Time-Dependent Amplitude Analysis of $B^{0} \rightarrow K^{0}_{s} \pi^{+}\pi^{-}$ **Decays**

Eli Ben-Haïm, José Ocariz, Alejandro Pérez

LPNHE-IN2P3-Universités de Paris VI, Paris VII

Matt Graham

SLAC

With previous help from: Jinwei Wu, Maurizio Pierini

Outline

- Motivations
- Existing Measurements
- Analysis Strategy, Data Set, Event Selection
- B-background Model
- Likelihood function and Physical parameters
- Parameterization
- Nominal Signal Model
- New Fitter Configuration
- Fit Results
- Projection Plots
- Likelihood scans and Branching Fractions
- Systematic Uncertainties
- Conclusion and perspectives

Motivations

- $K_s^0 \pi^+ \pi^-$ is dominated by $b \to s$ penguin diagrams. Most interesting observables are related to the phases.
- Two good ways to study the phases:
 - Time dependent analysis
 - Dalitz plot analysis

The present analysis makes advantage of both techniques

- Many intermediate states contribute and interfere: f₀(980), ρ⁰(770), K*(892)...
- $2\beta_{eff}$ from $f_0(980)$ and $\rho^0(770)$ can be measured directly, resolving the Q2B analyses ambiguities $(\sin(2\beta_{eff}) = \sin(\pi 2\beta_{eff}))$
- Phases from ρ⁰(770) and K*(892) are interesting for phenomenological analyses (see Reina's talk)
- Measurement of inclusive and exclusive direct CP violation
- Measurement of total and partial branching fractions

Existing Measurements (I)

- Time dependent Q2B analysis:
 - BaBar 2004 (PRL94:041802) S[f₀(980)K⁰_S] = $-0.95^{+0.32}_{-0.23} \pm 0.1$ C[f₀(980)K⁰_S] = $-0.24 \pm 0.31 \pm 0.15$
 - Belle 2005 (arXiv:hep-ex/0507037)
 S[f₀(980)K⁰_s] = -0.47 ± 0.36 ± 0.08
 C[f₀(980)K⁰_s] = -0.23 ± 0.23 ± 0.13
 - BaBar 2006 (PRL98:051803) S[$\rho^{0}(770)K^{0}_{s}$] = 0.20 ± 0.52 ± 0.24 C[$\rho^{0}(770)K^{0}_{s}$] = 0.64 ± 0.41 ± 0.20

Existing Measurements (II)

BaBar time integrated, Q2B analysis:

BAD 1065 (K.Ford et al.) Runs 1-4 (210 fb⁻¹)

Results:

٠

Branching Fractions:

$$\begin{aligned} \mathcal{B}(B^0 \to K^0 \pi^+ \pi^- \text{ Inclusive}) &= (43.0 \pm 2.3 \pm 2.3) \times 10^{-6} \\ \mathcal{B}(B^0 \to K_S^0 \pi^+ \pi^- \text{ nonresonant}) &< 2.1 \times 10^{-6} \\ \mathcal{B}(B^0 \to K^{**\pm} \pi^{\mp}, K^{**\pm} \to K^0 \pi^{\pm}) &= (24.4 \pm 2.6 \pm 0.9) \times 10^{-6} \\ \mathcal{B}(B^0 \to \rho^0 K_S^0) &= (4.0 \pm 1.0 \pm 0.5 \pm 0.2) \times 10^{-6} \\ \mathcal{B}(B^0 \to f_0 K_S^0) &= (5.5 \pm 0.7 \pm 0.5 \pm 0.3) \times 10^{-6} \\ \mathcal{B}(B^0 \to K^{*+} \pi^-) &= (11.0 \pm 1.5 \pm 0.5 \pm 0.5) \times 10^{-6} \end{aligned}$$

• Asymmetry for $B^0 \rightarrow K^{*+}\pi^-$

Acp $(B^0 \rightarrow K^{*+}\pi) = -0.11 \pm 0.14 \pm 0.05$

Existing Measurements (III)

• Belle (PR D73:031101) time and tagging integrated Dalitz plot analysis (357 fb⁻¹)

• Results:

Mode	$f_i \%$	δ_i °	$\mathcal{B}(B \to Rh) \times \mathcal{B}(R \to hh) \times 10^6$	${\cal B}(B\to Rh)\times 10^6$
$K^0\pi^+\pi^-$ charmless	$99.3 \pm 0.4 \pm 0.1$	—	—	$47.5 \pm 2.4 \pm 3.7$
$K^*(892)^+\pi^-$	$11.8 \pm 1.4 \pm 0.5^{+0.9}_{-0.6}$	$0 \ (fixed)$	$5.6 \pm 0.7 \pm 0.5^{+0.4}_{-0.3}$	$8.4 \pm 1.1 \pm 0.8^{+0.6}_{-0.4}$
$K_0^*(1430)^+\pi^-$	$64.8 \pm 3.9 \pm 0.5^{+1.6}_{-6.3}$	$45 \pm 9 \pm 2^{+9}_{-13}$	$30.8 \pm 2.4 \pm 2.4^{+0.8}_{-3.0}$	$49.7 \pm 3.8 \pm 6.7^{+1.2}_{-4.8}$
$K^*(1410)^+\pi^-$	_	_	< 3.8	_
$K^*(1680)^+\pi^-$	_	—	< 2.6	—
$K_2^*(1430)^+\pi^-$	_	—	< 2.1	_
$ ho(770)^{0}K^{0}$	$12.9 \pm 1.9 \pm 0.3^{+2.1}_{-2.2}$	$-7 \pm 28 \pm 7^{+27}_{-13}$	$6.1 \pm 1.0 \pm 0.5^{+1.0}_{-1.1}$	$6.1 \pm 1.0 \pm 0.5^{+1.0}_{-1.1}$
$f_0(980)K^0$	$16.0 \pm 3.4 \pm 0.8^{+1.0}_{-1.4}$	$36 \pm 34 \pm 5^{+38}_{-21}$	$7.6 \pm 1.7 \pm 0.7^{+0.5}_{-0.7}$	-
$f_X(1300)K^0$	$3.7 \pm 2.2 \pm 0.3^{+0.5}_{-0.5}$	$-135 \pm 25 \pm 2^{+26}_{-31}$	-	-
$f_2(1270)K^0$	—	_	< 1.4	—
Non-resonant	$41.9 \pm 5.1 \pm 0.6^{+1.4}_{-2.5}$	$\delta_1^{\rm nr} = -22 \pm 8 \pm 1^{+6}_{-6}$	_	$19.9 \pm 2.5 \pm 1.6^{+0.7}_{-1.2}$
		$\delta_2^{\rm nr} = 175 \pm 30 \pm 4^{+54}_{-30}$		
$\chi_{c0}K^0$	_	—	< 0.56	< 113

- In general, compatible with Q2B result from BaBar
- Observed signal excess in $m_{\pi\pi} \sim 1.5 \text{ GeV/c}^2$ region
- Exception: non-resonant

Existing Measurements (IV)

Belle time-dependent DP analysis (657 fb-1)

They plan to finish the analysis soon. They already presented a limited set of preliminary results at ICHEP08 and CKM08, with errors comparable to ours

Analysis Strategy

- Similar to $B^0 \rightarrow (\rho \pi)^0$ (BAD #637) and $B^0 \rightarrow K^+ \pi^- \pi^0$ (BAD #826)
- Simultaneous fit including:
 - $m_{ES}^{}$, ΔE , Neural Net (NN), Δt and tagged Dalitz Plot
- The complex isobar amplitudes are directly fitted, allowing for CP violation parameters measurement (see later)
- RhoPiTools and PiPiKsTools are used to do the fit

Data Set

Signal MC (SP8):

- non-resonant (5401K events)
- $B^0 \rightarrow f_0(980)$ (134K events)
- $B^0 \rightarrow \rho^0$ (980) (143K events)
- B⁰ → K*(892) (134K events)
 - B-background MC. See

(http://www.slacstanford.edu/BFROOT/www/Organization/CollabMtgs/2007/detFeb07/Thur1b/aperez.pdf)

- Charged and Neutral Generic
- Exclusive modes
- Data
 - On/off resonance Run 1-5,

Vivace data set

R18b BtoCPP skim with BtoCPP_K_S0pi+pitagbit

Processed with QnBUser package in analysis-32

Aleiandro Doroz BaPar Franco Mosting Oct 10th 2009

Event Selection

- π candidates from GoodTrackLoose List
- K⁰_s candidates from KsDefault List
- B⁰ candidates vertexed using TreeFitter
- 5.272 < m_{ES} < 5.286 GeV/c²
- |∆E| < 65 MeV
- |∆t| < 20 ps</p>
- σ(Δt) < 2.5ps</p>
- |M(Ks) M(Ks)PDF| < 15 MeV/c²
- Lifetime significance > 5
- cos(Ks,Ks daughters) < 0.999</p>
- NN > -0.4
- PID requirements to separate from kaons and reject leptons

