Constraining the CKM matrix with $B \rightarrow K\pi\pi$

Reina Camacho (HELEN fellow, LPNHE) Jérôme Charles (CPT Marseille) Alejandro Pérez, José Ocariz (LPNHE BaBar)

Motivation

- Exploit the experimental information available in Dalitz analysis for charmless 3 body B decays Kππ.
- B→K*π and B→ρK modes have the same isopin relations as B→Kπ, but more observables are accesible from DP analyses.
- Our plan is to:
 - Test hadronic parameters asumming CKM from global fit.
 - Test CKM constraints using some hadronic hypothesis.
 - Using CKMFitter code

Amplitude parameterization using Isobar Model:

Parametrizing signal PDF using Isobar Model:

Dalitz Plot
Isobar Model
$$A(DP) = \sum a_j F_j(DP)$$
Shapes of intermediate
states over DP
$$\overline{A(DP)} = \sum \overline{a}_j \overline{F}_j(DP)$$
Time-dependent DP PDF
mixing and decay CPV
$$DCPV$$

$$f(\Delta t, DP, q_{tag}) \propto (|A|^2 + |\overline{A}^2|) \frac{e^{-|\Delta t|/\tau}}{t_{\tau}} \left(1 + q_{tag} \frac{2Im|\overline{A}A^* e^{-t2\beta}}{|A|^2 + |A^2|} sin(\Delta m_d \Delta t) - q_{tag} \frac{|A|^2 - |\overline{A}^2|}{|A|^2 + |A^2|} cos(\Delta m_d \Delta t)\right)$$

$$CP \text{ violation varies over DP}$$
Complex amplitudes a_j and \overline{a}_j determine DP interference pattern.
Module and phases can be directly fitted on data.
$$Time-dependent CPV \text{ parameters:}$$

$$C_j = \frac{|a_j|^2 - |\overline{a_j}|^2}{|a_j|^2 + |\overline{a_j}|^2} S_j = \frac{2Im[a_j\overline{a_j}^*]}{|a_j|^2 + |\overline{a_j}|^2}$$
Interference helps disentangling strong and weak phases and thus raises the degeneracy on the phases

na**phases**.

differences between A and A is lost

Reina Camacho

Without loss of generality the complete $B \rightarrow K^* \pi$ system can be parametrized by eight amplitudes and the CKM couplings.

$$A(B^{0} \rightarrow K^{*+}\pi^{-}) = V_{us}V_{ub}^{*}T^{+-} + V_{ts}V_{tb}^{*}P^{+-}$$

$$A(B^{+} \rightarrow K^{*0}\pi^{+}) = V_{us}V_{ub}^{*}T^{0+} + V_{ts}V_{tb}^{*}P^{0+}$$

$$A(B^{+} \rightarrow K^{*+}\pi^{0}) = V_{us}V_{ub}^{*}T^{+0} + V_{ts}V_{tb}^{*}P^{+0}$$

$$A(B^{0} \rightarrow K^{*0}\pi^{0}) = V_{us}V_{ub}^{*}T^{00} + V_{ts}V_{tb}^{*}P^{00}$$

It is implicitly understood that those amplitudes receive various contributions of distinct topologies.

If we assume isospin symmetry, then we can write these amplitudes as:

$$\begin{split} \mathsf{A}(\mathsf{B}^{0} \to \mathsf{K}^{*+} \pi^{-}) &= \mathsf{V}_{us} \mathsf{V}_{ub}^{*} \mathsf{T}^{+-} &+ \mathsf{V}_{ts} \mathsf{V}_{tb}^{*} \mathsf{P}^{+-} \\ \mathsf{A}(\mathsf{B}^{+} \to \mathsf{K}^{*0} \pi^{+}) &= \mathsf{V}_{us} \mathsf{V}_{ub}^{*} \mathsf{N}^{0+} &+ \mathsf{V}_{ts} \mathsf{V}_{tb}^{*} (-\mathsf{P}^{+-} + \mathsf{P}_{\mathsf{EW}}^{\mathsf{C}}) \\ \sqrt{2} \mathsf{A}(\mathsf{B}^{+} \to \mathsf{K}^{*+} \pi^{0}) &= \mathsf{V}_{us} \mathsf{V}_{ub}^{*} (\mathsf{T}^{+-} + \mathsf{T}_{\mathsf{C}}^{-0} - \mathsf{N}^{0+}) + \mathsf{V}_{ts} \mathsf{V}_{tb}^{*} (\mathsf{P}^{+-} - \mathsf{P}_{\mathsf{EW}}^{\mathsf{C}} + \mathsf{P}_{\mathsf{EW}}) \\ \sqrt{2} \mathsf{A}(\mathsf{B}^{0} \to \mathsf{K}^{*0} \pi^{0}) &= \mathsf{V}_{us} \mathsf{V}_{ub}^{*} \mathsf{T}_{\mathsf{C}}^{-00} &+ \mathsf{V}_{ts} \mathsf{V}_{tb}^{*} (-\mathsf{P}^{+-} + \mathsf{P}_{\mathsf{EW}}) \end{split}$$

