Time-Dependent Amplitude Analysis of B⁰ K⁰ ^S ⁺ – Decays

Eli Ben-Haïm, José Ocariz, Alejandro Pérez

LPNHE-IN2P3-

Universités de Paris VI, Paris VII

Matt Graham

SLAC

With previous help from: Jinwei Wu, Maurizio Pierini

Outline

- **Motivations**
- **Existing Measurements** 0M
- **Analysis Strategy, Data Set, Event Selection**
- **B-background Model** Ű.
- **Likelihood function and Physical parameters** 鮷
- **Parameterization Tee**
- **Nominal Signal Model** Ō,
- **New Fitter Configuration** 0,
- **Fit Results** 0.
- **Projection Plots** Ű.
- **Likelihood scans and Branching Fractions** ğ,
- **Systematic Uncertainties** Ō,
- **Conclusion and perspectives**

Motivations

- **K 0** $\mathbf{s}^{\boldsymbol{\pi}^{\boldsymbol{\star}}}$ is dominated by $\mathsf{b} \to \mathsf{s}$ penguin diagrams. Most interesting **observables are related to the phases.**
- **Two good ways to study the phases:**
	- **Time dependent analysis**
	- **Dalitz plot analysis** \bullet .

 The present analysis makes advantage of both techniques

- **Many intermediate states contribute and interfere: f 0 (980), 0 (770), K*(892)...**
- **2 eff from f 0 (980) and 0 (770) can be measured directly, resolving the** $\textsf{Q2B}$ analyses ambiguities $(\textsf{sin(2\beta}_{\textsf{eff}}) = \textsf{sin}(\pi \textsf{-2\beta}_{\textsf{eff}}))$
- Phases from ρ^0 (770) and K*(892) are interesting for phenomenological **analyses (see Reina's talk)**
- **Measurement of inclusive and exclusive direct CP violation**
- **Measurement of total and partial branching fractions**03

Existing Measurements (I)

- **Time dependent Q2B analysis:**
	- **BaBar 2004 (PRL94:041802)** ${\sf S}[{\sf f}_{\sf_0}(980){\sf K}^{\sf o}_{\sf s}]$ = -0.95^{+0.32}_{-0.23} ± 0.1 $C[f_0(980)K^0_{\rm s}] = -0.24 \pm 0.31 \pm 0.15$
	- **Belle 2005 (arXiv:hep-ex/0507037) S[f⁰ (980)K⁰ S] = -0.47 ± 0.36 ± 0.08** $C[f_0(980)K^0_{\rm s}] = -0.23 \pm 0.23 \pm 0.13$
	- **BaBar 2006 (PRL98:051803) S[0 (770)K⁰ S] = 0.20 ± 0.52 ± 0.24** $C[\rho^o(770)K^o_{s}] = 0.64 \pm 0.41 \pm 0.20$

Existing Measurements (II)

BaBar time integrated, Q2B analysis: CXR

• **BAD 1065 (K.Ford et al.) Runs 1-4 (210** *fb-1)*

Results: $\frac{1}{2}$

Branching Fractions:

$$
\mathcal{B}(B^0 \to K^0 \pi^+ \pi^- \text{ Inclusive}) = (43.0 \pm 2.3 \pm 2.3) \times 10^{-6}
$$

\n
$$
\mathcal{B}(B^0 \to K_S^0 \pi^+ \pi^- \text{ nonresonant}) < 2.1 \times 10^{-6}
$$

\n
$$
\mathcal{B}(B^0 \to K^{** \pm} \pi^{\mp}, K^{** \pm} \to K^0 \pi^{\pm}) = (24.4 \pm 2.6 \pm 0.9) \times 10^{-6}
$$

\n
$$
\mathcal{B}(B^0 \to \rho^0 K_S^0) = (4.0 \pm 1.0 \pm 0.5 \pm 0.2) \times 10^{-6}
$$

\n
$$
\mathcal{B}(B^0 \to f_0 K_S^0) = (5.5 \pm 0.7 \pm 0.5 \pm 0.3) \times 10^{-6}
$$

\n
$$
\mathcal{B}(B^0 \to K^{*+} \pi^-) = (11.0 \pm 1.5 \pm 0.5 \pm 0.5) \times 10^{-6}
$$

• **Asymmetry for B⁰ K*+ -**

 $Acp (B⁰ \rightarrow K^{*+} \pi^-) = -0.11 \pm 0.14 \pm 0.05$

Alejandro Perez, BaBar France Meeting, Oct 10th 2008 5

Existing Measurements (III)

• **Belle (PR D73:031101) time and tagging integrated Dalitz plot analysis (357** *fb-1)*

Results:

- **In general, compatible with Q2B result from BaBar** 嬜
- \cdot Observed signal excess in $m_{\pi\pi}$ ~ 1.5 GeV/c² region
- **Exception: non-resonant**te.