 $\frac{\text{Multiple candidates:}}{\text{cadidate selected}} \\ \text{arbitrarily, in order to not} \\ \text{to bias the } \Delta \text{E distribution} \\ \end{array}$

Mod(timeStamp,nCands)

B-background Model

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

The Likelihood Function

$$L = \prod_{c=1}^{5} e^{-N'_c} \prod_{i=1}^{N_c} \left(N_s \varepsilon_c (1 - f_{SCF,c}) P_{S,c}^{TM} + N_s \varepsilon_c f_{SCF,c} P_{S,c}^{SCF} + N_{q\bar{q}} P_{q\bar{q},c} + \sum_{i=1}^{N_{elass}} N_{B,j} \varepsilon_{B,c} P_{B,c} \right) (\vec{x}_i)$$

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

The Likelihood Function
 $L = \prod_{c=1}^{5} e^{-N_c} \prod_{i=1}^{N_c} \left(N_s \varepsilon_c (1 - f_{SCF,c}) P_{S,c}^{TM} + N_s \varepsilon_c f_{SCF,c} P_{S,c}^{SCF} + N_{q\bar{q}} P_{q\bar{q},c} + \sum_{i=1}^{N_{B,j}} N_{B,j} \varepsilon_{B,c} P_{B,c} \right) (\vec{x}_i)$
Continuum Component

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

The Likelihood Function
 $L = \prod_{c=1}^{5} e^{-N'_c} \prod_{i=1}^{N_c} \left(N_s \varepsilon_c (1 - f_{SCF,c}) P_{S,c}^{TM} + N_s \varepsilon_c f_{SCF,c} P_{S,c}^{SCF} + N_{q\bar{q}} P_{q\bar{q},c} + \sum_{i=1}^{N_{elass}} N_{B,j} \varepsilon_{B,c} P_{B,c} (\vec{x}_i) \right)$
B-background Components

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Standard Parameterizations:

- Signal TM: Bifurcated Crystal Ball (parameters floated)
- Signal SCF: Non-parametric (Keys)
- $D\pi$ and $J/\psi K_s^0$ Bbkg: Share same PDF as signal. Allows to fit parameters directly on data.
- All other B-backgrounds: Non-parametric (Keys)
- Continuum: Argus (parameters floated)

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Standard Parameterizations:

- Signal TM: Doble Gaussian (parameters floated)
- Signal SCF: Gaussian (fix paramenters)
- $D\pi$: Share same PDF as signal. Allows to fit parameters directly on data.
- All other B-backgrounds: Non-parametric (Keys)
- **Continuum: 2nd degree polynomial (parameters floated)**

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Standard Parameterizations:

 Signal TM and SCF: Non-parametric (Keys). Separated in tagging categories

 All other B-backgrounds: Non-parametric (Keys). Same for all tagging categories

Continuum: conditional PDF

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Continuum: Non-negligible correlation with DP Variables <u>PDF dependent on the DP:</u>

$$P_{q\bar{q}}(NN; \Delta_{\text{Dalitz}}, A, B_0, B_1, B_2) = (1 - NN)^A \left(B_2 NN^2 + B_1 NN + B_0 \right)$$

$$A = a_1 + a_4 \Delta_{\text{Dalitz}},$$

$$B_0 = c_0 + c_1 \Delta_{\text{Dalitz}},$$

$$B_1 = a_3 + c_2 \Delta_{\text{Dalitz}},$$

 Δ_{Dalitz} : Distance to DP center

$$B_2 = a_2 + c_3 \Delta_{\text{Dalitz}},$$

Continuum: Non-negligible correlation with DP Variables

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Parameterizing Decay amplitude using Isobar Model:
Dalitz Plot
Isobar Model $\vec{A}(DP) = \sum a_j F_j(DP)$ Shapes of intermediates
 $\vec{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP)$ States over DP

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model $\begin{cases} A(DP) = \sum d_j F_j(DP) \\ \overline{A}(DP) = \sum \overline{\alpha}_i \overline{F}_j(DP) \end{cases}$ **Shapes of intermediates** states over DP

$$F_j^L(DP) = R_j(m) \times X_L(|\vec{p}^{\star}|r) \times X_L(|\vec{q}|r) \times T_j(L,\vec{p},\vec{q})$$

 $A(DP) = \sum a_j F_j(DP)$ $\overline{A}(DP) = \sum \overline{a_j} \overline{F_j}(DP)$

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

Shapes of intermediates states over DP

$$F_j^L(DP) = R_j(m) \times X_L(|\vec{p}^{\star}|r) \times X_L(|\vec{q}|r) \times T_j(L,\vec{p},\vec{q})$$

Lineshape

Kinematic function

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model $\begin{cases} A(DP) = \sum d_j F_j(DP) \\ \overline{A}(DP) = \sum \overline{a}_i \overline{F}_j(DP) \end{cases}$

Shapes of intermediates
 states over DP

$$F_j^L(DP) = R_j(m) \times X_L(|\vec{p}^{\star}|r) \times X_L(|\vec{q}|r) \times T_j(L,\vec{p},\vec{q})$$

Relativistic Breit-Wigner:K*(892) π , and for other less
significant components
(f2(1270)K, K*(1410) π , K*(1680) π , ...).Flatte:f0(980)KGounaris-Sakurai:p(770)KS-wave K π :LASS lineshape.

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model $\begin{cases} A(DP) = \sum q_j F_j(DP) & \text{Shapes of intermediates} \\ \overline{A}(DP) = \sum \overline{a_i} \overline{F_j}(DP) & \text{states over DP} \end{cases}$

$$F_j^L(DP) = R_j(m) \times X_L(|\vec{p}^{\star}|r) \times X_L(|\vec{q}|r) \times T_j(L,\vec{p},\vec{q})$$

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot
Isobar Model
$$\begin{cases}
A(DP) = \sum a_j F_j(DP) & \text{Shapes of intermediates} \\
\overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP) & \text{states over DP}
\end{cases}$$
Time-dependent DP PDF
$$f(\Delta t, DP, q_{tag}) \propto (|A|^2 + |\overline{A}|^2) \frac{e^{-|\Delta t|/\tau}}{4\tau} \left(1 + q_{tag} \frac{2 \operatorname{Im}[\overline{A}A^*]}{|A|^2 + |\overline{A}|^2} \sin(\Delta m_d \Delta t) - q_{tag} \frac{|A|^2 - |\overline{A}|^2}{|A|^2 + |\overline{A}|^2} \cos(\Delta m_d \Delta t)\right)$$

Misstag and time-resolution effects are taken into account

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot
Isobar Model
$$A(DP) = \sum a_j F_j(DP)$$
Shapes of intermediates
states over DP
$$\overline{A(DP)} = \sum \overline{a_j} \overline{F_j}(DP)$$
DCPV
$$f(\Delta t, DP, q_{tag}) \propto (|A|^2 + |\overline{A}|^2) \frac{e^{-|\Delta t|/\tau}}{4\tau} \left(1 + q_{tag} \frac{2 \operatorname{Im}[\overline{A}A^*]}{|A|^2 + |\overline{A}|^2} \sin(\Delta m_d \Delta t) - q_{tag} \frac{|A|^2 - |\overline{A}|^2}{|A|^2 + |\overline{A}|^2} \cos(\Delta m_d \Delta t)\right)$$
CP violation varies over DP
Complex amplitudes A_j and \overline{A} determine DP interference pattern.
Module and phase con be directly fitted on data.

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot
Isobar Model
$$A(DP) = \sum a_j F_j(DP)$$
Shapes of intermediates
states over DP
$$\overline{A(DP)} = \sum \overline{a_j} \overline{F_j}(DP)$$
DCPV
$$f(\Delta t, DP, q_{tag}) \propto (|A|^2 + |\overline{A}|^2) \frac{e^{-|\Delta t|/\tau}}{4\tau} \left(1 + q_{tag} \frac{2 \operatorname{Im}[\overline{A}A^*]}{|A|^2 + |\overline{A}|^2} \sin(\Delta m_d \Delta t) - q_{tag} \frac{|A|^2 - |\overline{A}|^2}{|A|^2 + |\overline{A}|^2} \cos(\Delta m_d \Delta t)\right)$$
CP violation varies over DP
Complex amplitudes (A and (A determine DP interference pattern)

Complex amplitudes \mathcal{U}_{j} and \mathcal{Q}_{j} determine DP interference path Module and phase con be directly fitted on data.

Time-dependent CPV parameters: $C_{j} = \frac{\left|a_{j}\right|^{2} - \left|\overline{a}_{j}\right|^{2}}{\left|a_{j}\right|^{2} + \left|\overline{a}_{j}\right|^{2}} \quad S_{j} = \frac{2 \operatorname{Im}[a_{j}\overline{a}_{j}^{*}]}{\left|a_{j}\right|^{2} + \left|\overline{a}_{j}\right|^{2}}$

Interference helps disentangling strong and weak phases and thus raises the degeneracy on the phases.