In this parameterization, we use three penguin P⁺⁻, P_{EW}, P^c_{EW} and three tree amplitudes T⁺⁻, N⁰⁺ = T⁰⁺ and T_c⁰⁰. The notation N⁰⁺ refers to the fact that the tree contribution to the K^{*0}π⁺ mode has an annihilation topology. Since K^{*0}π⁰ is color-suppressed, its tree amplitude is denoted T_c⁰⁰

Isospin relations:

 $A^{0+} + \sqrt{2}A^{+0} = \sqrt{2}A^{00} + A^{+-}$

 $A^{0+} + \sqrt{2}A^{+0} = \sqrt{2}A^{00} + A^{+-}$

No other hypothesis than isospin is used

BaBar France 2008

Reina Camacho

Isospin K^{*} π : measurement of γ (CPS/GPSZ)

Taking the $B^0 \rightarrow K^{*+}\pi^-$ and $B^0 \rightarrow K^{*0}\pi^0$ subsystems

BaBar France 2008

Reina Camacho

10

Isospin K^{*} π : measurement of γ (CPS/GPSZ)

Taking the $B^0 \rightarrow K^{*+}\pi^-$ and $B^0 \rightarrow K^{*0}\pi^0$ subsystems

Isospin K^{*} π : measurement of γ (CPS/GPSZ)

Taking the $B^0 \rightarrow K^{*+}\pi^-$ and $B^0 \rightarrow K^{*0}\pi^0$ subsystems

CPS/GPSZ use $\Delta \phi (A(B^0 \rightarrow K^* \pi^+)A^*(B^0 \rightarrow K^* \pi^-))$ obtained from a TL DP analysis of $B \rightarrow K_{\alpha} \pi \pi$ $\Delta \phi = \arg((q/p)A(B^0 \rightarrow K^{*}\pi^+)A^*(B^0 \rightarrow K^{*}\pi^-))$ In our study we will also follow a "Nir-Quinn" like strategy (as in Julie Malcles' PhD thesis) Nir and Quinn PRL 67, 541 (1991)

BaBar France 2008

Reina Camacho

Experimental results for K^{*}π system

$$\begin{split} \mathsf{K}^{*}\pi \text{ Isospin relations: 11 QCD and 2 CKM = 13 parameters} \\ \mathsf{A}(\mathsf{B}^{0} \to \mathsf{K}^{*+}\pi^{-}) = \mathsf{V}_{us} \mathsf{V}^{*}_{ub} \mathsf{T}^{+-} + \mathsf{V}_{ts} \mathsf{V}^{*}_{tb} \mathsf{P}^{+-} \\ \mathsf{A}(\mathsf{B}^{+} \to \mathsf{K}^{*0}\pi^{+}) = \mathsf{V}_{us} \mathsf{V}^{*}_{ub} \mathsf{N}^{0+} + \mathsf{V}_{ts} \mathsf{V}^{*}_{tb} (-\mathsf{P}^{+-} + \mathsf{P}^{\mathsf{C}}_{\mathsf{EW}}) \\ \sqrt{2} \mathsf{A}(\mathsf{B}^{+} \to \mathsf{K}^{*+}\pi^{0}) = \mathsf{V}_{us} \mathsf{V}^{*}_{ub} (\mathsf{T}^{+-} + \mathsf{T}^{00} - \mathsf{N}^{0+}) + \mathsf{V}_{ts} \mathsf{V}^{*}_{tb} (\mathsf{P}^{+-} - \mathsf{P}^{\mathsf{C}}_{\mathsf{EW}} + \mathsf{P}_{\mathsf{EW}}) \\ \sqrt{2} \mathsf{A}(\mathsf{B}^{0} \to \mathsf{K}^{*0}\pi^{0}) = \mathsf{V}_{us} \mathsf{V}^{*}_{ub} \mathsf{T}^{00} + \mathsf{V}_{ts} \mathsf{V}^{*}_{tb} (-\mathsf{P}^{+-} + \mathsf{P}_{\mathsf{EW}}) \end{split}$$