Alejandro Perez, BaBar France Meeting, Oct 10th 2008 6 6 6 6 6 6 6 6 6 6 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7 7 8 7 8 7 8 7 8 7 8 7 7 8 7

Existing Measurements (IV)

Belle time-dependent DP analysis (657 fb-1)

They plan to finish the analysis soon. They already presented a limited set of preliminary results at ICHEP08 and CKM08, with errors comparable to ours

Alejandro Perez, BaBar France Meeting, Oct 10th 2008

Analysis Strategy

- $\mathsf{Similar\ to\ } \mathsf{B}^0 \rightarrow (\rho\pi)^0 \text{ (BAD\ }\#637\text{) and }\mathsf{B}^0 \rightarrow \ \mathsf{K}^*\pi^-\pi^0 \text{ (BAD\ }\#826\text{)}$
- **Simultaneous fit including:**
	- **− m_{ES}, ∆E, Neural Net (NN), ∆t and tagged Dalitz Plot**
- **The complex isobar amplitudes are directly fitted, allowing for CP violation parameters measurement (see later)**
- **RhoPiTools and PiPiKsTools are used to do the fitCon**

Data Set

Signal MC (SP8):

- **non-resonant (5401K events)**
- **B⁰ f 0 (980) (134K events)**
- **B⁰ 0 (980) (143K events)**
- **B⁰ K*(892) (134K events)**
- **B-background MC. See**

[\(http://www.slacstanford.edu/BFROOT/www/Organization/CollabMtgs/2007/detFeb07/Thur1b/aperez.pdf\)](http://www.slacstanford.edu/BFROOT/www/Organization/CollabMtgs/2007/detFeb07/Thur1b/aperez.pdf)

- **Charged and Neutral Generic**
- **Exclusive modes**
- **Data**
	- On/off resonance **F** Run 1-5,

 Vivace data set

R18b BtoCPP skim with BtoCPP_K_S0pi+pitagbit

Processed with QnBUser package in analysis-32

Alejandro Perez, BaBar France Meeting, Oct 10th 2008 9

Event Selection

- **candidates from GoodTrackLoose List**
- **K 0** $_{\bf s}$ candidates from KsDefault List
- **B 0 candidates vertexed using TreeFitter**
- **5.272 < m ES < 5.286 GeV/c²**
- **|E| < 65 MeV**
- **|t| < 20 ps**
- $\sigma(\Delta t) < 2.5$ ps
- **|M(Ks) M(Ks)PDF| < 15 MeV/c²**
- **Lifetime significance > 5**
- **cos(Ks,Ks daughters) < 0.999**
- **NN > -0.4**
- **PID requirements to separate from kaons and reject leptons**

Multiple candidates: cadidate selected arbitrarily, in order to not to bias the E distribution

Mod(timeStamp,nCands)

Total efficiency ~ 25%

B-background Model

Fit Variables:
$$
\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)
$$

The Likelihood Function

$$
L = \prod_{c=1}^{5} e^{-N_c} \prod_{i=1}^{N_c} \left(N_s \varepsilon_c (1 - f_{SCF,c}) P_{S,c}^{TM} + N_s \varepsilon_c f_{SCF,c} P_{S,c}^{SCF} + N_{q\overline{q}} P_{q\overline{q},c} + \sum_{i=1}^{N_c^B} N_{B,j} \varepsilon_{B,c} P_{B,c} \right) (\vec{x}_i)
$$

Fit Variables:
$$
\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)
$$

The Likelihood Function

$$
L = \prod_{c=1}^{5} e^{-N_c} \prod_{i=1}^{N_c} \left(N_s \varepsilon_c (1 - f_{SCF,c}) P_{S,c}^{TM} + N_s \varepsilon_c f_{SCF,c} P_{S,c}^{SCF} + N_{q\bar{q}} P_{q\bar{q},c} \left(\sum_{i=1}^{N_{class}} N_{B,j} \varepsilon_{B,c} P_{B,c} \right) (\vec{x}_i) \right)
$$
B-background Components