Alejandro Perez,

Fit Variables:
$$\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)$$

Background Parameterizations:

- **DP PDF:** Non-parametric PDF.
 - Continuum: constructed using off-peak and on-peak

($m_{_{FS}}$, ΔE) side band data.

- B-background: constructed using MC

• ∆t PDF:

- **Continuum:** empirical parameterization (triple-gaussian)

- B-background: same as signal for most neutral modes. Customized PDFs for charged generic and $D\pi$ components

Physical Parameters (I)

Alejandro Perez,

BaBar France Meeting, Oct 10th 2008

Physical Parameters (II)

Inclusive Direct CP asymmetry

$$A_{CP}^{incl} = \frac{\int_{DP} \left[|\mathcal{A}(DP)|^2 - |\overline{\mathcal{A}}(DP)|^2 \right] d(DP)}{\int_{DP} \left[|\mathcal{A}(DP)|^2 + |\overline{\mathcal{A}}(DP)|^2 \right] d(DP)},$$

Inclusive Branching Fraction

$$\mathcal{B}^{incl} = \mathcal{B}(B^0 \to K^0 \pi^+ \pi^-) = \frac{N_{sig}}{\mathcal{B}(K^0 \to K^0_S) \langle \varepsilon \rangle N_{B\overline{B}}},$$

Exclusive Branching Fractions

$$\mathcal{B}(\sigma) = F F_{\sigma} \mathcal{B}^{incl}$$

Nominal Signal Model

List of components included in nominal fit:

- $B^0 \rightarrow \rho^0$ (770) K^0_{S} (GS)
- $\bullet B^0 \rightarrow f_0(980) K^0_S \text{ (Flatté)}$
- $B^0 \rightarrow K^*(892)\pi$ (RBW)
- Kπ S-wave (LASS)
- Non-resonant (flat phase space)
- $B^0 \rightarrow f_X(1300)K^0_S$ (RBW)
- $B^0 \rightarrow f_2(1270)K_S^0$ (RBW)
- $\blacksquare \quad B^0 \rightarrow \chi_{c0} K^0_{S} \text{ (RBW)}$

Same Signal Model as in B⁺ \rightarrow K⁺ $\pi^{-}\pi^{+}$ analysis BAD #1512

Alejandro Perez,

BaBar France Meeting, Oct 10th 2008

New Fitter Configuration (I)

- Reminder: preliminary results were present at LP07 hep-ex/0708.2097
- Changes in fit configuration since then:
 - No changes on Data sample and Selection.
 - No changes on DP signal model.
 - Corrected a mistake in the GS lineshape for the $\rho^0(770)K^0_{s}$

New Fitter Configuration (II)

- Reminder: preliminary results were present at LP07 hep-ex/0708.2097
- Changes in fit configuration since then:
 - Now we use a charge symmetric DP continuum PDF for all tagging categories (except for Non-tagged events).

New Fitter Configuration (III)

- Reminder: preliminary results were present at LP07 hep-ex/0708.2097
- Changes in fit configuration since then:
 - Now taking into account resonances barrier factors. Before we used r = 0, now PDG values.

Only affects vector resonances.

New Fitter Configuration (IV)

- Reminder: preliminary results were present at LP07 hep-ex/0708.2097
- Changes in fit configuration since then:
 - Before: cutting the whole LASS amplitude above 2.0GeV/c²
 - Now : cutting only effective range part above 1.8GeV/c², same configuration as in B⁺ \rightarrow K⁺ $\pi^{-}\pi^{+}$ analysis BAD #1512

New Fitter Configuration (IV)

- Reminder: preliminary results were present at LP07 hep-ex/0708.2097
- Changes in fit configuration since then:
 - BFs are now measured
 - All systematics have been recalculated
 - Improved evaluation of DP signal model systematics, based on toys
 - Efficiency systematics are calculated

Parameter Name	Fit Result Sol-I	Fit Result Sol-II
ΔNLL	0.16	0.0
$N(B^0 \rightarrow D^+\pi^-)$	3361 ± 60	3362 ± 60
$N(B^0 \rightarrow J/\psi K_s^0)$	1804 ± 44	1803 ± 43
$\mathbb{N}(B^0 \rightarrow \eta' K_s^0)$	46 ± 16	44 ± 16
$N(B^0 \rightarrow \psi(2S)K_s^0)$	142 ± 13	142 ± 13
N(cont-Lepton)	46 ± 8.9	47 ± 9
N(cont-KaonI)	800 ± 31	800 ± 31
N(cont-KaonII)	2127 ± 49	2127 ± 49
N(cont-KaonPion)	1775 ± 45	1775 ± 45
N(cont-Pion)	2048 ± 48	2048 ± 48
N(cont-Other)	1614 ± 42	1614 ± 42
N(cont-NoTag)	5829 ± 80	5829 ± 80
$f_{core}(\Delta E)$ Signal	0.63 ± 0.14	0.63 ± 0.14
$\mu_{core}(\Delta E)$ Signal	-1.3 ± 0.7 MeV	-1.3 ± 0.6 MeV
$\sigma_{core}(\Delta E)$ Signal	$17.1 \pm 1.4 \text{ MeV}$	$17.1 \pm 1.3 \text{ MeV}$
$\mu_{tail}(\Delta E)$ Signal	$-7.3\pm2.9~{ m MeV}$	-7.4 ± 3.0 MeV
$\sigma_{tail}(\Delta E)$ Signal	$31.2 \pm 4.6 \text{ MeV}$	$31.4 \pm 4.6 \text{ MeV}$
$\mathtt{Slope}(\Delta E)$ Continuum	-8.51 ± 5.77	-8.49 ± 5.77
$\mu(\mathrm{m}_{ES})$ Signal	$5.2788 \pm 0.0001 \text{ GeV}/c^2$	$5.2788 \pm 0.0001 \text{ GeV}/c^2$
$\sigma_L({ m m}_{ES})$ Signal	$2.24 \pm 0.06 \text{ MeV}/c^2$	$2.24 \pm 0.06 \text{ MeV}/c^2$
$\sigma_R({ m m}_{ES})$ Signal	$2.73 \pm 0.07 \text{ MeV}/c^2$	$2.73 \pm 0.07 \text{ MeV}/c^2$
Argus Slope (m_{ES}) Continuum	-0.3 ± 0.2	-0.4 ± 0.2
$a_1(NN)$ Continuum	1.9 ± 0.1	1.9 ± 0.1
$a_2(NN)$ Continuum	3.2 ± 0.4	3.2 ± 0.4
$a_3(NN)$ Continuum	-1.1 ± 0.1	-1.1 ± 0.1
$a_5(NN)$ Continuum	-0.47 ± 0.05	-0.48 ± 0.05
$\mu_{common}(\Delta t)$ Continuum	$0.018 \pm 0.007 \ ps$	$0.018 \pm 0.007 \ ps$
$\sigma_{core}(\Delta t)$ Continuum	$1.14 \pm 0.02 \ ps$	$1.14 \pm 0.02 \ ps$
$f_{tail}(\Delta t)$ Continuum	0.16 ± 0.02	0.16 ± 0.02
$\sigma_{tail}(\Delta t)$ Continuum	$2.8 \pm 0.2 \ ps$	$2.8 \pm 0.2 \ ps$
$f_{outlier}(\Delta t)$ Continuum	0.030 ± 0.004	0.030 ± 0.004
$\sigma_{outlier}(\Delta t)$ Continuum	$10.7\pm0.9~ps$	$10.7 \pm 0.8 \ ps$

