4<sup>ème</sup> Journées Collisionneur Linéaire, 24 Mar. 2016

# CMOS Pixel Technologies: Prospects for a VTX detector @ ILC

### Alejandro Pérez Pérez IPHC – CNRS Strasbourg On behalf of the PICSEL team of IPHC









### Outline

- ILC-VTX: experimental conditions & requirements
- R&D roadmap for a VTX detector for ILC
- Summary and outlook

# **ILC-VTX: experimental conditions**



- Integrate few bunches
- Readout between trains with time-stamping  $\Rightarrow$  chronopixels
- Readout between trains without time-stamping ⇒ very high granularity

### **ILC-VTX: requirements & design**

#### Linear e<sup>+</sup>e<sup>−</sup> collider

- Exhibit milder running conditions than pp/LHC
  - Relaxed readout-speed & radiation tolerance
- Favours technologies focusing on resolution & material budget
  - $\Rightarrow$  CMOS Pixel Sensors (CPS)



# **ILC-VTX: requirements & design**

#### Linear e<sup>+</sup>e<sup>−</sup> collider

- Exhibit milder running conditions than pp/LHC
  - Relaxed readout-speed & radiation tolerance
- Favours technologies focusing on resolution & material budget
  - ⇒ CMOS Pixel Sensors (CPS)

### ILC-VTX requirements

• Physics performances:  $\sigma_{h} < 5 \oplus 10/p\beta \sin^{3/2}\theta \mu m$ 

 $\Rightarrow \sigma_{sp} \sim 3 \ \mu m \ (\sim 17 \ \mu m \ pitch) \ \&$  low material budget (~0.15% X<sub>0</sub>/layer)

- Occupancy ⇔ readout-speed: few % occupancy (~5 hits/cm²/BX)
- Moderate radiation tolerance (/year): ~100kRad ⊕ 10<sup>11</sup> n<sub>en</sub>/cm<sup>2</sup>



# **ILC-VTX: requirements & design**

#### Linear e<sup>+</sup>e<sup>−</sup> collider

- Exhibit milder running conditions than pp/LHC
  - Relaxed readout-speed & radiation tolerance
- Favours technologies focusing on resolution & material budget
  - ⇒ CMOS Pixel Sensors (CPS)

### ILC-VTX requirements

• Physics performances:  $\sigma_{b} < 5 \oplus 10/p\beta \sin^{3/2}\theta \mu m$ 

 $\Rightarrow \sigma_{sp} \sim 3 \mu m$  (~17 µm pitch) & low material budget (~0.15% X<sub>0</sub>/layer)

- Occupancy ⇔ readout-speed: few % occupancy (~5 hits/cm²/BX)
- Moderate radiation tolerance (/year): ~100kRad ⊕ 10<sup>11</sup> n<sub>eq</sub>/cm<sup>2</sup>

#### ILD-VTX design: 3 x double-sided ladders

- Alignment & tracking improvement (pointing)
- 1 support/2-layers ⇒ lower material budget
- Background rejection capabilities?





# **CPS State-of-the-Art in operation: STAR-PXL detector**

#### STAR-PXL @ RHIC 1<sup>st</sup> CPS @ a collider experiment!





#### ULTIMATE Sensor (Mimosa28)



- Rolling shutter r.o. ( $t_{r.o.} \lesssim 200 \ \mu s$ )
- $T_{operation} = 30 35^{\circ}C$
- $\epsilon_{det} \gtrsim 99.9\% \ \sigma_{sp} \gtrsim 3.5 \ \mu m \ \& f_{rate} \lesssim 10^{-5}$
- Rad. Hard:  $\geq 150$ kRad  $\oplus 3 \times 10^{12}$ n<sub>eq</sub>/cm<sup>2</sup>

#### STAR-PXL HALF-BARREL (180M pixels)

- 2 layers @ r = 2.8, 8 cm
- 20 ladders (10 sensors/ladder) (0.37% X<sub>0</sub>)

### **CPS State-of-the-Art in operation: STAR-PXL detector**

### STAR-PXL @ RHIC 1<sup>st</sup> CPS @ a collider experiment!







#### ULTIMATE Sensor (Mimosa28)



- Rolling shutter r.o. ( $t_{r.o.} \leq 200 \ \mu s$ )
- $T_{operation} = 30 35^{\circ}C$
- $\epsilon_{det} \gtrsim 99.9\% \ \sigma_{sp} \gtrsim 3.5 \ \mu m \ \& f_{rate} \lesssim 10^{-5}$
- Rad. Hard:  $\geq 150$ kRad  $\oplus 3 \times 10^{12}$ n<sub>ed</sub>/cm<sup>2</sup>

