Results $B^0 \rightarrow K_s K_s K_s$ - **Time Dependent Analysis** Eli Ben-Haim, Matt Graham, Jose Ocariz, Simon Sitt Babar France October 16, 2008

Overview

- Introduction (Motivation And Previous Measurements)
- Reconstruction And Selection
- Likelyhood PDF
 - Signal And Continuum
 - B Backgound
- Fit Validation
- Systematic Uncertainties
- Results
- Perspectives
- Summary

Theoretical Motivation

• Measurement of time-dependent CP-asymmetry

- In SM: pure $b \rightarrow s$ penguin (up to small corrections)
- $\propto V_{ts}V_{tb}^*$
 - $V_{us}V_{ub}^*$ doubly Cabbibo suppressed
 - Final state CP-even
- SM prediction (as $b \rightarrow c\bar{c}s$): $S \cong -sin(2\beta)$, $C \cong 0$
- Any deviation is sign of NP (e.g. squarks in penguin)
- Experimental challenge: No charged particles come from primary vertex

Introduction

Previous Analyses

- BarBar (384 M BB): Run 1-4 (BAD 948,1140), update Run 1-5 (BAD 1486)
 - \rightarrow S=-0.71 \pm 0.24 \pm 0.04
 - $\rightarrow C{=}0.02\,\pm\,0.21\,\pm\,0.05$
- Belle (535 M *BB*)
 - \rightarrow S=-0.30 \pm 0.32 \pm 0.08
 - \rightarrow C=-0.31 \pm 0.20 \pm 0.07
- HFAG average
 - \rightarrow S=-0.58 \pm 0.20
 - \rightarrow C=-0.14 \pm 0.15
- \bullet All measurements compatible within 1σ with SM prediction

B Candidate Reconstruction And Selection

- Analysis of 2 modes: $B^0 \rightarrow 3K_S^0(\pi^+\pi^-)$, $B^0 \rightarrow 2K_S^0(\pi^+\pi^-)K_S^0(\pi^0\pi^0)$
- AllEventsSkim (R22d), TreeFitter for vertexing
- Loose cuts:
 - $5.22 \, GeV < m_{ES} < 5.29 \, GeV$
 - $-0.18 \text{GeV} < \Delta E < 0.12 \text{GeV}$
 - $P(\chi^2 Bvertex) > 0$
- Muliple candidates choose the one with the best:

$$\chi^2 = \sum_{i=1}^{3} \left(\frac{M_{K_S,i} - M_{K_S}^{PDG}}{\sigma_{M_{K_S}}} \right)$$

- Average number of candidates:
 - 1.005 for $B^0
 ightarrow 3 K^0_S(\pi^+\pi^-)$
 - 1.123 for $B^0 \to 2K_S^{0}(\pi^+\pi^-)K_S^0(\pi^0\pi^0)$
- Small Self Cross Feed:
 - 1.59 % for $B^0 \rightarrow 3K^0_S(\pi^+\pi^-)$
 - 2.30 % for $B^0 \to 2K_S^{0}(\pi^+\pi^-)K_S^0(\pi^0\pi^0)$
- Apply veto on allowed charmonium mode χ_{c0} K_s^0 to avoid "SM-pollution"

K_s^0 selection

General Selection

	$K_S ightarrow \pi^+\pi^-$	$K_{\mathcal{S}} o \pi^0 \pi^0$
α	lpha < 0.2	
$r_{dec}(K_{S,\pi^+\pi^-})$	0.2 < <i>r_{dec}</i> < 40 <i>cm</i>	0.15 < r _{dec} < 60cm
$m(K_{S,\pi^{+}\pi^{-}})$	$ m_{K_S}-m_{PDG} <0.012 GeV$	$ m_{K_S}-m_{PDG} <0.011 GeV$
$\tau_{K^0_s} \ (K^0_s \to \pi^0 \pi^0)$	$\frac{\tau}{\sigma(\tau)} > 5$	
$\int M(K_{S,\pi^0\pi^0})$		$0.48 GeV < m_{K_S} < 0.52 GeV$
LÁT		LAT < 0.55
$m(\pi^0)$		$m_{ m pi^0} < 0.141$
E_{γ}		$\dot{E}_{\gamma} > 0.05$

- Vertex Quality
 - Very few losses by requireing at least one ${\cal K}^0_s$ to decay in the 2 inner SVT layer
 - 0.4 % for $B^0 \to 3K_S^0(\pi^+\pi^-)$ • 2.1 % for $B^0 \to 2K_S^0(\pi^+\pi^-)K_S^0(\pi^0\pi^0)$
- Reconstruction Efficiencies
 - 7.3 % for $B^0 \to 3K^0_S(\pi^+\pi^-)$, 6.7% with charmonium veto
 - 3.4 % for $B^0 \to 2K_{\mathcal{S}}^{0}(\pi^+\pi^-)K_{\mathcal{S}}^0(\pi^0\pi^0)$, 3.0% with veto