Observables:

- 4 BFs and 4 A_{CP} from DP and Q2B analyses.
- 5 phase differences:

*
$$\Delta \phi = \arg((\mathbf{q}/\mathbf{p})\overline{\mathbf{A}}(\mathbf{B}^0 \rightarrow \mathbf{K}^* \pi^*)\mathbf{A}^*(\mathbf{B}^0 \rightarrow \mathbf{K}^* \pi^-))$$
 from $\mathbf{B}^0 \rightarrow \mathbf{K}^0 \pi^* \pi^-$

*
$$\Delta \phi = \arg(A(B^0 \rightarrow K^{*0}\pi^0)A^*(B^0 \rightarrow K^{**}\pi^-))$$
 and
 $\overline{\Delta} \phi = \arg(\overline{A(B^0 \rightarrow K^{*0}\pi^0)}A^{**}(B^0 \rightarrow K^{**}\pi^+))$ from $B^0 \rightarrow K^{**}\pi^-\pi^0$
* $\Delta \phi = \arg(A(B^{*} \rightarrow K^{*0}\pi^+)A^*(B^{**} \rightarrow K^{**}\pi^0))$ and
 $\overline{\Delta} \phi = \arg(\overline{A(B^{**} \rightarrow K^{*0}\pi^-)}A^*(B^{**} \rightarrow K^{**}\pi^0))$ from $B^{**} \rightarrow K^0\pi^+\pi^0$

Constrained system...but...

Experimental results for K^{*}π system

$$\begin{split} &\mathsf{K}^{*}\pi \text{ Isospin relations: 11 QCD and 2 CKM = 13 parameters} \\ &\mathsf{A}(\mathsf{B}^{0}{\rightarrow}\mathsf{K}^{**}\pi^{-}) = \mathsf{V}_{us}\mathsf{V}^{*}_{ub}\mathsf{T}^{+-} &+ \mathsf{V}_{ts}\mathsf{V}^{*}_{tb}\mathsf{P}^{+-} \\ &\mathsf{A}(\mathsf{B}^{+}{\rightarrow}\mathsf{K}^{*0}\pi^{+}) = \mathsf{V}_{us}\mathsf{V}^{*}_{ub}\mathsf{N}^{0+} &+ \mathsf{V}_{ts}\mathsf{V}^{*}_{tb}(-\mathsf{P}^{+-}+\mathsf{P}^{\mathsf{C}}_{EW}) \\ &\sqrt{2}\mathsf{A}(\mathsf{B}^{+}{\rightarrow}\mathsf{K}^{*+}\pi^{0}) = \mathsf{V}_{us}\mathsf{V}^{*}_{ub}(\mathsf{T}^{+-}+\mathsf{T}^{00}-\mathsf{N}^{0+}) + \mathsf{V}_{ts}\mathsf{V}^{*}_{tb}(\mathsf{P}^{+-}-\mathsf{P}^{\mathsf{C}}_{EW}+\mathsf{P}_{EW}) \end{split}$$

Due to Reparametrization Invariance (Rpl) hadronic hypothesis have to be made to put a constrain on CKM parameters from the K*π experimental inputs

$$\Delta \phi = \arg((\mathbf{q}/\mathbf{p})\overline{\mathbf{A}}(\mathbf{B}^0 \rightarrow \mathbf{K}^* \pi^+)\mathbf{A}^*(\mathbf{B}^0 \rightarrow \mathbf{K}^* \pi^-)) \text{ from } \mathbf{B}^0 \rightarrow \mathbf{K}^0_{\ S} \pi^+ \pi^-)$$