### STAR-PXL HALF-BARREL (180M pixels)

- 2 layers @ r = 2.8, 8 cm
- 20 ladders (10 sensors/ladder) (0.37% X<sub>0</sub>)

#### **Several Physics-runs**

- 1<sup>st</sup> /2<sup>nd</sup> run in 2014/2015
- Currently 3<sup>rd</sup> run (Since Jan. 2016)
  - $\sigma_{ip}(p_T)$  matching requirements ~40 μm @ 750 MeV/c for K<sup>±</sup>

#### **Observation of D<sup>0</sup> production**

- **STAR:** peak significance = 18
- **ALICE:** peak significance = 5

### CPS @ PICSEL - IPHC: A long term R&D



### **CPS @ PICSEL - IPHC: A long term R&D**



### Next challenge: ALICE-ITS upgrade



- Upgraded ALICE-ITS (Installation during LS2)
  - **Present detector:** 2xHPD/2xDrift-Si/2xSi-strips
  - Future detector: 7-layers with CPS (25k sensors)
    - $\Rightarrow$  1<sup>st</sup> large tracker entirely based on CPS (~ 10 m<sup>2</sup>)



Requirements for ITS inner & outer layers (comparison with STAR-PXL chip)

|          | $\sigma_{sp}$         | $t_{r.o.}$            | Dose     | Fluency                                              | $T_{op}$ | Power                 | Active area          |
|----------|-----------------------|-----------------------|----------|------------------------------------------------------|----------|-----------------------|----------------------|
| STAR-PXL | $<$ 4 $\mu m$         | $<$ 200 $\mu s$       | 150 kRad | $3{\cdot}10^{12}~{ m n}_{eq}/{ m cm}^2$              | 30-35°C  | $160 \text{ mW/cm}^2$ | $0.15 \text{ m}^2$   |
| ITS-in   | $\lesssim$ 5 $\mu m$  | $\lesssim$ 30 $\mu s$ | 2.7 MRad | $\textbf{1.7.10}^{13}~\textbf{n}_{eq}/\textbf{cm}^2$ | 30°C     | $<$ 300 mW/cm $^2$    | $0.17 \mathrm{~m}^2$ |
| ITS-out  | $\lesssim$ 10 $\mu m$ | $\lesssim$ 30 $\mu s$ | 100 kRad | $1\cdot 10^{12} \mathrm{~n}_{eq}/\mathrm{cm}^2$      | 30°C     | $<$ 100 mW/cm $^2$    | $\sim$ 10 m $^2$     |

 $\Rightarrow$  0.35  $\mu m$  CMOS process (STAR-PXL) marginally suited to r.o. speed & radiation hardness

Transition to new CMOS process for improving readout speed and radiation hardness  $\Rightarrow$  Tower-Jazz 0.18 µm CIS

# ALICE-ITS upgrade: 2 r.o. architectures R&D





### **MISTRAL-O: prototypes tested on beam**

#### Full Scale Building Block (FSBB) sensor

- Full 2-row r.o. chain & 2D sparsification  $t_{ro} = 40 \ \mu s$
- Sensitive area (~1 cm<sup>2</sup>) ≈ final building bock
- Similar Nb of pixels (~170k) to final chip
- Epi-layer: high-ρ 18 μm thick
- **BUT:** small pixels (22x32.5 μm<sup>2</sup>) & sparsification circuitry is oversized (power!)
- Tested in 2015 @ DESY (3-6 GeV/c e<sup>-</sup>) & CERN (120GeV/c π<sup>-</sup>)

### Large-pixel prototype (MIMOSA-22THRb)

- Two slightly different large pixels
  - >  $36x62.5 \ \mu m^2$  &  $39x50.8 \ \mu m^2$
- Pads over pixel (3ML used for in-pixel circuitry)
- Epi-layer: high- $\rho$  18  $\mu$ m thick
- BUT: only ≤ 10 mm<sup>2</sup>, 4k pixels & no sparsification
- Tested @ Frascati (450 MeV/c e<sup>-</sup>) March 2015