Errors On Δt For Different SVT Categories

Class 1: Both pions have at least 1 hits in ϕ and z in the 3 inner layers $\phi \in \mathbb{R}^{n}$, $\phi \in \mathbb{R}^{n}$, $\phi \in \mathbb{R}^{n}$ Class 2: Both pions have at least 1 hits in ϕ and z but K_{s}^{0} is not in category 1 7/31

Signal And Continuum

Signal

- *m_{ES}*: Cruijff
- ΔE : Cruijff
- NN: RooKeysPDF splitted by tagging category
- Δt : BCPGenDecay_Sig
 - BReco resolution parameters

Continuum

- *m_{ES}*: ARGUS
- ΔE : 1st order polynom
- NN: Sum of power-functions $f(x) = \sum_{3} N_i x^{a_i} (1-x)^{b_i}$
- Δt : BCPGenDecay_Bkg
 - prompt decay, resolution parameters floating
 - S=C=0

Signal (m_{ES} And ΔE)

ଏ ଏ ୧/ 31

Continuum PDF's

B-Background

- Used neutral and charged generic MC to study the B-bkg modes
- Isolated main contributions and treat them separately (exclusive MC)
- Yields are fixed for the separately treated components
- Yields are floated for generic components (filtered for signal and separately treated modes)
- Branching fractions of some exclusively treated modes are not measured → estimated conservatively
- PDF's: RooKeysPDF for m_{ES} , ΔE and the NN, signal for Δt with C=S=0 (variated for systematics)

Neutral Generics

Sub Mode	Event Type	Decay Mode	# Events	SP Mode
$-3K_{s}^{0}(\pi^{+}\pi^{-})$	Signal	$K_s^0 K_s^0 K_s^0$	601	—
		$f_0(K_s^0K_s^0) K_s^0$	15	
	Allowed	$\chi_{c0}(K_s^0K_s^0)K_s^0$	27	
	charmonium	$\chi_{c2}(K^0_s K^0_s) K^0_s$	1	—
	Forbidden	$\eta_c(K^0_sK^0_s)K^0_s$	34	—
	charmonium	$\eta_c(2S)(K_s^0K_s^0)K_s^0$	16	—
	$b \rightarrow s$	$K_s^0 K_s^0 K_l^0$	15	SP8997
	B backgrounds	$K_{s}^{0}K_{s}^{0}K_{s}^{0*}$	23	SP8998

$2K_{s}^{0}(\pi^{+}\pi^{-})$	Signal	$K_s^0 K_s^0 K_s^0$	299	_
$K_{s}^{0}(\pi^{0}\pi^{0})$		$f_0(K_s^0K_s^0) K_s^0$	6	—
	Allowed	$\chi_{c0}(K_{s}^{0}K_{s}^{0})K_{s}^{0}$	16	—
	charmonium	$\chi_{c0}(K_s^0K_s^0)K_s^0$	1	—
	Forbidden	$\eta_c(K^0_s K^0_s) K^0_s$	17	—
	charmonium	$\eta_{c}(2S)(K_{s}^{0}K_{s}^{0})K_{s}^{0}$	5	—
	b ightarrow s	$K_{s}^{0}K_{s}^{0}K_{l}^{0}$	18	SP8997
	B backgrounds	$K_{s}^{0}K_{s}^{0}K_{s}^{0*}$	19	SP8998
		$K_{s}^{0}K_{l}^{0}K_{s}^{0*}$	5	SP8999

filtered vetoed treated exclusively

Charged Generics

Exlusively treated modes

Sub Mode	Event Type	Decay Mode	# Events	SP Mode
$3K_{s}^{0}(\pi^{+}\pi^{-})$	b ightarrow s	$K_{s}^{0}K_{s}^{0}K^{+}$	9	SP9000
	B backgrounds			

$2K_{s}^{0}(\pi^{+}\pi^{-})$	b ightarrow s	$K_s^0 K_s^0 K^+$	11	SP9000
$K_{s}^{0}(\pi^{0}\pi^{0})$	B backgrounds	$K_{s}^{0}K_{s}^{0+*}$	5	SP9001

・ロト ・ 中 ・ モ ・ ・ モ ・ うへぐ

13/31

Embedded Toy Studies

- Generate continuum and B background with analysis tool
- Signal from Monte Carlo (SP 8996)
- Treat fit bias as systematic

Systematics 1

- The uncertainty in the PDF parameters preliminary \rightarrow will be done with control sample $(J/\Psi K_s^0)$
- The uncertainty in the CP-content and the branching fraction of the B-background.
- Error due to the vertexing technique
- Fit bias
- Bias due to the charmonium vetoes.
- Detector misalignment, beam spot position, the boost of the $\Upsilon(4s)$ -resonance and doubly Cabbibo suppressed decays taken from charmonium analysis

