node | in layer k
n—1 Wll
Y1 h(z)
]
n—1
Yk wiy !

JL B dz; dh oL , Oh oL
aWkl - aWkl aZl dh yk aZl ah

.. efc...
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aWij

* recursive formulation of the gradient using ‘chain rule’

- For the ‘last layer’ we get:

Output of k-th node in

previous layer

L= %(y — y(x))? and linear output neuron: y(x) = Yw, ;. Yy = Z

dL  dy(x) OL
aWnk a Wnk ay (X)

=y (y —yx))

And: for ‘binomial loss function’ and ‘sigmoid ouput neuron’

oL
awnk

- Same result ©

==y (y —y)



Contour plot of E(L(w)) or L(w|xy) fore"e/””’/ learning rate
' W2 / OE(L)

Wi = Wi —1 : gradient decent

aWij
and if you don’t want to evaluate the expectation
value every time for the whole sample:

stochastic gradient decent: event by event

g W o W _naL(eventk)_
Yy Y awi]- .

W1 mostly: something in between - mini-batches

- Assume ‘average’ of mini-batch gradients

approximates the ‘gradient’ of the E(L) (i.e.full sample)

Sounds simple and if error- surface looks THAT simple...... BUT:
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= y(x) and L(x;w) are nasty, heavily non-parabolic functions
- difficult to minimize
- Long time people thought to be trapped in local minima:
- But were more likely walking

slowly along narrow valleys ;

cc 9y Figure 1. Optimization in a long narrow valley
- Add “Momentum

- accelerate when gradient direction stays ‘constant’

v >uv —nVL ; w;; 2w + v (ucalled momentum)
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large NNs are difficult to ‘train’!

—> but due trapping in local minima?

. recent research suggests:
arXiv:1412.0233, LeCun et.al.

Different in ‘many dimensions’ !

» For large networks: most local minimal are equivalent

» Probability for finding a bad (high value) local minimum is non zero for small-size
networks but decreases quickly with network size

* Global minimum is not useful - represents overtraining

« Bad critical points (much higher than global minimum) are mostly ‘saddle points’

It’s very unlikely that aII — > 0 at the same time ©
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Adagrad
Adadelta

StandfordLectureCS231:Image AlecRadford

SOS 2016, Autrans France, Multivariate Analysis — Machine Learning

w\"‘&_"“xﬁ“‘u e
ey e SGD H
| == Momentum [
e N AG E

16



Max-Rlaqck Mhstitut
fur Kagriphysik

- SGD
—— Momentum
w—=  NAG

—  Adagrad
Adadelta
Rmsprop

1.0

-1.5
StandfordLectureCS231:Image AlecRadford
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Momentum update Nesterov momentum update

“lookahead" gradient
step (bit different than
original)

momentum
step

momentum

step
actual step

actual step

e

gradient
step

StandfordLectureCS231

|ldea: Yurii Nesterov (1983) ...
First look where you would ‘end up’ following your

‘'momentum’ and correct for gradient you would ‘see there’
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http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture slides lec6.pdf

= “change of sign” > more
important than “size” of the

gradient

Figure 1. Optimization in a long narrow valley 9 Rprop (resiliant baCkprOpagation 1993)

Rprop: problems with large fluctuations in minibatches
- RMSprop: scaling weight update by ‘running RMS’ of

gradients

Helge Voss SOS 2016, Autrans France, Multivariate Analysis — Machine Learning
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NN with ‘many hidden layers’ -> used to be ‘impossible to train’

—> due to vanishing gradient problem: ~ ( for all but the last layer(s)

aWij

= Enormous progress in recent years
= Layerwise pre-training using ‘auto-encoders’ or ‘restricted-
Boltzman machines’
= ‘new’ activation functions whose gradient do not vanish
= ‘intelligent’ random weight initialisation
= Stochastic gradient decent with ‘momentum’

output
F 7
1 i - -
/ Fo=y
=0 y
_— - — Figure 1. ReLU vs. PReLU. For PReLU. the coefficient of the
0 activation negative part is not constant and is adaptively learned.
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= Used to set all weights, randomly with small value

- almost linear classifier

= Set weight via ‘pretraining’ each layer seperatly using

auto-encoder

= Set weights randomly but such that in each layer
(regardless of #inputs to the nodes) the node
activations are normally distributed with ‘same’

variance



control model complexity: (deep networks can have O(millions) of weights!)
= #nodes and # layers
= early stopping = very first (old) NN ‘regularizer’
= Start with small random weights = sigmoid approximately linear -
essentially a linear model - stop before it deviates too much from that

=  Weight decay:

= add ‘regularizing’ term to the loss function L = L + %ZWZ

= == ‘Gaussian prior centered at zero’ for the weights
= Favours small weights - i.e. simpler models



Minimize loss function: e.g. via W - W —nV,,L: SDG

Include prior distribution on ‘weights’/'parameters’ W

events

L = —log( 1_[ P(yf ™ y(x; W)) = p(W))