### **MISTRAL-O: prototypes tested on beam**

#### Full Scale Building Block (FSBB) sensor

- Full 2-row r.o. chain & 2D sparsification  $t_{ro} = 40 \ \mu s$
- Sensitive area (~1  $\text{cm}^2$ )  $\approx$  final building bock
- Similar Nb of pixels (~170k) to final chip
- Epi-layer: high- $\rho$  18  $\mu$ m thick
- **BUT:** small pixels (22x32.5 μm<sup>2</sup>) & sparsification circuitry is oversized (power!)
- Tested in 2015 @ DESY (3-6 GeV/c e<sup>-</sup>) & CERN (120GeV/c π<sup>-</sup>)

### Large-pixel prototype (MIMOSA-22THRb)

- Two slightly different large pixels
  - $> 36x62.5 \ \mu m^2 \ \& \ 39x50.8 \ \mu m^2$
- Pads over pixel (3ML used for in-pixel circuitry)
- Epi-layer: high- $\rho$  18  $\mu$ m thick
- BUT: only ≤ 10 mm<sup>2</sup>, 4k pixels & no sparsification
- Tested @ Frascati (450 MeV/c e<sup>-</sup>) March 2015





### Asynchronous r.o. architecture: ALPIDE

- Concept similar to hybrid pixel r.o. architecture
- Continuously power active in each pixel
  - FEE: single stage amplifier (~100) + shaping (~5 μs) / current comparator
  - Dynamic memory cell, ~80fF storage capacitor which is discharged by an NMOS controlled by the FE
- **Data driven readout**  $\Rightarrow$  only zero-suppressed data transferred to periphery



pALPIDE-3 pixel layout

### **Sensor Integration in Ultra-Light devices**



- Plume 02 prototype: 6 ladders for 2016
  - Reduced material budget:  $\rightarrow 0.35/0.42 \% X_0$  (Al/Cu flex PCB)



#### Plume 02 fully functional prototype

#### **Application @ SuperKEK-B**

-10

10

track-hit position (µm)

15

20

Beam-background measurement @ Belle II

-15

- 2 Plume 02 ladders will be installed inside Belle II inner volume in 2017
- MIBEL project (ANR-2016): 1<sup>st</sup> stage cleared
  - PI: Isabelle Ripp-Baudot (IPHC)

# **On-chip background rejection with Neural Network**



- Neural Network (NN) on chip
- NN advantages
  - Reconstruction of particle incident angles ( $\theta \& \phi$ )
  - Potential reduction of bandwidth & power
- NN application @ ILC
  - Filter beam-background hits in VTX
  - Improve double-sided ladder hit association

#### CIRENE (Défi instrumentation aux limites 2016 CNRS)

- PI: Auguste Besson (IPHC)
- Success (with Bourgogne University)
- 2016
  - NN proof of principle (implemented in FPGA)
  - > Data taking with different sources (lases,  $\beta^{\pm}$ , ...)
- 2017: summit a dedicated chip

Alejandro Pérez Pérez, 4ème JCL Meeting, Mar. 24th 2016



80

100

120

140

160

) 180 0 [dea]

## **Improving epitaxial-layer depletion**

- Motivations
  - **HEP:** faster signal  $\Rightarrow$  better tolerance to NIEL
  - X-Ray detection: thicker sensitive volume
- Beam-test @ SOLEIL (Mi26 sensor)
  - Validation of rolling shutter architecture
- Pegasus-1/2 prototypes (Tower/Jazz 0.18 μm CIS)
  - $V_{Bias} = 0 30 V + AC$ -coupling to Pre-Amp
  - 56 x 8 pixels (25  $\mu$ m pitch)
  - Epi-layer: 18  $\mu m$  & 1 k\Omega cm
  - TN  $\approx$  16 ± 1 e<sup>-</sup> ENC @ 10°C

#### SYNAPS project partnership with Set Ell

- High granularity/counting-rate CPS for soft X-ray detection (0.1 5 keV)
- SYNAPS project (ANR-2016): 1<sup>st</sup> stage cleared
  - PI: Jérôme Baudot (IPHC)





