Beyond the Standard Model

Koichi Hamaguchi (University of Tokyo)

@22nd Vietnam School of Physics (VSOP 22) September 2016.

The purpose of this lecture is:

to introduce some of Motivations for BSM physics and Candidates for BSM physics. (NOTE: biased!)

<u>comment:</u>

perturbative 4d QFT up to high scale?

YES

- compatible with
- perturbative GUT,
- seesaw and leptogenesis with heavy right-handed neutrino.

cosmology can be discussed within perturbative QFT.

(inflation, baryogenesis,...)

this lecture

NO

<u>example</u>

- extra-dimension (large, warped,...)
- composite Higgs

•

CONTENTS

Part 1: [projector]

Overview of BSM

physics

Part 3: [projector]

Supersymmetry

Part 2: [blackboard]

Mini-reviews on each topic,

2-A: GUT

- **2-B:** Neutrino mass and seesaw
- **2-C:** Standard Cosmology
- **2-D:** Inflation
- 2-E: Leptogenesis

Puzzles in the Standard Model

Where shall we start ...?

Puzzles in the Standard Model

= **Hints** of Physics beyond the Standard Model

Where shall we start ...?

The Standard Model of Particle Physics

e.g. electron:

Standard Model

Colorgy

C

U

(not weakly interacting) (weakly interacting)

Standard Model

Y

ν

2

νμ

Inforweakly interacting) right-handed e_{R} left-handed e_{L} (weakly interacting) (weakly interacting) (weakly interacting) (weakly interacting)

Other quarks and leptons get masses in similar ways. "Left + Right"

Q: any simple, unified theory to explain it?

Q: any simple, unified theory to explain it?

[Georgi, Glashow 1974]

Any prediction by Grand Unified Theorie (GUT) ?

Any prediction by Grand Unified Theorie (GUT) ?

prediction 1. If GUT is correct,.... protons decay!

Any prediction by Grand Unified Theorie (GUT) ?

prediction 2. If GUT is correct,.... the three gauge couplings unify at high scale. 1/coupling E U(1) 40 3 couplings α^{-1} 30 20 10 SU(3) 16 18 6 14 10 They don't really unify. Log₁₀(Q/GeV) More on this point later... high scale 26

puzzle: neutrino masses

28

puzzle: neutrino masses

===> Massless !!

But the neutrino masses are confirmed by neutrino oscillations!

puzzle: neutrino masses

The right-handed neutrino plays a triple role.

The right-handed neutrino (N) plays a triple role.

 \mathbf{U} quarks and leptons completely unified

SO(10) GUT

All quarks and leptons unified ! 32

The right-handed neutrino plays a triple role.

33

The right-handed neutrino N plays a triple role.

(2) explains tiny neutrino mass

• • • why neutrino masses are so small??

The right-handed neutrino (N) plays a triple role.

This guy is special singlet (feels none of three (EM, weak, and strong) forces.)

- \rightarrow it has no charge.
- \rightarrow it can be its own anti-particle.
- \rightarrow it can have a mass without Higgs.

heavy R.H. $\nu \rightarrow \text{small neutrino masses}$ ("See-SaW mechanism")

heavy R.H. $\nu \rightarrow \text{small neutrino masses}$ ("See-SaW mechanism")

The right-handed neutrino plays a triple role.

3 explains matter > anti-matter

asymmetry of the universe.

----> Leptogenesis !!

more on this later ...

Our universe is expanding

Particle Data Group, LBNL, © 2000. Supported by DOE and NSF

http://pdg.ge.infn.it/particleadventure/frameless/chart_cutouts/universe_original.pdf

Photons emitted when the universe was 380,000 yrs old

NOW = 1.4×10¹⁰ yrs old

2

n

2

n

 \mathcal{N}

n

N

day

 \mathbf{N}

n

 \mathbb{N}

Cosmic Microwave Background

J.C.Mather et al.Astrophys. J. 354: L37-L40, 1990

... are seen now, after 1.4x10¹⁰ yrs

There is no direct evidence what happened in the first one second.

But there are puzzles that cannot be solved unless one understands this first one second.

Furthermore...

problems of initial conditions

observation: Ω = 1.001 ± 0.006 (very flat) This is very, very strange!

The Universe was extreeeeeeeemly flat. Why? How? fine-tuning of initial condition. 54

Inflation:

Assume that the Universe was initially

dominated by vacuum energy (inflaton potential energy).

$$\left|\frac{\Omega-1}{\Omega}\right| \propto \frac{1}{\rho \cdot a^2} \propto e^{-2H_i t}$$

Automatically tuned to be $\Omega = 1$ (flat Universe)!

furthermore...