*
$$\Delta \phi = \arg(A(B^0 \rightarrow K^{*0}\pi^0)A^*(B^0 \rightarrow K^{*+}\pi^-))$$
 and
 $\overline{\Delta} \phi = \arg(\overline{A(B^0 \rightarrow K^{*0}\pi^0)A^*(B^0 \rightarrow K^{*-}\pi^+))}$ from $B^0 \rightarrow K^{+}\pi^-\pi^0$
* $\Delta \phi = \arg(A(B^+ \rightarrow K^{*0}\pi^+)A^*(B^+ \rightarrow K^{*+}\pi^0))$ and
 $\overline{\Delta} \phi = \arg(\overline{A(B^- \rightarrow K^{*0}\pi^-)A^*(B^- \rightarrow K^{*-}\pi^0)})$ from $B^+ \rightarrow K^0\pi^+\pi^0$
A total of 13 observables

 $0 \wedge (D0) + (x^*0 - 0) + (x^* - T00)$

Due to RpI we can not fit simultaneously CKM and hadronic parameters. Without any hadronic assumption one cannot extract a correlation in the (η, ρ) plane

A general parametrization of the decay amplitudes in term of weak $\{\phi_1, \phi_2\}$ and strong phases $\{\delta_1, \delta_2\}$ is:

$$A = M_1 e^{+i\phi_1} e^{i\delta_1} + M_2 e^{+i\phi_2} e^{i\delta_2} ,$$

$$\bar{A} = M_1 e^{-i\phi_1} e^{i\delta_1} + M_2 e^{-i\phi_2} e^{i\delta_2} ,$$
 (1)

If now we consider a new set of weak phases $\{\phi_1, \phi_2\}$

$$A = \mathcal{M}_1 e^{+i\varphi_1} e^{i\Delta_1} + \mathcal{M}_2 e^{+i\varphi_2} e^{i\Delta_2} ,$$

$$\bar{A} = \mathcal{M}_1 e^{-i\varphi_1} e^{i\Delta_1} + \mathcal{M}_2 e^{-i\varphi_2} e^{i\Delta_2} , \qquad (5)$$

London D., Sinha N and Sinha R. PRD 60 074020 (1999) Botella, F.and Silva PRD 71 094008 (2005)

16

Reparametrization Invariance (Rpl)

This change in the basis set of weak phases should not have physical implications, because of RpI

Consider two basic sets of weak phases $\{\phi_1, \phi_2\}$ and $\{\phi_1, \varphi_2\}$ with $\phi_2 \neq \varphi_2$; if an algorithm allows us to write ϕ_2 as a function of physical observables then, owing to the functional similarity of equation (1) and (5), we would extract φ_2 with exactly the same function, leading to $\phi_2 = \varphi_2$, in contradiction with the assumptions; then, a priori, the weak phases in the parametrization of the decay amplitudes have no physical meaning, or cannot be extracted without hadronic input.

At least one hadronic hyphotesis is needed to break RI

London D., Sinha N and Sinha R. PRD 60 074020 (1999) Botella, F.and Silva PRD 71 094008 (2005)