Alejandro Perez,

Parameter Name	Fit Result Sol-I	Fit Result Sol-II
ΔNLL	0.16	0.0
$\mathbb{N}(B^0 \to D^+\pi^-)$	3361 ± 60	3362 ± 60
$N(B^0 \rightarrow J/\psi K^0_*)$	1804 ± 44	1803 ± 43
$\mathbb{N}(B^0 \to \eta' K^0_*)$	46 ± 16	44 ± 16
$\mathbb{N}(B^0 \to \psi(2S)K_s^0)$	142 ± 13	142 ± 13
N(cont-Lepton)	46 ± 8.9	47 ± 9
N(cont-KaonI)	800 ± 31	800 ± 31
N(cont-KaonII)	2127 ± 49	2127 ± 49
N(cont-KaonPion)	1775 ± 45	1775 ± 45
N(cont-Pion)	2048 ± 48	2048 ± 48
N(cont-Other)	1614 ± 42	1614 ± 42
N(cont-NoTag)	5829 ± 80	5829 ± 80
$f_{core}(\Delta E)$ Signal	0.63 ± 0.14	0.63 ± 0.14
$\mu_{core}(\Delta E)$ Signal	-1.3 ± 0.7 MeV	$-1.3\pm0.6~{ m MeV}$
$\sigma_{core}(\Delta E)$ Signal	$17.1 \pm 1.4 \text{ MeV}$	17.1 ± 1.3 MeV
$\mu_{tail}(\Delta E)$ Signal	$-7.3\pm2.9~{ m MeV}$	-7.4 ± 3.0 MeV
$\sigma_{tail}(\Delta E)$ Signal	$31.2 \pm 4.6 \text{ MeV}$	$31.4 \pm 4.6 \text{ MeV}$
$\mathtt{Slope}(\Delta E)$ Continuum	-8.51 ± 5.77	-8.49 ± 5.77
$\mu(\mathrm{m}_{ES})$ Signal	$5.2788 \pm 0.0001 \text{ GeV}/c^2$	$5.2788 \pm 0.0001 \text{ GeV}/c^2$
$\sigma_L({ m m}_{ES})$ Signal	$2.24 \pm 0.06 \text{ MeV}/c^2$	$2.24 \pm 0.06 \text{ MeV}/c^2$
$\sigma_R({ m m}_{ES})$ Signal	$2.73 \pm 0.07 \text{ MeV}/c^2$	$2.73 \pm 0.07 \text{ MeV}/c^2$
${ t Argus} { t Slope}({ t m}_{ES}) { t Continuum}$	-0.3 ± 0.2	-0.4 ± 0.2
$a_1(NN)$ Continuum	1.9 ± 0.1	1.9 ± 0.1
$a_2(NN)$ Continuum	3.2 ± 0.4	3.2 ± 0.4
$a_3(NN)$ Continuum	-1.1 ± 0.1	-1.1 ± 0.1
$a_5(NN)$ Continuum	-0.47 ± 0.05	-0.48 ± 0.05
$\mu_{common}(\Delta t)$ Continuum	$0.018 \pm 0.007 \ ps$	$0.018 \pm 0.007 \ ps$
$\sigma_{core}(\Delta t)$ Continuum	$1.14 \pm 0.02 \ ps$	$1.14 \pm 0.02 \ ps$
$f_{tail}(\Delta t)$ Continuum	0.16 ± 0.02	0.16 ± 0.02
$\sigma_{tail}(\Delta t)$ Continuum	$2.8 \pm 0.2 \ ps$	$2.8 \pm 0.2 \ ps$
$f_{outlier}(\Delta t)$ Continuum	0.030 ± 0.004	0.030 ± 0.004
$\sigma_{outlier}(\Delta t)$ Continuum	$10.7\pm0.9~ps$	$10.7 \pm 0.8 \ ps$

There are two solutions almost degenerated.

Alejandro Perez,

Parameter Name	Fit Result Sol-I	Fit Result Sol-II	Thoro are two
ΔNLL	0.16	0.0	There are two
$N(B^0 \rightarrow D^+ \pi^-)$	3361 ± 60	3362 ± 60	l solutions almost
$\mathbb{N}(B^0 \rightarrow J/\psi K_s^0)$	1804 ± 44	1803 ± 43	
${ m N}(B^0 o \eta' K^0_s)$	46 ± 16	44 ± 16	degenerated.
$\mathbb{N}(B^0 o \psi(2S)K_s^0)$	142 ± 13	142 ± 13	
N(cont-Lepton)	46 ± 8.9	47 ± 9	They differ by 0.16
N(cont-KaonI)	800 ± 31	800 ± 31	in NILL unite
N(cont-KaonII)	2127 ± 49	2127 ± 49	IN NLL UNITS
N(cont-KaonPion)	1775 ± 45	1775 ± 45	
N(cont-Pion)	2048 ± 48	2048 ± 48	
N(cont-Other)	1614 ± 42	1614 ± 42	
N(cont-NoTag)	5829 ± 80	5829 ± 80	
$f_{core}(\Delta E)$ Signal	0.63 ± 0.14	0.63 ± 0.14	
$\mu_{core}(\Delta E)$ Signal	-1.3 ± 0.7 MeV	-1.3 ± 0.6 MeV	
$\sigma_{core}(\Delta E)$ Signal	$17.1 \pm 1.4 \text{ MeV}$	17.1 ± 1.3 MeV	
$\mu_{tail}(\Delta E)$ Signal	$-7.3\pm2.9~{ m MeV}$	-7.4 ± 3.0 MeV	
$\sigma_{tail}(\Delta E)$ Signal	31.2 ± 4.6 MeV	$31.4 \pm 4.6 \text{ MeV}$	
$\mathtt{Slope}(\Delta E)$ Continuum	-8.51 ± 5.77	-8.49 ± 5.77	
$\mu(\mathrm{m}_{ES})$ Signal	$5.2788 \pm 0.0001 \text{ GeV}/c^2$	$5.2788 \pm 0.0001 \text{ GeV}/c^2$	
$\sigma_L({ m m}_{ES})$ Signal	$2.24 \pm 0.06 \text{ MeV}/c^2$	$2.24 \pm 0.06 \text{ MeV}/c^2$	
$\sigma_R(\mathrm{m}_{ES})$ Signal	$2.73 \pm 0.07 \text{ MeV}/c^2$	$2.73 \pm 0.07 \text{ MeV}/c^2$	
Argus Slope (m_{ES}) Continuum	-0.3 ± 0.2	-0.4 ± 0.2	
$a_1(NN)$ Continuum	1.9 ± 0.1	1.9 ± 0.1	
$a_2(NN)$ Continuum	3.2 ± 0.4	3.2 ± 0.4	
$a_3(NN)$ Continuum	-1.1 ± 0.1	-1.1 ± 0.1	
$a_5(NN)$ Continuum	-0.47 ± 0.05	-0.48 ± 0.05	
$\mu_{common}(\Delta t)$ Continuum	$0.018 \pm 0.007 \ ps$	$0.018 \pm 0.007 \ ps$	
$\sigma_{core}(\Delta t)$ Continuum	$1.14 \pm 0.02 \ ps$	$1.14 \pm 0.02 \ ps$	
$f_{tail}(\Delta t)$ Continuum	0.16 ± 0.02	0.16 ± 0.02	
$\sigma_{tail}(\Delta t)$ Continuum	$2.8 \pm 0.2 \ ps$	$2.8 \pm 0.2 \ ps$	
$f_{outlier}(\Delta t)$ Continuum	0.030 ± 0.004	0.030 ± 0.004	
$\sigma_{outlier}(\Delta t)$ Continuum	$10.7\pm0.9~ps$	$10.7 \pm 0.8 \ ps$	

Alejandro Perez,

Parameter Name	Fit Result Sol-I	Fit Result Sol-II	Eit Paramotors:
ΔNLL	0.16	0.0	<u>Fil Palameters.</u>
$N(B^0 \rightarrow D^+ \pi^-)$	3361 ± 60	3362 ± 60	
$N(B^0 \rightarrow J/\psi K_s^0)$	1804 ± 44	1803 ± 43	• II Yields,
$N(B^0 \rightarrow \eta' K_s^0)$	46 ± 16	44 ± 16	
$\mathbb{N}(B^0 \to \psi(2S)K_s^0)$	142 ± 13	142 ± 13	
N(cont-Lepton)	46 ± 8.9	47 ± 9	
N(cont-KaonI)	800 ± 31	800 ± 31	
N(cont-KaonII)	2127 ± 49	2127 ± 49	
N(cont-KaonPion)	1775 ± 45	1775 ± 45	
N(cont-Pion)	2048 ± 48	2048 ± 48	
N(cont-Other)	1614 ± 42	1614 ± 42	
N(cont-NoTag)	5829 ± 80	5829 ± 80	
$f_{core}(\Delta E)$ Signal	0.63 ± 0.14	0.63 ± 0.14	
$\mu_{core}(\Delta E)$ Signal	-1.3 ± 0.7 MeV	-1.3 ± 0.6 MeV	
$\sigma_{core}(\Delta E)$ Signal	$17.1 \pm 1.4 \text{ MeV}$	17.1 ± 1.3 MeV	
$\mu_{tail}(\Delta E)$ Signal	-7.3 ± 2.9 MeV	-7.4 ± 3.0 MeV	
$\sigma_{tail}(\Delta E)$ Signal	$31.2 \pm 4.6 \text{ MeV}$	$31.4 \pm 4.6 \text{ MeV}$	
$\mathtt{Slope}(\Delta E)$ Continuum	-8.51 ± 5.77	-8.49 ± 5.77	
$\mu(\mathrm{m}_{ES})$ Signal	$5.2788 \pm 0.0001 \text{ GeV}/c^2$	$5.2788 \pm 0.0001 \text{ GeV}/c^2$	
$\sigma_L({ m m}_{ES})$ Signal	$2.24 \pm 0.06 \text{ MeV}/c^2$	$2.24 \pm 0.06 \text{ MeV}/c^2$	
$\sigma_R({ m m}_{ES})$ Signal	$2.73 \pm 0.07 \text{ MeV}/c^2$	$2.73 \pm 0.07 \text{ MeV}/c^2$	
Argus Slope (m_{ES}) Continuum	-0.3 ± 0.2	-0.4 ± 0.2	
$a_1(NN)$ Continuum	1.9 ± 0.1	1.9 ± 0.1	
$a_2(NN)$ Continuum	3.2 ± 0.4	3.2 ± 0.4	
$a_3(NN)$ Continuum	-1.1 ± 0.1	-1.1 ± 0.1	
$a_5(NN)$ Continuum	-0.47 ± 0.05	-0.48 ± 0.05	
$\mu_{common}(\Delta t)$ Continuum	$0.018 \pm 0.007 \ ps$	$0.018 \pm 0.007 \ ps$	
$\sigma_{core}(\Delta t)$ Continuum	$1.14 \pm 0.02 \ ps$	$1.14 \pm 0.02 \ ps$	
$f_{tail}(\Delta t)$ Continuum	0.16 ± 0.02	0.16 ± 0.02	
$\sigma_{tail}(\Delta t)$ Continuum	$2.8 \pm 0.2 \ ps$	$2.8 \pm 0.2 \ ps$	
$f_{outlier}(\Delta t)$ Continuum	0.030 ± 0.004	0.030 ± 0.004	
$\sigma_{outlier}(\Delta t)$ Continuum	$10.7\pm0.9~ps$	$10.7 \pm 0.8 \ ps$	