— —(Z:vemlog(f’ i |y G W)) — log(p(W)

often (e.g if y = polynomial or y = neural network)
W “small” - model is less ‘flexible’

- reasonable prior p(IW) would be: Gaussian with mean zero

>L =L+ %sz called ‘weight decay’



control model complexity: (deep networks can have O(millions) of weights!)
= #nodes and # layers

= early stopping = very first (old) NN ‘regularizer’
Start with small random weights = sigmoid approximately linear -
essentially a linear model - stop before it deviates too much from that

=  Weight decay:

= Dropout

add ‘regularizing’ term to the loss function L = L + %ZWZ

n == ‘Gaussian prior centered at zero’ for the weights
Favours small weights = i.e. simpler models

Randomly remove nodes during
each training step

Avoid co-adaptation of nodes
Essentially a large model
averaging procedure like ‘bagging”

(b) After applying dropout.



[K'-.- = ]
M j '\_ vy
Npi—1 Npi—s

= That’s at first sight “all” it means...
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NN: ‘many hidden layers’ - hierarchy of features

Raw data Lcw Level features Mid-level features High- Eevelfeaturea

%
& =0

mr A'd‘IJil'

i Rl
gaamm
bl

= Getting rid of “hand crafted features” - revolutionized:
= Image recognition
= Speech recognition, Natural Language Processing

= HEP ?

= No ‘high’ level features neede anymore, just 4-vectors?
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Search for exotic particles in high energy physics with deep learning
P.Baldi, P. Sadowski, D. Whiteson, Nature Communications 5, Article: 4308 (2014)

qgg — H S wHFHE 5 wTw=R° = WqEWibE, (1) signa|

ttbar > WbWb : background

= c
= High level features: I B
o e
m;, m,,, my,, Mj,, T o8- .
©
c
AUC § 0.6 |
TechniquefLow-level \High—level ( Complete ) [ DN lo+hi-level (AUC=0.88) A
BDT 0.73 (0.01) .78 (0.01) 0.81 (0.01) S 04- R
NN 0.733 (0.007) P.777 (0.001) | 0.816 (0.004) @ DN lo-level (AUC=0.88)
DN 0880 (0.001) ]800 (< 0.001{ 0.885 (0.002), 02— [
Discovery significance _ :
-------- DN hi-level (AUC=0.80) :
Technique Low-level High-level Complete 0- ©
‘ ‘ \ \
NN 2.50 310 370 0 0.2 0.4 0.6 0.8 1

C : 5 i oY
DN 4.90 3.60 5.00 Signal efficiency
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P.Baldi, P. Sadowski, D. Whiteson, Nature Communications 5, Article: 4308 (2014)

case). Instead, a great deal of intellectual energy has
been spent in attempting to devise features which give
additional classification power. These include high-level
features such as:

e Axial Fp: missing transverse energy along the vec-
tor defined by the charged leptons,

e stransverse mass Mrps: estimating the mass of
particles produced in pairs and decaying semi-
invisibly [17, 18]

9

= Puh... physicists still did
a good job

- Little BUT statistically

significant gain using

Deep Neural Network

o Bl By if Ao > /2, F

where A¢ is the minimum . AUC
jet or lepton, Technique Low-level High-level Complete
e razor quantities 3., and BDT 0.850 (0.003)  0.835 (0.003)  0.863 (0.003)
NN 0.867 (0.002)  0.863 (0.001)  0.875 (< 0.001)
® super-razor quantities Sr NN, o0 0.856 (< 0.001) 0.859 (< 0.001) 0.873 (< 0.001)
M3, and /5r [20].
DN 0.872 (0.001)  0.865 (0.001)  0.876 (< 0.001)
DNyropout 0.876 (< 0.001) 0.869 (< 0.001) 0.879 (< 0.001)

= Note: High level features were hardly ‘needed’ in DNN

Helge Voss
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= These Deep learning studies using ‘4-vectors’ used very large fast

simulated MC samples
- Might be ‘infeasible’ for ‘real’ analysis

- Perhaps ‘revive’ idea of auto-encoder pre-training using ‘real data’ ??

% —> Auto-encoder:
% —> = network that ‘reproduces’ its input

\7 % —> = hidden layer < input layer

Wy = — "3 hidden layer ‘dimensionality reduction’

AR % —s needs to ‘focus/learn’ the important features that
¥ % —s make up the input

LayerL, Layer Ly

— Hidden layer > input layer + sparcity enforced

—> interesting features
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We (TMVA) used to say:

" Typically in high-energy physics, non-linearities are reasonably simple,
- 1 layer with a larger number of nodes probably enough
- still worth trying 2 (3?) layers (and less nodes in each layer)

But Higgs ML Challenge:

Customer Solutions Competitions Community v Sign up Login

I - Won by a ‘Deep Neural Network’
OGS isessosonmachine Leaming chatlenge -> well... 3 hidden layers with 600

Mon 12 May 2014 Mon 15 Sep 2014 (12 days to go)