Alejandro Perez, BaBar France Meeting, Oct 10th 2008 15

Fit Variables:
$$
\vec{x}_i = (m_{ES}, \Delta E, NN, Qtag, \Delta t, DP)
$$

Standard Parameterizations:

- **Signal TM: Bifurcated Crystal Ball (parameters floated)**
- **Signal SCF: Non-parametric (Keys)**
- **Dand J/K 0** _s Bbkg: Share same PDF as signal. Allows to fit **parameters directly on data.**
- **All other B-backgrounds: Non-parametric (Keys)**
- **Continuum: Argus (parameters floated)**

Fit Variables:
$$
\vec{x}_i = (m_{ES}, \Delta E, \Delta N, Q \text{tag}, \Delta t, DP)
$$

Standard Parameterizations:

- **Signal TM: Doble Gaussian (parameters floated)**
- **Signal SCF: Gaussian (fix paramenters)**
- **D** π : Share same PDF as signal. Allows to fit parameters **directly on data.**
- **All other B-backgrounds: Non-parametric (Keys)**
- **Continuum:** 2nd degree polynomial (parameters floated)

Fit Variables:
$$
\vec{x}_i = (m_{ES}, \Delta E, NN, Dtag, \Delta t, DP)
$$

Standard Parameterizations:

• **Signal TM and SCF: Non-parametric (Keys). Separated in tagging categories**

• **All other B-backgrounds: Non-parametric (Keys). Same for all tagging categories**

• **Continuum: conditional PDF**

Fit Variables:
$$
\vec{x}_i = (m_{ES}, \Delta E, NN, \hat{Q} \text{tag}, \Delta t, DP)
$$

Continuum: Non-negligible correlation with DP Variables PDF dependent on the DP:

$$
P_{q\bar{q}}(NN; \Delta_{\text{Dalitz}}, A, B_0, B_1, B_2) = (1 - NN)^A \left(B_2 NN^2 + B_1 NN + B_0 \right)
$$

$$
A = a_1 + a_4 \Delta_{\text{Dalitz}},
$$

$$
B_0 = c_0 + c_1 \Delta_{\text{Dalitz}},
$$

$$
B_1 = a_3 + c_2 \Delta_{\text{Dalitz}},
$$

 Δ _{Dalitz} **: Distance to DP center**

$$
B_2 = a_2 + c_3 \Delta_{\text{Dalitz}},
$$

Continuum: Non-negligible correlation with DP Variables

Fit Variables:	$\vec{x}_i = (m_{ES}, \Delta E, NNQtag, \Delta t, DP)$	
Parameterizing Decay amplitude using Isobar Model:		
Dalitz Plot	$A(DP) = \sum a_j F_j(DP)$	Shapes of intermediates
Isobar Model	$\overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP)$	states over DP

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

Shapes of intermediates states over DP

$$
F_j^L(DP) = R_j(m) \times X_L(|\vec{p}^*| \, r) \times X_L(|\vec{q}| \, r) \times T_j(L, \vec{p}, \vec{q})
$$

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

Shapes of intermediates states over DP

$$
F_j^L(DP) = (R_j(m)) \times X_L(|\vec{p}^*|r) \times X_L(|\vec{q}|r) \times (T_j(L, \vec{p}, \vec{q}))
$$

Lineshape | Reserve All Alternation | Kinematic

function

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

Shapes of intermediates states over DP

$$
F_j^L(DP) = \left(R_j(m)\right) \times X_L(|\vec{p}^{\,\star}| \, r) \times X_L(|\vec{q}\,| \, r) \times T_j(L, \vec{p}, \vec{q}\,)
$$

Relativistic Breit-Wigner: K*(892), and for other less significant components (f2 (1270)K, K*(1410)K*(1680)). Flatte: (980)K Gounaris-Sakurai: (770)K S-wave K: LASS lineshape.