### Next-to-next challenge: MVD of CBM @ SIS100



#### **Micro Vertex Detector (MVD)**

- Layout: 4 planes of pixels sensors
- Factor 10 improvement in rad. Hardness
- Vacuum compatible
- Operation @ negative T

| Sensor properties                                        | FSBB             | MIMOSIS-100 (preliminary) |
|----------------------------------------------------------|------------------|---------------------------|
| Active surface (mm <sup>2</sup> )                        | 9.2 × 13.7       | ~10 × 30                  |
| # pixels (cols $\times$ rows)                            | 416 × 416 (173k) | 1500 	imes 300 (450k)     |
| Pixel pitch (µm)                                         | 22 × 33          | 22 × 33                   |
| Integration time (µs)                                    | 40               | 30                        |
| Data rate (Mbps)                                         | 2 × 320          | > 6 × 320                 |
| NEIL (10 <sup>3</sup> n <sub>eq</sub> /cm <sup>2</sup> ) | ≥ 1 <b>—</b>     | 3 (*)                     |
| TID (MRad)                                               | ≥ 1.6            | 3 (*)                     |
| T <sub>opetation</sub> (°C)                              | +30              | -20                       |

### **Summary and outlook**

- **CPS with rolling shutter r.o. (mainly AMS-0.35 μm process) in use for several years** 
  - High precision beam-telescopes: multi-GeV → sub-GeV beams (CERN, DESY, LNF)
  - Vertex detectors for flavour tagging (STAR-PXL, FIRST)
- Ultra-light double-sided ladders
  - Added value for tracking & alignment (studies showed in previous meetings)
  - Ultra-light ladder assembly validated & getting improved ⇒ PLUME collaboration
  - Spin-off (MIBEL): beam-background measurement @ SuperKEKB/Belle II
- Tower-Jazz 0.18 um CIS technology validated for future projects
  - STAR-PXL chip successfully translated  $\Rightarrow$  2-4 faster &  $\geq$  10 times more rad. tolerant
  - Asynchronous r.o. progressing towards  $t_{ro} < 10 \ \mu s$  (ALPIDE)
  - ALICE-ITS: 1<sup>st</sup> large tracker fully based on CPS
- Outlook
  - Depleted epitaxy CPS under study ⇒ SYNAPS project
  - Few μs asynchronous r.o. CPS for CBM @ FAIR & ILC @ Japan



# **CPS: Development motivation**

- CPS triggered by the need of very granular and low material budget sensors
- CPS applications exhibit milder running conditions than at pp/LHC
  - Relaxed readout (r.o.) speed & rad. tolerance



- Application domain widens continuously (existing/foreseen/potential)
  - Heavy-ion collisions
    - STAR-PXL, ALICE-ITS, CBM-MVD, NA61...
  - e<sup>+</sup>e<sup>−</sup> collisions
    - BES-III, ILC, Belle II (BEAST II)
  - Non-collider experiments
    - FIRST, NA63, Mu2e, PANDA, …
  - High-precision beam-telescopes (adapted to medium/low energy e<sup>+</sup> beams)
    - Few μm resolution @ DUT achievable with EUDET-BT (DESY), BTF-BT (Frascati)

### **CPS: Main features**

#### The basic working principle

- Secondary charges generated in epi-layer by ionization
  - Signal proportional to epi-thickness
- Charges transport driven by 3 potentials
  - P-well/coll. node/P++ (usually GND/few volts/GND)
- Epi-layer not fully depleted:  $d_{dep} \sim 0.3 \sqrt{\rho_{sub} \times U_{bias}}$

 $\Rightarrow$  transport is mix of thermal diffusion & drift

#### Prominent features



- High granularity  $\Rightarrow$  excellent spatial resolution (O( $\mu$ m))
- Signal generated in thin (10-40 $\mu$ m) epi-layer  $\Rightarrow$  usual thinning up to 50  $\mu$ m total thickness
- Standard fabrication process ⇒ low cost & easy prototyping, many vendors, …

#### CPS technology developments

- Mainly driven by commercial applications ⇒ Not fully optimized for particle detection
- R&D largely consists in exploiting as much as accessible industrial processes



# CPS performances: Spatial Resolution ( $\sigma_{sn}$ )

### Several parameters govern σ<sub>sp</sub>

- Pixel pitch
- Epi-layer: thickness & ρ
- Sensing node: geometry & electrical properties
- Signal-encoding resolution: Nb of bits
- σ<sub>sp</sub> function of:
   pitch ⊕ SNR ⊕ charge-sharing ⊕ ADCu ⊕ ...
- Pixel-pitch impact (analogue output)
  - Pitch = 10 (40)  $\mu$ m  $\Rightarrow \sigma_{so} \sim 1 \mu$ m ( $\leq 3 \mu$ m)
  - Nearly linear improvement in  $\sigma_{so}$  vs pixel pitch