Experimental results for $K^*\pi$ system

			Table 2. Isospin $K^*\pi$: experimental results
Channel	$B_j(10^{-6})$	A_{CP}^{j}	Analysis [Mevents]
	-		
$B^0 \rightarrow K^{*+}\pi^-$	$12.6^{+2.7}_{-1.6} \pm 0.9$	$-0.19^{+0.20}_{-0.18} \pm 0.04$	$DP B^0 \rightarrow K^+ \pi^0 \pi^- (BABAR \ 231.8 \pm 2.6)$
	$11.0 \pm 1.5 \pm 0.5 \pm 0.4$	$-0.11 \pm 0.14 \pm 0.05$	$Q2B B^0 \rightarrow K_S^0 \pi^+ \pi^- (BABAR 231.8 \pm 2.5)$
		$-0.30 \pm 0.11 \pm 0.03$	DPTD $B^{\circ} \rightarrow \tilde{K}^{+}\pi^{-}\pi^{\circ}$ (BABAR 454.0 ± 2.5)
	$8.4 \pm 1.1^{+1.0}_{-0.9}$		DPTI $B^0 \rightarrow K^0 \pi^+ \pi^-$ (BELLE 388.0)
	$14.8^{+4.6+1.5+2.4}_{-4.4-1.0-0.9}$		$Q2B B^{0} \rightarrow K^{+}\pi^{0}\pi^{-} (BELLE 85.0)$
$B^0 \rightarrow K^{*0}\pi^0$	$3.6\pm0.7\pm0.4$	$-0.09^{+0.21}_{-0.24} \pm 0.09$	$DP B^0 \rightarrow K^+\pi^-\pi^0 (BABAR \ 231.8 \pm 2.6)$
		$-0.15 \pm 0.12 \pm 0.02$	$DP B^{\circ} \rightarrow K^{+}\pi^{-}\pi^{\circ} (BABAR 454.0)$
	$0.4^{+1.9}_{-1.7} \pm 0.1$		$Q 2B B^0 \rightarrow K^+ \pi^- \pi^0 (BELLE 85.0)$
$B^+ \rightarrow K^{*0}\pi^+$	$10.8 \pm 0.6^{+1.1}_{-1.3}$	$0.032 \pm 0.052^{+0.16}_{-0.13}$	$DP B^+ \rightarrow K^+\pi^-\pi^+ (BABAR 383.2 \pm 4.2)$
	$9.7 \pm 0.6^{+0.8}_{-0.9}$	$-0.149 \pm 0.064 \pm 0.020.008$	$DPTI B^+ \rightarrow K^+\pi^-\pi^+$ (BELLE 386.0)
		$-0.032 \pm 0.059_{0.033}^{0.044}$	I.Adachietal.BELLE - CONF - 0827(2008)
$B^+ \rightarrow K^{*+}\pi^0$	$6.9\pm2.0\pm1.3$	$0.04 \pm 0.29 \pm 0.05$	$Q2B B^+ \rightarrow K^+\pi^-\pi^0 (BABAR 232.0)$
DD Delife metania			

DP = Dalitz analysis

Q2B = Quasi two body analysis

 $TD - Time \ dependent \ analysis$

TI - Time integrated analysis

Experimental results for $K^*\pi$ system

 $\Delta \phi = \arg((q/p)A(B^0 \rightarrow K^*\pi^+)A^*(B^0 \rightarrow K^{**}\pi^-))$

- $|A_{ii}| \leftrightarrow BRs$ well measured
- $\Delta \varphi$ obtained from Dalitz $B^0 \rightarrow K^0_{\s} \pi^+ \pi^-$:

- $|A_{ii}| \leftrightarrow BRs$ well measured
 - ϕ and $\overline{\phi}$ obtained from Dalitz $\mathbf{B}^{0} \rightarrow \mathbf{K}^{+} \pi^{-} \pi^{0}$:

The best solution is separated by 3.9 units of NLL from the next best solution

 $B^{0} \rightarrow K^{+}\pi^{-}\pi^{0}$ arXiv:0807.4567

 $\Delta \phi = \arg(A(B^0 \rightarrow K^{*0} \pi^0) A^*(B^+ \rightarrow K^{*+} \pi^-))$ = (-5.2 ^{+/-} 24.6)° (stat. + syst.)

 $\Delta \phi = \arg(A(B^0 \rightarrow K^{*0} \pi^0) A^*(B^+ \rightarrow K^{*-} \pi^+))$ = (-21.2 ^{+/-} 29.2)° (stat. + syst.)

 $\Delta \phi = \arg(A(B^+ \rightarrow K^{*0}\pi^+)A^*(B^+ \rightarrow K^{*+}\pi^0))$ and $\Delta \phi = \arg(A(B^{-} \rightarrow K^{*0} \pi^{-}) A^{*}(B^{-} \rightarrow K^{*-} \pi^{0})) \text{ from } B^{+} \rightarrow K^{0} \pi^{+} \pi^{0}$ Ongoing Analysis.

Using $K^*\pi$ experimental inputs in a two step approach:

- Using Fit standard results on CKM parameters we make scans on the hadronic parameters.
 - Using some theoretical hypothesis, a scan on the $\rho-\eta$ plane.

$$\mathbf{P}_{_{\mathrm{EW}}}=\mathbf{P}_{_{\mathrm{EW}}}^{\mathrm{c}}=\mathbf{0}$$

SU(3) limit for the color-allowed electroweak penguin amplitude, which we call "IPLL":

$$P_{EW} = R^{+}(T^{+-}+T^{00})$$

Errors suggested by Jerome Charles (also use a 100% error)

Always, the A and λ parameters are fixed.