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model

 $F_j^L(DP) = R_j(m) \times X_L(|\vec{p}^*|r) \times X_L(|\vec{q}|r) \times T_j(L, \vec{p}, \vec{q})$

Shapes of intermediates

states over DP

Parameterizing Decay amplitude using Isobar Model:

Dality
\n**Solar Model**
\n**Time-dependent DP PDF**
\n
$$
f(\Delta t, DP, q_{\text{tag}}) \propto (|A|^2 + |\overline{A}|^2) \frac{e^{-|\Delta t|/\tau}}{4\tau} \left(1 + q_{\text{tag}} \frac{2 \text{Im}[\overline{A}A^*]}{|A|^2 + |\overline{A}|^2} \sin(\Delta m_d \Delta t) - q_{\text{tag}} \frac{|A|^2 - |\overline{A}|^2}{|A|^2 + |\overline{A}|^2} \cos(\Delta m_d \Delta t)\right)
$$

Misstag and time-resolution effects are taken into account

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot

\n
$$
A(DP) = \sum a_j F_j(DP)
$$
\n**Shapes of intermediates**

\n**Thomas Model**

\n
$$
\overline{A}(DP) = \sum \overline{a}_j \overline{F}_j(DP)
$$
\n**States over DP**

\n**Time-dependent DP PDF**

\n**mixing and decay CPU**

\n
$$
f(\Delta t, DP, q_{lag}) \propto (|A|^2 + |\overline{A}|^2) \frac{e^{-|\Delta|/r}}{4\tau} \left(1 + q_{lag} \frac{2 \text{Im}[\overline{A}A^*]}{|A|^2 + |\overline{A}|^2} \sin(\Delta m_d \Delta t) - q_{lag} \frac{|A|^2 - |\overline{A}|^2}{|A|^2 + |\overline{A}|^2} \cos(\Delta m_d \Delta t)\right)
$$
\n**Complex amplitudes**

\n**Complex amplitudes**

\n**Ca**

\n**double and phase con be directly'fitted on data.**

Parameterizing Decay amplitude using Isobar Model:

Dalitz Plot Isobar Model Shapes of intermediates states over DP Time-dependent DP PDF CP violation varies over DP mixing and decay CPV DCPV

Complex amplitudes \boldsymbol{a} , and \boldsymbol{a} determine DP interference pattern. **Module and phase con be directly fitted on data.**

strong and weak phases and thus raises the degeneracy on the phases.

Fit Variables:
$$
\vec{x}_i = (m_{ES}, \Delta E, NN\textcirc{Otag}, \Delta t, DP)
$$

Background Parameterizations:

- **DP PDF: Non-parametric PDF.**
	- **Continuum: constructed using off-peak and on-peak**

 (mES ,E) side band data.

- **B-background: constructed using MC**
- **t PDF:**
	- **Continuum: empirical parameterization (triple-gaussian)**
- **B-background: same as signal for most neutral modes. Customized PDFs for charged generic and Dcomponents**

Physical Parameters (I)

Alejandro Perez, BaBar France Meeting, Oct 10th 2008 30

Physical Parameters (II)

Inclusive Direct CP asymmetry

$$
A_{CP}^{incl} = \frac{\int_{DP} [|\mathcal{A}(DP)|^2 - |\overline{\mathcal{A}}(DP)|^2] d(DP)}{\int_{DP} [|\mathcal{A}(DP)|^2 + |\overline{\mathcal{A}}(DP)|^2] d(DP)},
$$

Inclusive Branching Fraction

$$
{\cal B}^{incl}={\cal B}(B^0\to K^0\pi^+\pi^-)=\frac{N_{sig}}{{\cal B}(K^0\to K^0_S)\langle\varepsilon\rangle N_{B\overline{B}}},
$$

Exclusive Branching Fractions

$$
\mathcal{B}(\sigma)=FF_{\sigma}\mathcal{B}^{incl}
$$

Alejandro Perez, BaBar France Meeting, Oct 10th 2008 31

Nominal Signal Model

List of components included in nominal fit:

- *B*⁰ → ρ ⁰(770) K ⁰_S (GS)
- *B***⁰ → f ⁰ (980)** *K***⁰ ^S(Flatté)**
- *B***⁰ →** *K* *** (892) (RBW)**
- **KS-wave (LASS)**
- **Non-resonant (flat phase space)**
- *B***⁰ → f^X (1300)***K***⁰ ^S(RBW)**
- *B***⁰ → f ² (1270)***K***⁰ ^S(RBW)**
- $B^0 \rightarrow \chi_{\rm c0} K^0_{\rm \; S}$ (RBW)