Alejandro Perez,

Parameter Name	Fit Result Sol-I	Fit Result Sol-II	Lit Doromotoro
ΔNLL	0.16	0.0	Fit Parameters:
$N(B^0 \rightarrow D^+ \pi^-)$	3361 ± 60	3362 ± 60	11 Violdo
$N(B^0 \rightarrow J/\psi K_s^0)$	1804 ± 44	1803 ± 43	• II Yields,
$N(B^0 \rightarrow \eta' K_s^0)$	46 ± 16	44 ± 16	
$N(B^0 \rightarrow \psi(2S)K_s^0)$	142 ± 13	142 ± 13	• 20 Snape parameters,
N(cont-Lepton)	46 ± 8.9	47 ± 9	
N(cont-KaonI)	> 800 ± 31	800 ± 31	• 14 other parameters,
N(cont-KaonII)	2127 ± 49	2127 ± 49	
N(cont-KaonPion)	1775 ± 45	1775 ± 45	Verv similar in
N(cont-Pion)	2048 ± 48	2048 ± 48	
N(cont-Other)	1614 ± 42	1614 ± 42	DOTH SOLUTIONS!
N(cont-NoTag)	5829 ± 80	5829 ± 80	
$f_{core}(\Delta E)$ Signal	0.63 ± 0.14	0.63 ± 0.14	
$\mu_{core}(\Delta E)$ Signal	-1.3 ± 0.7 MeV	-1.3 ± 0.6 MeV	
$\sigma_{core}(\Delta E)$ Signal	$17.1 \pm 1.4 \text{ MeV}$	$17.1 \pm 1.3 \text{ MeV}$	
$\mu_{tail}(\Delta E)$ Signal	-7.3 ± 2.9 MeV	-7.4 ± 3.0 MeV	
$\sigma_{tail}(\Delta E)$ Signal	31.2 ± 4.6 MeV	$31.4 \pm 4.6 \text{ MeV}$	
$\mathtt{Slope}(\Delta E)$ Continuum	-8.51 ± 5.77	-8.49 ± 5.77	
$\mu(\mathrm{m}_{ES})$ Signal	$5.2788 \pm 0.0001 \text{ GeV}/c^2$	$5.2788 \pm 0.0001 \text{ GeV}/c^2$	
$\sigma_L({ m m}_{ES})$ Signal	$2.24 \pm 0.06 \text{ MeV}/c^2$	$2.24 \pm 0.06 \text{ MeV}/c^2$	
$\sigma_R({ m m}_{ES})$ Signal	$2.73 \pm 0.07 \text{ MeV}/c^2$	$2.73 \pm 0.07 \text{ MeV}/c^2$	
Argus Slope (m_{ES}) Continuum	-0.3 ± 0.2	-0.4 ± 0.2	
$a_1(NN)$ Continuum	1.9 ± 0.1	1.9 ± 0.1	
$a_2(NN)$ Continuum	3.2 ± 0.4	3.2 ± 0.4	
$a_3(NN)$ Continuum	-1.1 ± 0.1	-1.1 ± 0.1	
$a_5(NN)$ Continuum	-0.47 ± 0.05	-0.48 ± 0.05	
$\mu_{common}(\Delta t)$ Continuum	$0.018 \pm 0.007 \ ps$	$0.018 \pm 0.007 \ ps$	
$\sigma_{core}(\Delta t)$ Continuum	$1.14 \pm 0.02 \ ps$	$1.14 \pm 0.02 \ ps$	
$f_{tail}(\Delta t)$ Continuum	0.16 ± 0.02	0.16 ± 0.02	
$\sigma_{tail}(\Delta t)$ Continuum	$2.8 \pm 0.2 \ ps$	$2.8 \pm 0.2 \ ps$	
$f_{outlier}(\Delta t)$ Continuum	0.030 ± 0.004	0.030 ± 0.004	
$\sigma_{outlier}(\Delta t)$ Continuum	$10.7 \pm 0.9 \ ps$	$10.7 \pm 0.8 \ ps$	

Alejandro Perez,

Amplitudes and Phases of Isonbar amplitudes

Isobar Amplitude	A Sol-I	$\phi[deg]$ Sol-I	A Sol-II	$\phi[deg]$ Sol-II
$A(f_0(980)K_S^0)$	4.0	0.0	4.0	0.0
$\bar{A}(f_0(980)K_S^0)$	3.7 ± 0.4	-73.9 ± 19.6	3.2 ± 0.6	-112.3 ± 20.9
$A(\rho(770)K_{S}^{0})$	0.10 ± 0.02	35.6 ± 14.9	0.09 ± 0.02	66.7 ± 18.3
$\bar{A}(ho(770)K_S^0)$	0.11 ± 0.02	15.3 ± 20.0	0.10 ± 0.03	-0.1 ± 18.2
A(NR)	2.6 ± 0.5	35.3 ± 16.4	1.9 ± 0.7	56.7 ± 23.6
$\bar{A}(NR)$	2.7 ± 0.6	36.1 ± 18.3	3.1 ± 0.6	-45.2 ± 17.8
$A(K^{*+}(892)\pi^{-})$	0.154 ± 0.016	-138.7 ± 25.7	0.145 ± 0.017	-107.0 ± 24.1
$\bar{A}(K^{*-}(892)\pi^+)$	0.125 ± 0.015	163.1 ± 23.0	0.119 ± 0.015	76.4 ± 23.0
$A((K\pi)_0^{*+}\pi^-)$	6.9 ± 0.6	-151.7 ± 19.7	6.5 ± 0.6	-122.5 ± 20.3
$\bar{A}((K\pi)_{0}^{*-}\pi^{+})$	7.6 ± 0.6	136.2 ± 19.8	7.3 ± 0.7	52.6 ± 20.3
$A(f_X(1300)K_S^0)$	1.41 ± 0.23	43.2 ± 22.0	1.40 ± 0.28	85.9 ± 24.8
$\bar{A}(f_X(1300)K_S^0)$	1.24 ± 0.27	31.6 ± 23.0	1.02 ± 0.33	-67.9 ± 22.1
$A(f_2(1270)K_S^0)$	0.014 ± 0.002	5.8 ± 19.2	0.012 ± 0.003	23.9 ± 22.7
$\bar{A}(f_2(1270)K_S^0)$	0.011 ± 0.003	-24.0 ± 28.0	0.011 ± 0.003	-83.3 ± 24.3
$A(\chi_{c0}K_S^0)$	0.33 ± 0.15	61.4 ± 44.5	0.28 ± 0.16	$5\overline{1.9 \pm 38.4}$
$\bar{A}(\chi_{c0}K_S^0)$	0.44 ± 0.09	15.1 ± 30.0	0.43 ± 0.08	-58.5 ± 27.9

Fit Parameters:

- 11 Yields,
- 20 Shape parameters,
- 14 other parameters,
- 30 Ampli. and Phases,

Total:

75 parameters floated!