Systematics 2

Contribution	S	С
PDF	+0.0349 -0.0245	$C^{+0.0104}_{-0.0234}$
B-bkg	+0.0256 -0.0123	$C^{+0.0069}_{-0.0062}$
Vertexing	±0.0036	±0.0093
Fit bias	±0.020	± 0.0119
Vetoes	± 0.0051	± 0.0036
Other	±0.004	± 0.015
Sum	$+0.043 \\ -0.027$	$+0.024 \\ -0.032$

Table: Systematics summary

Fit To Data

Fit Results

- S= $-0.906^{+0.203}_{-0.189}$ (stat) $^{+0.043}_{-0.027}$ (sys)
- C= $-0.165^{+0.174}_{-0.173}$ (stat) $^{+0.024}_{-0.032}$ (sys)

Parameter	combined Fit	separated Fit	combined prev.	separated prev.
N _{sig,pm}	$207.3^{+16.1}_{-15.7}$	$206.6^{+16.0}_{-15.7}$	125 ± 13	125 ± 13
N _{sig,00}	$66.8^{+13.8}_{-13.3}$	$71.1^{+13.6}_{-13.1}$	64±12	64±12
S	$-0.906\substack{+0.203\\-0.189}$	-	-0.71 ± 0.24	-
С	$-0.165^{+0.174}_{-0.173}$	-	0.02 ± 0.21	-
S _{pm}	-	$-1.425^{+0.239}_{-0.215}$	-	$-1.06\substack{+0.25\\-0.16}$
C _{pm}	-	$-0.127\substack{+0.160\\-0.166}$	-	$-0.08^{+0.23}_{-0.22}$
S_{00}	-	$0.343^{+0.539}_{-0.539}$	-	0.24 ± 0.52
C ₀₀	-	$0.185\substack{+0.411\\-0.418}$	-	0.23 ± 0.38

- Within 1 σ of SM prediction
- Compatible within less than 2 σ with previous analysis, assuming same reconstructed events in runs 1-5: $\Delta S = -0.196 \pm 0.138$ and $\Delta C = 0.185 \pm 0.12$

sPlots Signal m_{ES} , ΔE , NN

$$B^0
ightarrow 3K_s^0(\pi^+\pi^-)$$

sPlots Continuum m_{ES} , ΔE , NN

$$B^0
ightarrow 3K_s^0(\pi^+\pi^-)$$

sPlots Δt And Asymmetry

$$B^0
ightarrow 3K_s^0(\pi^+\pi^-)$$

$$B^0
ightarrow 2K_s^0(\pi^+\pi^-)K_s^0(\pi^0\pi^0)$$

590

20/31

Perspectives

- Results have been presented at CKM-workshop
- For journal publication:
 - More detailed systematics studies
 - Measure branching fraction
 - Study of Dalitz-model to check if branching-fraction of $f^0 \to K^0_s K^0_s$ can be measured

sPlots of invariant masses $\min(m_{K_c^0K_c^0}), max(m_{K_c^0K_c^0})$

Summary

• Measured time-dependent CP-asymmetry

$$\begin{split} & \mathsf{S}{=} -0.906^{+0.203}_{-0.189} \; (\mathsf{stat}) \; {}^{+0.043}_{-0.027} \; (\mathsf{sys}) \\ & \mathsf{C}{=} -0.165^{+0.174}_{-0.173} \; (\mathsf{stat}) \; {}^{+0.024}_{-0.032} \; (\mathsf{sys}) \end{split}$$

- \bullet Consistent within 1 σ with SM prediction
- ullet Consistent with previous BaBar measurement in less than 2 σ
- Perspectives: branching fraction, Dalitz study/analysis
- Documentation: BAD #2025, physics note BAD #2090

Figure: Neutral generic B background for $B^0 \to 3K_s^0(\pi^+\pi^-)$ (left) and $B^0 \to 2K_s^0(\pi^+\pi^-)K_s^0(\pi^0\pi^0)$ (right).

Figure: Charged generic B background for $B^0 \to 3K_s^0(\pi^+\pi^-)$ (left) and $B^0 \to 2K_s^0(\pi^+\pi^-)K_s^0(\pi^0\pi^0)$ (right).

25 / 31

26/31

Backup Slides

Figure: $\mathcal{K}^0_s \mathcal{K}^0_l \mathcal{K}^{0*}$ B background for $B^0 \to 2\mathcal{K}^0_s (\pi^+_{\mathfrak{s}} \pi^-_{\mathfrak{s}}) \mathcal{K}^0_s (\pi^0_{\mathfrak{s}} \pi^0_{\mathfrak{s}})$.

28/31

Backup Slides

Figure: $K^{+*}K^0_s K^0_s$ B background for $B^0 \to 2K^0_{s}(\pi^+\pi^-)K^0_s(\pi^0_*\pi^0_*)$.

Figure: Transformed output of the NN trained for $K_S \rightarrow \pi^+\pi^-$ (left) and $K_S \rightarrow \pi^0\pi^0$ (right).

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (~ 31 / 31