Same hypothesis will be tested for Kρ system

Reina Camacho

Constrain in ρ-η plane using K*π neutral modes

Isospin K^{*} π exploring hadronic parameters: Results of measurement of α

Reina Camacho

Isospin $K^*\pi$ exploring hadronic parameters: Results of measurement of α

BaBar France 2008

Reina Camacho

CL>5%

Exploring hadronic parameters using the complete $K^*\pi$ system

There are two solutions due to the two minimum of the phase difference $\Delta \phi = \arg((q/p)A(B^0 \rightarrow K^{*-}\pi^+)A^*(B^0 \rightarrow K^{*+}\pi^-))$. Imaginary component different from 0.

Constrain in ρ-η plane using the complete K*π system

Isospin K^{*} π exploring hadronic parameters: Results of measurement of α

BaBar France 2008

Ч

Reina Camacho

Isospin K^{*} π exploring hadronic parameters: Results of measurement of α

Taking the whole $B \rightarrow K^* \pi$ system

$$ho - \eta \operatorname{scan} P_{EW} = P_{EW}^{c} = 0$$

$ho-\eta$ scan IPLL

Constrain in (ρ, η) plane

A more complicated constrain

BaBar France 2008

Ч

Reina Camacho

Isospin relations for the Kp system

Same relations of are valid for the Kp system: $A(B^{0} \rightarrow K^{+}\rho^{-}) = V_{us}V_{ub}^{*}T^{+-} + V_{ts}V_{tb}^{*}P^{+-}$ $A(B^{+} \rightarrow K^{0}\rho^{+}) = V_{us}V_{ub}^{*}N^{0+} + V_{ts}V_{tb}^{*}(-P^{+-}+P_{EW}^{0})$ $A(B^{+} \rightarrow K^{+}\rho^{0}) = V_{us}V_{ub}^{*}(T^{+-}+T^{00}-N^{0+}) + V_{ts}V_{tb}^{*}(P^{+-}-P_{EW}^{0}+P_{EW})$ $\sqrt{2}A(B^{0} \rightarrow K^{0}\rho^{0}) = V_{us}V_{ub}^{*}T^{00} + V_{ts}V_{tb}^{*}(-P^{+-}+P_{EW})$

No other hypothesis than isospin is used

Observables:

- 4 BFs and 4 A_{CP} from DP and Q2B analyses.
- 1 phase difference:

*
$$2\beta_{eff} = arg((\mathbf{q}/\mathbf{p})\mathbf{A}(\mathbf{B}^0 \rightarrow \mathbf{K}^0 \mathbf{p}^0)\mathbf{A}^*(\mathbf{B}^0 \rightarrow \mathbf{K}^0 \mathbf{p}^0))$$
 from $\mathbf{B}^0 \rightarrow \mathbf{K}^0_{\ s} \pi^+ \pi^-$