Alejandro Perez,

Amplitudes and Phases of Isonbar amplitudes Fit Parameters:

• 11 Yields,	$\phi[deg]$ Sol-II	A Sol-II	$\phi[deg] \text{ Sol-I}$	A Sol-I	Isobar Amplitude
• 20 Shape parameters.	0.0	4.0	0.0	4.0	$A(f_0(980)K_S^0)$
• 14 other parameters	-112.3 ± 20.9	3.2 ± 0.6	-73.9 ± 19.6	3.7 ± 0.4	$\bar{A}(f_0(980)K_S^0)$
• 14 Other parameters,	66.7 ± 18.3	0.09 ± 0.02	35.6 ± 14.9	0.10 ± 0.02	$A(\rho(770)K_{S}^{0})$
• 30 Ampli. and Phases,	-0.1 ± 18.2	0.10 ± 0.03	15.3 ± 20.0	0.11 ± 0.02	$\bar{A}(\rho(770)K_{S}^{0})$
Total:	56.7 ± 23.6	1.9 ± 0.7	35.3 ± 16.4	2.6 ± 0.5	A(NR)
	-45.2 ± 17.8	3.1 ± 0.6	36.1 ± 18.3	2.7 ± 0.6	$\bar{A}(NR)$
75 parameters	-107.0 ± 24.1	0.145 ± 0.017	-138.7 ± 25.7	0.154 ± 0.016	$A(K^{*+}(892)\pi^{-})$
Tioated!	76.4 ± 23.0	0.119 ± 0.015	163.1 ± 23.0	0.125 ± 0.015	$\bar{A}(K^{*-}(892)\pi^+)$
Moduli of isobar	-122.5 ± 20.3	6.5 ± 0.6	-151.7 ± 19.7	6.9 ± 0.6	$A((K\pi)_0^{*+}\pi^-)$
amplitudes verv	52.6 ± 20.3	7.3 ± 0.7	136.2 ± 19.8	7.6 ± 0.6	$\bar{A}((K\pi)_{0}^{*-}\pi^{+})$
cimilar in both	85.9 ± 24.8	1.40 ± 0.28	43.2 ± 22.0	1.41 ± 0.23	$A(f_X(1300)K_S^0)$
Similar in Dom	-67.9 ± 22.1	1.02 ± 0.33	31.6 ± 23.0	1.24 ± 0.27	$\bar{A}(f_X(1300)K_S^0)$
solutions	23.9 ± 22.7	0.012 ± 0.003	5.8 ± 19.2	0.014 ± 0.002	$A(f_2(1270)K_S^0)$
	-83.3 ± 24.3	0.011 ± 0.003	-24.0 ± 28.0	0.011 ± 0.003	$\bar{A}(f_2(1270)K_S^0)$
	51.9 ± 38.4	0.28 ± 0.16	61.4 ± 44.5	0.33 ± 0.15	$A(\chi_{c0}K_S^0)$
	-58.5 ± 27.9	0.43 ± 0.08	15.1 ± 30.0	0.44 ± 0.09	$\bar{A}(\chi_{c0}K_S^0)$

Amplitudes and Phases of Isonbar amplitudes | Fit Parameters:

$\phi[deg]$ Sol-II	A Sol-II	$\phi[deg]$ Sol-I	A Sol-I	Isobar Amplitude
0.0	4.0	0.0	4.0	$A(f_0(980)K_S^0)$
-112.3 ± 20.9	3.2 ± 0.6	-73.9 ± 19.6	3.7 ± 0.4	$\bar{A}(f_0(980)K_S^0)$
66.7 ± 18.3	0.09 ± 0.02	35.6 ± 14.9	0.10 ± 0.02	$A(\rho(770)K_{S}^{0})$
-0.1 ± 18.2	0.10 ± 0.03	15.3 ± 20.0	0.11 ± 0.02	$A(\rho(770)K_S^0)$
56.7 ± 23.6	1.9 ± 0.7	35.3 ± 16.4	2.6 ± 0.5	A(NR)
-45.2 ± 17.8	3.1 ± 0.6	36.1 ± 18.3	2.7 ± 0.6	A(NR)
-107.0 ± 24.1	0.145 ± 0.017	-138.7 ± 25.7	0.154 ± 0.016	$A(K^{*+}(892)\pi^{-})$
76.4 ± 23.0	0.119 ± 0.015	163.1 ± 23.0	0.125 ± 0.015	$A(K^{*-}(892)\pi^+)$
-122.5 ± 20.3	6.5 ± 0.6	-151.7 ± 19.7	6.9 ± 0.6	$A((K\pi)_0^{++}\pi^-)$
52.6 ± 20.3	7.3 ± 0.7	136.2 ± 19.8	7.6 ± 0.6	$\frac{A((K\pi)_0^+ \pi^+)}{A(K(K\pi)_0^+ \pi^+)}$
85.9 ± 24.8	1.40 ± 0.28	43.2 ± 22.0	1.41 ± 0.23	$A(f_X(1300)K_S^0)$ $\bar{A}(f_X(1300)K_S^0)$
-67.9 ± 22.1	1.02 ± 0.33	31.6 ± 23.0	1.24 ± 0.27	$A(f_X(1300)K_S^0)$
23.9 ± 22.7	0.012 ± 0.003	5.8 ± 19.2	0.014 ± 0.002	$A(f_2(1270)K_S^0)$ $\bar{A}(f_2(1270)K_S^0)$
-83.3 ± 24.3	0.011 ± 0.003	-24.0 ± 28.0	0.011 ± 0.003	$A(f_2(1270)K_S^2)$
31.9 ± 38.4	0.28 ± 0.10 0.42 ± 0.09	01.4 ± 44.0 15.1 \pm 20.0	0.33 ± 0.13	$A(\chi_{c0}\Lambda_{\tilde{S}})$ $\bar{A}(\chi_{c0}K^0)$
-36.0 ± 21.9	0.43 ± 0.08	10.1 ± 30.0	0.44 ± 0.09	$A(\chi_{c0}\Lambda_{S})$
	$\begin{array}{c} \phi[deg] \text{ Sol-II} \\ \hline 0.0 \\ -112.3 \pm 20.9 \\ \hline 66.7 \pm 18.3 \\ -0.1 \pm 18.2 \\ \hline 56.7 \pm 23.6 \\ -45.2 \pm 17.8 \\ \hline -107.0 \pm 24.1 \\ \hline 76.4 \pm 23.0 \\ \hline -122.5 \pm 20.3 \\ \hline 52.6 \pm 20.3 \\ \hline 52.6 \pm 20.3 \\ \hline 85.9 \pm 24.8 \\ -67.9 \pm 22.1 \\ \hline 23.9 \pm 22.7 \\ -83.3 \pm 24.3 \\ \hline 51.9 \pm 38.4 \\ -58.5 \pm 27.9 \\ \end{array}$	$ A $ Sol-II $\phi[deg]$ Sol-II4.00.0 3.2 ± 0.6 -112.3 ± 20.9 0.09 ± 0.02 66.7 ± 18.3 0.10 ± 0.03 -0.1 ± 18.2 1.9 ± 0.7 56.7 ± 23.6 3.1 ± 0.6 -45.2 ± 17.8 0.145 ± 0.017 -107.0 ± 24.1 0.119 ± 0.015 76.4 ± 23.0 6.5 ± 0.6 -122.5 ± 20.3 7.3 ± 0.7 52.6 ± 20.3 1.40 ± 0.28 85.9 ± 24.8 1.02 ± 0.33 -67.9 ± 22.1 0.012 ± 0.003 23.9 ± 22.7 0.011 ± 0.003 -83.3 ± 24.3 0.28 ± 0.16 51.9 ± 38.4 0.43 ± 0.08 -58.5 ± 27.9	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ A $ Sol-I $\phi[deg]$ Sol-I $ A $ Sol-II $\phi[deg]$ Sol-II4.00.04.00.0 3.7 ± 0.4 -73.9 ± 19.6 3.2 ± 0.6 -112.3 ± 20.9 0.10 ± 0.02 35.6 ± 14.9 0.09 ± 0.02 66.7 ± 18.3 0.11 ± 0.02 15.3 ± 20.0 0.10 ± 0.03 -0.1 ± 18.2 2.6 ± 0.5 35.3 ± 16.4 1.9 ± 0.7 56.7 ± 23.6 2.7 ± 0.6 36.1 ± 18.3 3.1 ± 0.6 -45.2 ± 17.8 0.154 ± 0.016 -138.7 ± 25.7 0.145 ± 0.017 -107.0 ± 24.1 0.125 ± 0.015 163.1 ± 23.0 0.119 ± 0.015 76.4 ± 23.0 6.9 ± 0.6 -151.7 ± 19.7 6.5 ± 0.6 -122.5 ± 20.3 7.6 ± 0.6 136.2 ± 19.8 7.3 ± 0.7 52.6 ± 20.3 1.41 ± 0.23 43.2 ± 22.0 1.40 ± 0.28 85.9 ± 24.8 1.24 ± 0.27 31.6 ± 23.0 1.02 ± 0.33 -67.9 ± 22.1 0.014 ± 0.002 5.8 ± 19.2 0.011 ± 0.003 -83.3 ± 24.3 0.33 ± 0.15 61.4 ± 44.5 0.28 ± 0.16 51.9 ± 38.4 0.44 ± 0.09 15.1 ± 30.0 0.43 ± 0.08 -58.5 ± 27.9