•  $\sigma_{sp}^{digi} = pitch/(12)^{1/2}$ 

 $\Rightarrow$  e.g.  $\sigma_{sp}^{digi}$  ~ 5.7 µm for 20 µm pitch

Significant improvement in σ<sub>sp</sub> by increasing signal encoding resolution

Nb of bits



3-4

#### pitch (microns)

1

Alejandro Pérez Pérez, 4ème JCL Meeting, Mar. 24th 2016



12

### CPS performances: r.o. speed & rad. hardness







- 15 years of experience of PICSEL group in developing CPS
- Strong collaboration with ADMOS group at Frankfurt

#### r.o. speed evolution

Two orders of magnitude
 improvement in 15 years of research

#### Radiation tolerance

- Significant improvement with time
- Sensor validation up to 10 MRad  $\otimes$   $10^{14}n_{_{eq}}/cm^2$
- Adequacy to ALICE-ITS and CBM applications

### **ALICE-ITS: Readout chain components**



#### Typical readout components

- **AMP:** in-pixel low noise pre-amplifier
- Filter: in-pixel filter
- **ADC** (1-bit = discriminator): may be implemented at end-of-column or pixel level
- Zero suppression (SUZE): only hit pixel info is retained and transferred
  - > Implemented at sensor periphery (usual) or inside pixel array
- Data transmission: O(Gbps) link implemented at sensor periphery

#### r.o. alternatives

- data-driven (asynchronous): only hit pixels are output upon request (priority encoding)
- Rolling shutter (synchronous): || column r.o. reading N-lines at the time (usually N = 1-2)
  - Best approach for twin-well process
    - $\Rightarrow$  trade-off between performance, design complexity, pixel dimensions, power
    - e.g.: Mimosa-26 (EUDET-BT), Mimosa-28 (STAR-PXL)

### Synchronous readout Architecture: Rolling Shutter Mode



(Row readout time)  $\times$  (No. of Rows)

Ν

- Power: only the selected rows (N=1,2,3 ...) to be readout
- Speed: N rows of pixels are readout in ||
  - > Integration-time  $(t_{int})$  = frame readout time  $\Rightarrow t_{int}$

### **CPS @ PICSEL - IPHC: A long term R&D**

#### Ultimate objective: ILC, with staged performances

...

on-going R&D

HR-CMOS for X-rays (2018)

& CPS applied to other experiments with intermediate requirements



ILC >2020 International Linear Collider



EUDET (R&D for ILC, EU project) STAR (Heavy Ion physics) CBM (Heavy Ion physics) ILC (Particle physics) HadronPhysics2 (generic R&D, EU project) AIDA (generic R&D, EU project) FIRST (Hadron therapy) ALICE/LHC (Heavy Ion physics) EIC (Hadron physics) CLIC (Particle physics) BESIII (Particle physics)

#### <u>CBM >2018</u>

Compressed Baryonic Matter

RICH mirror

RICH rediat

Dipole magne

Silicon tracker

enio

**STAR 201** 



Alejandro Pérez Pérez, 4ème JCL Meeting, N

### **Example of Application : Upgrade of ALICE-ITS**

- ALICE Inner Tracking System (ITS) foreseen to be replaced during LS2/LHC
  - $\rightarrow$  higher luminosity ( $\equiv$  collision rate), improved charm tagging
- Expected improvement in pointing resolution and tracking efficiency



### CMOS Process Transition: STAR-PXL $\rightarrow$ ALICE-ITS



- Use of PMOS in pixel array not allowed
   ⇒ parasitic q-collection of additional N-well
- Limits choice of readout architecture strategy
- Already demonstrated excellent performances
  - **STAR-PXL:** Mi-28 (AMS 0.35  $\mu$ m process)  $\Rightarrow \varepsilon_{det} > 99.5\%, \sigma_{sp} < 4\mu m$
  - <sup>2</sup> 1<sup>st</sup> CPS detector @ collider experiment







- N-well of PMOS transistors shielded by deep P-well  $\Rightarrow$  both types of transistors can be used
- Widens choice of readout architecture strategies
  - New ALICE-ITS: 2 sensors R&D in || using TowerJazz CIS 0.18 um process (quadru. well)
    - → Synchronous Readout R&D: proven architecture ⇒ safety
    - Asynchronous Readout R&D: challenging



### **ALICE-ITS: Boundaries of the CPS Development**

#### New fabrication process (TowerJazz CIS 0.18 μm)

- Expected to be ration tolerant enough
- Expected to allow for fast enough readout
- Larger reticule: ~ 25 x 32 mm<sup>2</sup>
- Drawback of smaller feature size
  - 1.8 V operative voltage (instead of 3.3 V)