Inflation also solves the "Horizon problem."

furthermore...

temperature fluctuation

In the very early Universe,....

Particle Data Group, LBNL, © 2000. Supported by DOE and NSF

http://pdg.ge.infn.it/particleadventure/frameless/chart_cutouts/universe_original.pdf

In the very early Universe,.... The number of particles and anti-particles were almost the same. But there was tiny excess of matter over anti-matter. matter antimatter 0 0 300,000,000 0 \bigcirc 0

In the very early Universe,.... The number of particles and anti-particles were almost the same.

When the Universe got cooler, they pair-annihilated,...

In the very early Universe,....

The number of particles and anti-particles were almost the same.

When the Universe got cooler, they pair-annihilated,...

All of us (Galaxy, the Earth, the human body,...) are made from this leftover matter.

How was the initial excess of matter created ?

How was the initial excess of matter created ?

Inflation

Matter and antimatter had to be generated

from the vacuum energy.

Particle Data Group, LBNL, © 2000. Supported by DOE and NSF

X

n

 \sim

n

 $\wedge \wedge$

N

n 🕥

cosmic microwave radiation visible

n

n

n

n

14 Gyrs

Nn

 \sim

n

T

n

N

n

N

n

N

n

n

Today

http://pdg.ge.infn.it/particleadventure/frameless/chart_cutouts/universe_original.pdf

ē

m

m ē

380,000 yrs

n

ΡP

е

ñ

q q

n

P_DP

Puzzle

How was the initial excess of matter created ?

Some mechanism ("Baryogenesis") is necessary to create matter – antimatter asymmetry.

• an attractive candidate : Leptogenesis

Leptogenesis

[Fukugita, Yanagida, 1986]

Model: Standard Model + R.H. ν

Cosmology: Standard thermal cosmology

Extremely simple! No complicated model/cosmology required.

Leptogenesis

[Fukugita, Yanagida, 1986]

scenario

Leptogenesis [Fukugita, Yanagida,1986] scenario temperature RHν's mass step 1: T > MR : Ni are in thermal bath.

Leptogenesis [Fukuqita, Yanaqida, 1986] scenario temperature $RH \nu$'s mass step 1: $T > M_R$: N_I are in thermal bath. step 2: T ~ M_R : N_I decay. (CP violation + out-of-eq.) --> generate Lepton asymmetry, $\Delta L \neq 0$. N N

Leptogenesis [Fukugita, Yanagida, 1986] scenario temperature $RH \nu$'s mass step 1: $T > M_R : N_I$ are in thermal bath. step 2: T ~ M_R : N_I decay. (CP violation + out-of-eq.) --> generate Lepton asymmetry, $\Delta L \neq 0$. **step 3**: Lepton asymmetry Baryon asymmetry $\Delta L \neq 0 \quad --- \quad \Delta B \neq 0$ (automatic in SM ! thanks to "sphaleron") [Kuzmin, Rubakov, Shaposhnikov, 1985]

Leptogenesis

[Fukugita, Yanagida, 1986]

Result: (I skip all the details of the calculation...

For derivations and references, see, e.g., <u>KH: hep-ph/0212305</u>)

Predictable / Calculable in terms of [SM + R.H. ν] Lagrangian!₇₄

Leptogenesis

[Fukugita, Yanagida, 1986]

Result: (I skip all the details of the calculation...

For derivations and references, see, e.g., <u>KH: hep-ph/0212305</u>)

It works !! (for MR > 10⁹-10¹⁰ GeV).75

(Davidson, Ibarra, '02: in the simplest scenario. See also KH, Murayama, Yanagida'01.)

Higgs mass = 125 GeV, on the other hand..... 1. heavy right-handed neutrino To explain the matter asymmetry, Ni mass > 10° GeV is necessary.

(Davidson, Ibarra, '02: in the simplest scenario. See also KH, Murayama, Yanagida'01.)

If this simple scenario is correct, <u>4d perturbative QFT picture</u> seems valid <u>at least up to 10^9 GeV</u>.

then,...

naturalness problem $m_{H}^{2} = m_{H,0}^{2} + \Lambda^{2}$ ($\Lambda \gg m_{H}$) $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$ (fine tuning like 1.0000000000001 - 1)

This unnaturalness can be avoided by.....

furthermore...

Standard Model + SUSY

furthermore...

[cf. Lectures by Prof. Tait.]

83

Supersymmetry

(> 2 lectures)

Part 2: [blackboard] Mini-reviews on each topic, 2-A: GUT 2-B: Neutrino mass and seesaw 2-C: Standard Cosmology **2-D:** Inflation 2-E: Leptogenesis (> 3 lectures)

Which part next? -> Let's take a vote.