Results on Q2B parameters

Parameter	Value Sol-I	Value Sol-II
$C(f_0(980)K_S^0)$	0.08 ± 0.19	0.23 ± 0.19
$2\beta_{eff}(f_0(980)K_S^0)$	73.9 ± 19.6	112.3 ± 20.8
$FF(f_0(980)K_S^0)$	$13.8^{+1.5}_{-1.4}$	$13.5^{+1.4}_{-1.3}$
$C(\rho^{0}(770)K_{S}^{0})$	-0.05 ± 0.26	-0.14 ± 0.26
$2\beta_{eff}(\rho^0(770)K_S^0)$	20.3 ± 17.7	66.7 ± 20.7
$FF(\rho^{0}(770)K_{S}^{0})$	$8.6^{+1.4}_{-1.3}$	$8.5^{+1.3}_{-1.2}$
$A_{CP}(K^{*}(892)\pi)$	-0.21 ± 0.10	$-0.19^{+0.10}_{-0.11}$
$\Delta \phi(K^*(892)\pi)$	58.3 ± 32.7	176.6 ± 28.8
$FF(K^{*}(892)\pi)$	$11.0^{+1.2}_{-1.0}$	$10.9^{+1.2}_{-1.0}$
$A_{CP}((K\pi)_0^*\pi)$	0.09 ± 0.07	$0.12^{+0.07}_{-0.06}$
$\Delta \phi((K\pi)_0^*\pi)$	72.2 ± 24.6	-175.1 ± 22.6
$FF((K\pi)_0^*\pi)$	45.2 ± 2.3	46.1 ± 2.4
$C(f_2(1270)K_S^0)$	$0.28^{+0.35}_{-0.40}$	0.09 ± 0.46
$\phi(f_2(1270)K_S^0)$	29.8 ± 35.8	107.2 ± 33.3
$FF(f_2(1270)K_S^0)$	$2.3^{+0.8}_{-0.7}$	$2.3^{+0.9}_{-0.7}$
$C(f_X(1300)K_S^0)$	$0.13^{+0.33}_{-0.35}$	$0.30^{+0.34}_{-0.41}$
$\phi(f_X(1300)K_S^0)$	11.5 ± 30.3	153.8 ± 27.5
$FF(f_X(1300)K_S^0)$	$3.6^{+1.0}_{-0.9}$	$3.5^{+1.0}_{-0.8}$
C(NR)	0.01 ± 0.25	$-0.45^{+0.28}_{-0.24}$
$\phi(NR)$	0.8 ± 17.5	102.0 ± 26.5
FF(NR)	11.5 ± 2.0	12.6 ± 2.0
$C(\chi_c(0)K_S^0)$	$-0.29^{+0.53}_{-0.44}$	$-0.41^{+0.54}_{-0.42}$
$\phi(\chi_c(0)K_S^0)$	46.3 ± 44.7	110.4 ± 46.6
$FF(\chi_{c}(0)K_{S}^{0})$	$1.04^{+0.41}_{-0.33}$	$0.99^{+0.37}_{-0.30}$
FF_{Tot}	$97.2^{+1.7}_{-1.3}$	$98.3^{+1.5}_{-1.3}$
A_{CP}^{ind}	-0.01 ± 0.05	0.01 ± 0.05
$\Delta \phi(f^0(980)K^0_S, \rho(770)K^0_S)$	-35.6 ± 14.9	-66.7 ± 18.3
$\Delta \phi(ho(770)K_{S}^{0},K^{*}(892)\pi)$	174.3 ± 28.0	-173.7 ± 29.8
$\Delta \phi(\rho(770) K_S^0, (K\pi)_0^*\pi)$	-172.8 ± 22.6	-170.8 ± 26.8
$\Delta \phi(K^*(892)\pi, (K\pi)_0^*\pi)$	13.0 ± 10.9	15.5 ± 10.2

Fit Parameters:

- 11 Yields,
- 20 Shape parameters,
- 14 other parameters,
- 30 Ampli. and Phases,

Total:

75 parameters floated!

From the fitted isobar amplitudes the Q2B parameters are calculated

Fit Results: Proj. Plots (I)

Fit Results: Proj. Plots (I)

Fit Results: Proj. Plots (I)

Zoom on the signal region

Events/(0.06)

Fit Results: Proj. Plots (II)

m

ES

Fit Results: Proj. Plots (III)

ΔE

Fit Results: Proj. Plots (IV)

Alejandro Perez, BaBar France Meeting, Oct 10th 2008

Fit Results: Proj. Plots (V)

$D\pi$ Band

Fit Results: Proj. Plots (VI)

ייא שר נטטעיט אווואים

J/ψ Band

Fit Results: Proj. Plots (VII)

Fit Results: Proj. Plots (VIII)

 $\Delta t / \sigma (\Delta t)$ (NoTag events excl.)

 $D\pi$ and J/ψ vetoed

Continuum enhanced by R cut

Fit Results: Proj. Plots (IX)

 $\Delta t / \sigma (\Delta t)$ (NoTag events excl.) $D\pi$ and J/ψ vetoed B⁰ Tagged **B⁰ Tagged** 140 120120100 Dπ Band[®] 10 $\frac{0}{\Delta t/\sigma_{A}}$ Δt/σ. 60 J/ψ Band 20 10 $\Delta t/\sigma$ Δt/σ 10th 2008

Fit Results: Proj. Plots (X)

Fit Results: Proj. Plots (XI)

Fit Results: Proj. Plots (XII)

Fit Results: Proj. Plots (XIII)

Fit Results: Proj. Plots (XIII)

Alejandro Perez,

Fit Results: Proj. Plots (XIV)

Alejandro Perez,

Fit Results: Proj. Plots (XIV)

Alejandro Perez,

Fit Results: Proj. Plots (XIV)

Fit Results: Proj. Plots (XV)

Fit Results: Proj. Plots (XV)

Fit Results: Proj. Plots (XVI)

Fit Results: 1D Like. Scans (I)

Fit Results: 1D Like. Scans (I)

Fit Results: 1D Like. Scans (II)

Fit Results: 1D Like. Scans (II)

Fit Results: 1D Like. Scans (III)

Fit Results: 1D Like. Scans (III)

Fit Results: 1D Like. Scans (IV)

Fit Results: 1D Like. Scans (IV)

Fit Results: 1D Like. Scans (IV)

Fit Results: 1D Like. Scans (V)

Fit Results: 1D Like. Scans (V)

Fit Results: 2D Like. Scans

(C,S) 2D scans

Fit Results: 2D Like. Scans

(C,S) 2D scans

Fit Results: 2D Like. Scans

(C,S) 2D scans

BaBar France Meeting, Oct 10th 2008

Alejandro Perez,

Fit Results: Branching Frations

Component	Branching Fraction $\mathcal{B}(10^{-6})$
$B^0 \to f_0(980)K^0$	$7.02^{+0.95}_{-0.61} \pm 0.70 \pm 0.17$
$B^0 \rightarrow \rho^0(770) K^0$	$4.33^{+0.64}_{-0.68} \pm 0.41 \pm 0.12$
$B^0 \to K^{*+}(892)\pi^-$	$5.51^{+0.51}_{-0.60} \pm 0.49 \pm 0.42$
$B^0 \to (K\pi)_0^{*+}\pi^-$	$22.69^{+1.13}_{-1.49} \pm 2.03 \pm 0.45$
$B^0 \to f_2(1270)K^0$	$1.16^{+0.34}_{-0.40} \pm 0.16 \pm 0.35$
$B^0 \to f_X(1300) K^0$	$1.82^{+0.51}_{-0.53} \pm 0.24 \pm 0.43$
Non-resonant	$5.78^{+1.00}_{-1.62} \pm 0.71 \pm 0.30$
$B^0 \to \chi_C(0) K^0$	$0.52^{+0.15}_{-0.21} \pm 0.04 \pm 0.05$
Inclusive	$50.12 \pm 1.61 \pm 3.99 \pm 0.73$

All BFs are consistent with previous mesurements

Alejandro Perez,

Ξ

Systematic Uncertainties

All Systematics have been reevaluated:

- Reconstruction and SCF model
- Ks reconstruction, tracking effic., PID and luminosity
- Fixed params. in fit
- Tag-side interference
- Continuum and B-background PDF
- Signal DP Model:
 - Lineshapes fix parameters
 - Component contributing to the signal model:
 - * Previously it was evaluated adding resonant components one-by-one and refitting data. Some systematic effects were then double counted.
 - * Now are evaluated on toys.