 $\Rightarrow$  reduced dynamics in signal processing circuit & epi-layer depletion voltage

• Increase risk of Random Telegraph Signal (RTS) noise

#### Requirements of the larger surface to cover: Mainly outer layers

- Good fabrication yield ⇒ sensor design robustness
- Mitigate noisy pixels
- Sensor operation stable along 1.5 m ladder (voltage drop)
- Minimize material budget
  - Minimize power consumption
  - Minimal connexions to the outside

STAR-PXL ALICE-ITS added-value  $0.35 \, \mu m$ **0.18**  $\mu m$ speed, TID, power 6 ML 4 ML speed, power twin-well quadruple-well speed, power EPI 14/20 μm EPI 18/40  $\mu m$ SNR  $EPI \gtrsim 0.4 \ k\Omega \cdot cm$ EPI  $\sim$  1 - 8 k $\Omega \cdot cm$ SNR. NITD

# Main MIMOSA-22THRb detection performances (1/2)



#### Validation of large pixel design for the outer layers of the ALICE-ITS!

### Main FSBB-M0 detection performances (1/3)



#### Detection performances stability

- Same results obtained @ DESY (4.5 GeV/c  $e^{-}$ ) and CERN-SPS (120 GeV/c  $\pi^{-}$ )
- Same results for different particles rates: 1 25 hits/frame
- Robust performances in terms of operation parameters

### Main FSBB-M0 detection performances (2/3)

#### Spatial resolution vs cluster pixel size



### Main FSBB-M0 detection performances (2/3)

#### Spatial resolution vs cluster pixel size



U residue (µm)

U residue (um)

### Main FSBB-M0 detection performances (2/3)

0

#### Spatial resolution vs cluster pixel size



- Telescope pointing resolution  $\sim 2 \,\mu m$
- Charge sharing depends on track impinging position w.r.t coll. diode
- Spatial resolution is mostly dependent on # pixels/cluster
- $σ_{sn}$ (Mult=1) ~ 4.2 μm <  $σ^{digi}_{sn}$  ~ 7.8 μm
- Staggering mitigates  $\sigma_{s_{D}}$  difference in raw/column directions

#### Residue RMS in the raw/column parallel direction as a function of cluster pixel multiplicity



### Main FSBB-M0 detection performances (3/3)

Study of rad. tolerance @ T ≥ 30 °C: loads relevant to ALICE-ITS inner layers

• Load: 1.6 MRad  $\oplus$  10<sup>13</sup>n<sub>ed</sub>/cm<sup>2</sup>



### **ALPIDE Detection Performance Assessment**

- ALPIDE-2 beam tests :
  - Final sensor dimensions : 15 mm  $\times$  30 mm
  - $_{\circ}$  About 0.5 M pixels of 27  $\mu m imes$  29  $\mu m$
  - Various sensing node geometries studied
  - Substrate reverse biased for the sake of SNR
    - $\hookrightarrow$ default : - 6 V
  - Possibility to mask pixels (fake rate mitigation)



Spacing

D+ p' Diameter

nwell

Spacing

p-

D

10-11

### Performances vs pitch (simulations)

9 Resolution (deg)

Resolution (deg)

CIRENE



### Performances vs ADC (for pitch = $20 \ \mu m$ )



CIRENE.

### Performances vs ADC (for pitch = $15 \mu m$ )







### Improving epitaxial-layer depletion: via sensing diode

Energy of the identified peak [keV]

- Pegasus-2 sensor:
  - Tower-Jazz 0.18 CIS process
  - $_\circ~$  56 x 8 pixels (25  $\mu m$  pitch)
  - $\circ~$  Epitaxy: 18  $\mu m$ , 1 k $\Omega \cdot cm$  predominantly depleted
  - $_{\circ}~$  TN  $\simeq$  16  $\pm$  1 e^-ENC at 10  $^{\circ}$  C







# Vertexing, tracking and alignment studies

Tracking with mivi-vectors (G. Voutsinas PhD thesis, now @ DESY)



#### Alignment with mini-vectors (L. Cousin PhD Thesis, defended in 2015)

- Use beam-backgrounds particles
   ⇒ low momentum tracks (p ≥ few 100 MeV/c)
- Quick alignment (~10k tracks/hour)
- Expect a sub-micron precision