Only 9 observables. Less than in $K^*\pi$

Isospin Kp: experimental results

			Table 2. Isospin ρK : experimental results
Channel	$B_{j}(10^{-6})$	A_{CP}^{j}	Analysis [Mevents]
$B^0 \rightarrow K^+ \rho^-$	$8.0^{+0.8}_{-1.3} \pm 0.6$	$0.11^{+0.14}_{-0.15} \pm 0.07$	$DP B^0 \rightarrow K^+\pi^0\pi^- (BABAR \ 231.8 \pm 2.6)$
		$0.14 \pm 0.06 \pm 0.01$	$DP B^0 \rightarrow K^+ \pi^0 \pi^- (BABAR 454.0)$
	$15.1^{+3.4+2.4}_{-3.3-2.6}$	$-0.22^{+0.22+0.06}_{-0.23-0.02}$	$DP B^0 \rightarrow K^+\pi^0\pi^-$ (BELLE 78/b ⁻¹)
$B^+ \rightarrow K^0 \rho^+$	$8.0^{+1.4}_{-1.3} \pm 0.6$	$-0.12\pm0.17\pm0.02$	$Q2B~(BABAR~231.8 \pm 2.6)$
$B^+ \rightarrow K^+ \rho^0$	$3.56 \pm 0.45 \pm {}^{+0.87}_{-0.46}$	$0.44 \pm 0.10^{+0.06}_{-0.14}$	$DP B^+ \rightarrow K^+\pi^-\pi^+ (BABAR 383.2 \pm 4.2)$
	$3.89 \pm 0.47^{+0.43}_{-0.41}$	$0.30 \pm 0.11^{+0.11}_{-0-05}$	$DP B^+ \rightarrow K^+\pi^-\pi^+$ (BELLE 386.0)
		$0.405 \pm 0.101^{+0.036}_{-0.077}$	I.Adachietal.BELLE - CONF - 0827(2008)
$B^{\circ} \rightarrow K^{\circ} \rho^{\circ}$	$4.9 \pm 0.8 \pm 0.9$		Q2B (BABAR 227.0)
		$0.02\pm 0.27\pm 0.08\pm 0.06$	$DP B^{0} \rightarrow K^{0}\pi^{-}\pi^{+} (BABAR 383.0)$
	$6.1 \pm 1.0^{+1.1}_{-1.3}$		$DP B^0 \rightarrow K^0 \pi^- \pi^+ (BELLE 388.0)$
		$-0.03^{+0.24}_{-0.23} \pm 0.11 \pm 0.11$	CKM 2008 BELLE

DP = Dalitz analysis

 $Q2B = Quasi\ two\ body\ analysis$

$2\beta_{eff}$ from time-dependent DP analysis: $K^0_{\ s}\pi^+\pi^-$

- $|A_{ii}| \leftrightarrow BRs well measured$
- $\Delta \phi$ obtained from Dalitz $B^0 \rightarrow K^0_{\ s} \pi^+ \pi^-$

Exploring hadronic parameters using pK whole system

Kρ Isospin relations: 11 QCD and 2 CKM = 13 parameters and just 9 observables

In this case we don't have enough information to obtain contrains. Additional hadronic hypothesis would be needed. It is a pity because there is a direct CP violation in the mode K⁺ρ⁰

Most of the constrains observed in hadronic parameters were soft in Modules but strong in Arguments due to CPV in mode $K^*\rho^0$

Isospin ρK: exploring hadronic parameters

BaBar France 2008

Constrain in ρ-η plane using ρK whole system

Isospin pK: exploring hadronic parameters

BaBar France 2008

Reina Camacho

with one hadronic hyphotesis

38

- $K^*\pi$ has more observables than ρK
- Safer constrains on CKM parameters
- Interesting bounds on hadronics parameters with current data
- We plan to test other hadronic hypotheses (i.e. SU3 relations)
- We plan to make a prospective study...Ongoing
- The goal is to produce a CKMFitter note

Backup

CKM Matrix: Current knowledge

Reparameterization Invariance

General $K^{*}\pi$ amplitudes (1): $A^{+-} = CKM_{1}T^{+-} + CKM_{2}P^{+-}$ $A^{0+} = CKM_{1}T^{0+} + CKM_{2}P^{0+}$ $A^{+0} = CKM_{1}T^{+0} + CKM_{2}P^{+0}$ $A^{00} = CKM_{1}T^{00} + CKM_{2}P^{00}$

General K^{*}
$$\pi$$
 amplitudes (2):
 $\overline{A^{+-}} = CKM_{1}^{*}T^{+-} + CKM_{2}^{*}P^{+-}$
 $\overline{A^{0+}} = CKM_{1}^{*}T^{0+} + CKM_{2}^{*}P^{0+}$
 $\overline{A^{+0}} = CKM_{1}^{*}T^{+0} + CKM_{2}^{*}P^{+0}$
 $\overline{A^{00}} = CKM_{1}^{*}T^{00} + CKM_{2}^{*}P^{00}$

Isospin relations: $A^{0+} + \sqrt{2}A^{+0} = \sqrt{2}A^{00} + A^{+-}$ $\overline{A}^{0+} + \sqrt{2}\overline{A}^{+0} = \sqrt{2}\overline{A}^{00} + \overline{A}^{+-}$

For a given value of the A^{ij}/A^{ji} and a given value of CKM_k the ecuations (1) and (2) can always be inverted for the T^{ij} and P^{ij} in such a way to satisfy the Isospin relations.