Same Signal Model as in $\mathsf{B}^{\mathsf{+}}{\rightarrow}\mathsf{K}^{\mathsf{+}}\pi^{\mathsf{-}}\pi^{\mathsf{+}}$ analysis │ BAD #1512

New Fitter Configuration (I)

- **Reminder: preliminary results were present at LP07 hep-ex/0708.2097**
- **Changes in fit configuration since then:**
	- **No changes on Data sample and Selection.**
	- **No changes on DP signal model.**
- Corrected a mistake in the GS lineshape for the ρ^0 (770)K 0 **S**

New Fitter Configuration (II)

- **Reminder: preliminary results were present at LP07 hep-ex/0708.2097**
- **Changes in fit configuration since then:**

 - Now we use a charge symmetric DP continuum PDF for all tagging categories (except for Non-tagged events).

New Fitter Configuration (III)

- **Reminder: preliminary results were present at LP07 hep-ex/0708.2097**
- **Changes in fit configuration since then:**
	- **Now taking into account resonances barrier factors. Before we used r = 0, now PDG values.**

 Only affects vector resonances.

New Fitter Configuration (IV)

- **Reminder: preliminary results were present at LP07 hep-ex/0708.2097**
- **Changes in fit configuration since then:**
	- **Before: cutting the whole LASS amplitude above 2.0GeV/c²**
- **Now : cutting only effective range part above 1.8GeV/c² , same configuration as in B⁺→K⁺π[−]π⁺ analysis <mark>BAD #1512</mark>**

New Fitter Configuration (IV)

- **Reminder: preliminary results were present at LP07 hep-ex/0708.2097**
- **Changes in fit configuration since then:**
	- **BFs are now measured**
	- **All systematics have been recalculated**
	- **Improved evaluation of DP signal model systematics, based on toys**
	- **Efficiency systematics are calculated**

There are two solutions almost degenerated.

There are two solutions almost degenerated.

They differ by 0.16 in NLL units

 $\overline{}$

 $\overline{}$

Amplitudes and Phases of Isonbar amplitudes

Fit Parameters:

- **11 Yields,**
- **20 Shape parameters,**
- **14 other parameters,**
- **30 Ampli. and Phases,**

Total:

75 parameters floated!

Fit Parameters: Amplitudes and Phases of Isonbar amplitudes

Amplitudes and Phases of Isonbar amplitudes

Results on Q2B parameters

Fit Parameters:

- **11 Yields,**
- **20 Shape parameters,**
- **14 other parameters,**
- **30 Ampli. and Phases,**

Total:

75 parameters floated!

From the fitted isobar amplitudes the Q2B parameters are calculated

Fit Results: Proj. Plots (I)

Fit Results: Proj. Plots (I)

Fit Results: Proj. Plots (I)

Zoom on the signal region

Events/(0.06)

Fit Results: Proj. Plots (II)

m

ES

Fit Results: Proj. Plots (III)

E

Fit Results: Proj. Plots (IV) NN

Fit Results: Proj. Plots (V)

D*π* **Band**

Fit Results: Proj. Plots (VI)

CANDINAL CONNO

J/ Band

Fit Results: Proj. Plots (VII)

Fit Results: Proj. Plots (VIII)

 $\Delta t/\sigma(\Delta t)$ (NoTag events excl.) D π and J/ ψ vetoed

Continuum enhanced by R cut

Fit Results: Proj. Plots (IX)

Fit Results: Proj. Plots (X)

Fit Results: Proj. Plots (XI)

Fit Results: Proj. Plots (XII)

Fit Results: Proj. Plots (XIII)

Fit Results: Proj. Plots (XIII)

Fit Results: Proj. Plots (XIV)

Fit Results: Proj. Plots (XIV)

Fit Results: Proj. Plots (XIV)

Fit Results: Proj. Plots (XV)

Fit Results: Proj. Plots (XV)

Fit Results: Proj. Plots (XVI)

Fit Results: 1D Like. Scans (I)

Fit Results: 1D Like. Scans (I)

Fit Results: 1D Like. Scans (II)

Fit Results: 1D Like. Scans (II)

Fit Results: 1D Like. Scans (III)

Fit Results: 1D Like. Scans (III)

Fit Results: 1D Like. Scans (IV)

Fit Results: 1D Like. Scans (IV)

Fit Results: 1D Like. Scans (IV)

Fit Results: 1D Like. Scans (V)

Fit Results: 1D Like. Scans (V)