Competition Details » » n Od es eaCh

Home

Dats Use the ATLAS experiment to identify the

Make a submission nggs bOSOﬂ
Information

Description F _TE_) Ru

o — SQATLAS =

it . JBEXPERIMENT =

About the Sponsors | WA —— - /

Timeline WA 1| ~— y
Fol | . I




= Obviously, | only scratched the ‘tip of the iceberg’

;A.f x .ﬁ;"l- r . |
o r*i%’*?‘*at i

Feedforward NNs

Neural Turing Machines Memory NNs

Luke de Oliveira



Images are 2D arrays of ‘humbers’

= neighbouring pixels in images are ‘correlated’

- Convolutional Neural Network: same kernel applied over the

whole image

https://developer.apple.com/library/ios/documentation/Performance/Conceptual/vimage/ConvolutionOperat

Center element of the kemnel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Pixels depicted by a grid of

i

) I:QN,_L _.I_."Q

I

~ AN - d
i | X J
f\elglo o e oo

oo o g\ac o

Convolution kernel
(emboss)

Mew pixel value (destination pixel)

ions/ConvolutionOperations.html
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_ Input image Convolution Feature map
Exam p Ie . — Kemel
-1 -1 -1
&
- 1 1

In practice: often followed by ‘down sampling’ — pooling step

224x224x64 Single depth slice
112x112x64 \
pool X 1712 | 4
I max pool with 2x2 filters
SARGN 7 | 8 and stride 2 6 | 8
| I 3 | 2 NG ] 3
1| 2
224 downsampling 1 e
112 »
224 Vs

http.//cs231n.github.io/convolutional-networks/
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C | feature C2 feature
maps maps

52 feature
maps

5| feature
maps

Qutput

Full
Connection

\

Convolutions

Convolutions

\

Subsampling

Subsampling

Convolutions

Helge Voss SOS 2016, Autrans France, Multivariate Analysis — Machine Learning

34



= Jet images in the calorimeter

o1 AR
Even more non-linearity: Going Deep v
Convolved

Convolutions Feature Layers

Max-Pooling

W'— W2 event \/

Repeat
Apply deep learning technigues on jet images! [3]

convolutional nets are a standard image
processing technique; also consider maxout

(L.Oliveira, M.Kagan... arXiv:1511.05190)
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= Neutrino Experiment: Type + Energy of interacting neutrino

= TPC: Tracker, ParticlelD and Calorimeter

Electric Field ? Electric Field « Electric Field

Electric Field ___..---"""""Electric Field

Neutrino interaction in LAr produces Drift the ionization charge in a Read out charge and light produced

ionization and scintillation light uniform electric field using precision wires and PMT's
Decom:ressiun - racl inding

| Evenlslnllmng ; s‘
= i * Fully automated reconstruction using

Hi!-F"‘idms Flash-Finding ]

[ - Deep Neural Network?
20 Clustering \ F\ash{_:\xjmer and Classification

Energy |
leconstruction |
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Initial toy study: event (track) reconstruction
DNN Classification of “Raw”

1-4 Tracks With or without noise, DNN correctly classifies ~90-99%
Amir Farbin, University of Texas



= The model used: Network in a Network instead of simple

convolution filters

Convolution

9 Inception modules Pooling

Network in a network in a network... Other

= Google’s winning entry to the ImageNet 2014 competition
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feed 2 projections of 3D image into ‘siamese’ GoogLeNet

type of network

X -wiew ¥wiow
() ve CC interaction.

v, -CC eff .: 35% 2> 49%
efficiency increase
(same background) arXiv:1604.01444
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= recurrent networks -2 loops - input of (time) sequences
= patural language processing
-> image segmentation (captioning/digits>numbers)

- distinguish up/down going muons in NOvA

one to one one to many many to one many to many many to many

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Helge Voss SOS 2016, Autrans France, Multivariate Analysis — Machine Learning 40



= massive improvements Neural Networks done recently
= evaluate and “re-think” how to do
= Event reconstruction

= Event classification

= Computing?
Optimize data storage according to popularity

(
= Trigger using “Light/Fast algorithms with ‘dark

knowledge’ ?

= play with neural networks in your browser!


http://pos.sissa.it/archive/conferences/239/008/ISGC2015_008.pdf

10 million random Youtube screenshots

huge Neural Network - reonstruct input (auto-encoder)

©
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* The new trick is: pre-training + final backpropagation to “fine-tune”
- initialize the weights not ‘random’ but ‘sensibly” by
- ‘unsupervised training of’ each individual layer, one at the time,
as an:
: auto-encoder (definite patterns)

: restricted-Boltzmann-machine (probabilistic patterns)

Boltzmann Restricted
Machme Boltzmann
Machlne

Hidden

‘-.»"|S|ble
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LayerL,

hb(x)

Layer Ly
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= network that ‘reproduces’ its input

= hidden layer < input layer

- hidden layer ‘dimensionality reduction’
needs to ‘focus/learn’ the important

features that make up the input
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