Alejandro Perez,

Systematics: Signal DP Model (I)

- Nominal signal model (NSM): f0(980), ρ(770), K*(892), K0*(1430), NR, fX(1300), f2(1270), χc0.
- **Supplementary components tested:** ρ (1450), ρ (1700), f0(1710), χ c2, K*2(1430), K*(1410), K*(1680).
- First steep: fit on Data fixing NSM and adding supp. components. Q2B parameters obtained are used to generate toys with NSM + supp. Compos.
- For components: p(1450), K*(1410) and K*(1680) big isobar fraction where found. So took these number from other analyses with better sensitivity.
- The isobar fractions used for toys:
 - $BF(\rho(1450)) = 13.0 \% * BF(\rho(770))$
 - $BF(\rho(1700)) = 7.0 \% * BF(\rho(770))$
 - $BF(f0(1710)) = (3.0 \pm 11.2)(\%) * BF(f0(892))$
 - $BF(\chi c2) = (1.5 \pm 0.7)(\%) * BF(\chi c0)$
 - BF(K*2(1430)) = (4.1 ± 1.5)(%) * BF(K*0(1430))
 - BF(K*(1410)) = 2.7 % * BF(K*(892))
 - BF(K*(1680)) = 15.6 % * BF(K*(892))

(From $\rho\pi$ analysis)

- (From $\rho\pi$ analysis)
- (From fit on Data)
- (From fit on Data)
 - (From fit on Data)
 - (From charged $K\pi\pi$)

(From charged $K\pi\pi$)

Using these results toys where made: generate 100 signal only high statistics (10K events). Fitting with/without supp. Compos. Systematics evaluated as mean bias between both configurations.

Alejandro Perez,

Systematics: Signal DP Model (II)

Results:

Par.	Syst. Error	Par.	Syst. Error
$C(f_0(980))$	0.04	$C(\rho^0(770))$	0.03
$FF(f_0(980))$	0.6	$FF(\rho^{0}(770))$	0.23
$2\beta_{eff}(f_0(980))$	4.1	$2\beta_{eff}(\rho^0(980))$	3.7
$A_{CP}(K^{*}(892))$	0.02	$A_{CP}((K\pi)_0^*)$	0.02
$FF(K^*(892))$	0.8	$FF((K\pi)_0^*)$	0.90
$\Delta\phi(K^*(892))$	8.1	$\Delta \phi((K\pi)_0^*)$	4.4
$C(f_2(1270))$	0.07	$C(f_X(1300))$	0.09
$FF(f_2(1270))$	0.69	$FF(f_X(1300))$	0.87
$\phi(f_2(1270))$	10.4	$\phi(f_X(1300))$	4.5
C(NR)	0.04	$C(\chi_C(0))$	0.05
FF(NR)	0.60	$FF(\chi_C(0))$	0.09
$\phi(NR)$	7.5	$\phi(\chi_C(0))$	8.2
$\Delta \phi(f_0, ho^0)$	4.4	FF_{Tot}	1.15
$\Delta \phi(K^*(892), (K\pi)_0^*)$	4.7	A_{CP}^{incl}	0.006
$\Delta\phi(\rho^0, (K\pi)_0^*))$	8.7	Signal Yield	31.7
$\Delta\phi(\rho^0, K^*(892)$	12.7		

Alejandro Perez,

Systematics: Signal DP Model (II)

Results:

Par.	Syst. Error	Par.	Syst. Error		
$C(f_0(980))$	0.04	$C(\rho^0(770))$	0.03		
$FF(f_0(980))$	0.6	$FF(\rho^{0}(770))$	0.23		
$2\beta_{eff}(f_0(980))$	4.1	$2\beta_{eff}(\rho^0(980))$	3.7		
$A_{CP}(K^{*}(202))$	0.09	$\Lambda ((K_{\pi})^*)$	0.02		
$FF(K^*(8 $ Error	<i>FF</i> (<i>K</i> [*] (§ Errors obtained are significantly				
$\Delta \phi(K^*(8 impr$	oved compa	ared with pre	vious		
$C(f_2(127))$	$C(f_2(127))$				
$FF(f_{2}(12))$	LPU7 results				
$\phi(f_2(1270))$	10.4	$\phi(f_X(1300))$	4.5		
C(NR)	0.04	$C(\chi_C(0))$	0.05		
FF(NR)	0.60	$FF(\chi_C(0))$	0.09		
$\phi(NR)$	7.5	$\phi(\chi_C(0))$	8.2		
$\Delta \phi(f_0, ho^0)$	4.4	FF_{Tot}	1.15		
$\Delta \phi(K^*(892), (K\pi)_0^*)$	4.7	A_{CP}^{incl}	0.006		
$\Delta\phi(\rho^0, (K\pi)_0^*))$	8.7	Signal Yield	31.7		
$\Delta\phi(\rho^0, K^*(892)$	12.7				

Alejandro Perez,

Total Systematic

Parameter	Total	Parameter	Total
$C(f_0(980))$	0.05	$C(\rho^0(770))$	0.10
$FF(f_0(980))$	1.03	$FF(\rho^{0}(770))$	0.52
$2\beta_{eff}(f_0(980))$	5.9	$2\beta_{eff}(\rho^0(980))$	7.0
$A_{CP}(K^*(892))$	0.02	$A_{CP}((K\pi)_0^*)$	0.03
$FF(K^{*}(892))$	1.00	$FF((K\pi)_0^*)$	2.08
$\Delta\phi(K^*(892))$	9.3	$\Delta\phi((K\pi)_0^*)$	6.0
$C(f_2(1270))$	0.11	$C(f_X(1300))$	0.10
$FF(f_2(1270))$	0.74	$FF(f_X(1300))$	0.94
$\phi(f_2(1270))$	12.1	$\phi(f_X(1300))$	6.2
C(NR)	0.08	$C(\chi_C(0))$	0.06
FF(NR)	1.17	$FF(\chi_C(0))$	0.11
$\phi(NR)$	8.4	$\phi(\chi_C(0))$	9.5
FF_{Tot}	2.40	A_{CP}^{inclu}	0.01
$\Delta \phi(f_0, \rho^0)$	7.5	$\Delta \phi(K^*(892), (K\pi)_0^*)$	6.6
$\Delta\phi(\rho^0, (K\pi)_0^*))$	13.3	$\Delta\phi(\rho^0, K^*(892)$	15.4
Signal Yield	42.1		

Alejandro Perez,

Total Systematic

Parameter	Total	Parameter	Total
$C(f_0(980))$	0.05	$C(\rho^0(770))$	0.10
$FF(f_0(980))$	1.03	$FF(\rho^{0}(770))$	0.52
$2\beta_{eff}(f_0(980))$	5.9	$2\beta_{eff}(\rho^0(980))$	7.0
$A_{CP}(K^*(892))$	0.02	$A_{CP}((K\pi)_0^*)$	0.03
$FF(K^{*}(892))$	1.00	$FF((K\pi)^*_0)$	2.08
$\Delta \phi(I)$ Results are dominated by			6.0
$C(f_2)$ statistical errors			0.10
FF(
$\phi(f_2(1270))$	12.1	$\phi(f_X(1300))$	6.2
C(NR)	0.08	$C(\chi_C(0))$	0.06
FF(NR)	1.17	$FF(\chi_C(0))$	0.11
$\phi(NR)$	8.4	$\phi(\chi_C(0))$	9.5
FF_{Tot}	2.40	A_{CP}^{inclu}	0.01
$\Delta \phi(f_0, \rho^0)$	7.5	$\Delta \phi(K^*(892), (K\pi)_0^*)$	6.6
$\Delta\phi(\rho^0, (K\pi)_0^*))$	13.3	$\Delta\phi(\rho^0, K^*(892)$	15.4
Signal Yield	42.1		

Alejandro Perez,

Conclusions and Perspectives (I)

- All the Q2B parameters are extracted, including BF
- All BF are consistent with previous analyses
- All direct CP asymmetries are consistent with zero at 2σ
- 2β_{eff} for f₀(980) has been measured, CP conservation (0 and 180°) is excluded at the 4.1σ and 3.6σ, respectively.
 Agreement with ccs value at 1.7σ
- 2β_{eff} for ρ⁰(770) has been measured for the first time. Its is consistent with zero within 1σ level, the value 180° being excluded at the 4.2σ. Agreement with ccs value at 1.0σ

Conclusions and Perspectives (II)

- Phase differences Δφ(K*(892)π), Δφ(S-wave Kπ),
 Δφ(ρ⁰(770),K*(892)π) and Δφ(ρ⁰(770),S-wave Kπ) have been measured, some of them for the first time. They can be used in phenomenological analyses (see Reina's Talk). Constraint are statistically limited
- (S,C) 2D scans have been performed for the $f_0(980)$ and $\rho^0(770)$ components. The zero CPV and SM values are excluded at the 3.5 σ and 1.1 σ level, respectively, for the $f_0(980)$ component.

The same values are not excluded for the $\rho^{0}(770)$ at 1σ

Perspectives:

- BAD #2112 uploaded
- Review is ongoing: B. Meadows, F. Porter and N. Arnaud
- The goal is to publish in PRD
- PHD thesis defence in December

Alejandro Perez,BaBar France Meeting, Oct 10th 2008

(m_{ES},∆E) Sideband

Alejandro Perez,

Local Minima configuration

- Local Minima structure is qualitaively the same.
- Previously there were two solutions close in NLL units, but one of them was hidden by the other
- With the new fit configuration the minima shifted a bit

94

Alejandro Perez,