Fit Results: 2D Like. Scans

(C,S) 2D scans

Fit Results: 2D Like. Scans

(C,S) 2D scans

Fit Results: 2D Like. Scans

(C,S) 2D scans

Fit Results: Branching Frations

All BFs are consistent with previous mesurements

Systematic Uncertainties

All Systematics have been reevaluated:

- **Reconstruction and SCF model**
- **Ks reconstruction, tracking effic., PID and luminosity**
- **Fixed params. in fit**
- **Tag-side interference**
- **Continuum and B-background PDF**
- **Signal DP Model:**
	- **Lineshapes fix parameters**
	- **Component contributing to the signal model:**
		- *** Previously it was evaluated adding resonant components one-by-one and refitting data. Some systematic effects were then double counted.**
		- *** Now are evaluated on toys.**

Systematics: Signal DP Model (I)

- **Nominal signal model (NSM): f0(980), (770), K*(892), K0*(1430), NR, fX(1300), f2(1270), χc0.**
- **Supplementary components tested: (1450), (1700), f0(1710), c2, K*2(1430), K*(1410), K*(1680).**
- **First steep: fit on Data fixing NSM and adding supp. components. Q2B parameters obtained are used to generate toys with NSM + supp. Compos.**
- **For components: (1450), K*(1410) and K*(1680) big isobar fraction where found. So took these number from other analyses with better sensitivity.**
- **The isobar fractions used for toys:**
	- **•** $BF(\rho(1450)) = 13.0 % * BF(\rho(770))$ (From $\rho \pi$ analysis)
	- **8** BF(ρ (1700)) = 7.0 % * BF(ρ (770)) (From $\rho \pi$ analysis)
	- **BF(f0(1710)) = (3.0 ± 11.2)(%) * BF(f0(892)) (From fit on Data)**
	- $B = BF(\chi c2)$ = $(1.5 \pm 0.7)(\%) * BF(\chi c0)$ (From fit on Data)
	- **BF(K*2(1430)) = (4.1 ± 1.5)(%) * BF(K*0(1430)) (From fit on Data)**
	- **BF(K*(1410))** = 2.7 % * **BF(K*(892))** (From charged $K\pi\pi$)
	- **8** BF(K*(1680)) = 15.6 % * BF(K*(892)) (From charged $K\pi\pi$)

-
-
- - -

Using these results toys where made: generate 100 signal only high statistics (10K events). Fitting with/without supp. Compos. Systematics evaluated as mean bias between both configurations.

Systematics: Signal DP Model (II)

Results:

Systematics: Signal DP Model (II)

Results:

Total Systematic

Total Systematic

Conclusions and Perspectives (I)

- **All the Q2B parameters are extracted, including BF**
- **All BF are consistent with previous analyses**
- **All direct CP asymmetries are consistent with zero at 2**
- **2β_{eff} for f₀(980) has been measured, CP conservation (0 and 180^o) is excluded at the 4.1 and 3.6, respectively. Agreement with ccs value at 1.7**
- **2β_{eff} for ρ** $^{\rm o}$ **(770) has been measured for the first time. Its is consistent with zero within 1σ level, the value 180[°] being excluded at the 4.2. Agreement with ccs value at 1.0**

Conclusions and Perspectives (II)

- **Phase differences** $\Delta\phi$ **(K*(892)π),** $\Delta\phi$ **(S-wave Kπ),** $\Delta\phi$ (ρ $^{\text{o}}$ (770),K*(892)π) and $\Delta\phi$ (ρ $^{\text{o}}$ (770),S-wave Kπ) have been **measured, some of them for the first time. They can be used in phenomenological analyses (see Reina's Talk). Constraint are statistically limited**
- **(S,C) 2D scans have been performed for the f 0 (980) and 0 (770) components. The zero CPV and SM values are excluded at the 3.5and 1.1level, respectively, for the f 0 (980) component.**

The same values are not excluded for the 0 (770) at 1

Perspectives:

- **BAD #2112 uploaded**
- **Review is ongoing: B. Meadows, F. Porter and N. Arnaud** ķ.
- **The goal is to publish in PRD**
- **PHD thesis defence in December**

(mES,E) Sideband

Local Minima configuration

- **Local Minima structure is qualitaively the same.**
- **Previously there were two solutions close in NLL units, but one of them was hidden by the other**
- **With the new fit configuration the minima shifted a bit**

