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ILC-VTX: experimental conditions & requirements

R&D roadmap for a VTX detector for ILC

Summary and outlook
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ILC-VTX: experimental conditionsILC-VTX: experimental conditions

Beam structure
● Trains of ~2600 bunches every 200 ms
● Operation strategies

➢ Full detector readout (r.o.)  triggerless
➢ Power pulsing  reduced power

Beam induced background
● Radiation level: ~100kRad  1011 n

eq
/cm2

                            (LHC:    ~1GRad  1016 n
eq

/cm2)

● Beamstrahlung is main source of occupancy
➢ ~5 hits/cm2/BX @ s = 500 GeV (high systematics)
➢ Drives VTX readout speed & minimum radius

Possible readout architecture
● Integrate few bunches
● Readout between trains with      time-stamping  chronopixels

● Readout between trains without time-stamping  very high granularity
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ILC-VTX: requirements & designILC-VTX: requirements & design

Quadrature of the 
Vertex Detector 

Linear ee collider
● Exhibit milder running conditions than pp/LHC

➢ Relaxed readout-speed & radiation tolerance
● Favours technologies focusing on resolution & material budget

  CMOS Pixel Sensors (CPS) CMOS Pixel Sensors (CPS)
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ILC-VTX requirements
● Physics performances: 

b
 < 5 10/p sin3/2 m


sp

 ~3 m (~17 m pitch) & low material budget (~0.15% X
0
/layer)

● Occupancy  readout-speed:    few % occupancy (~5 hits/cm2/BX)

● Moderate radiation tolerance (/year): ~100kRad  1011 n
eq

/cm2
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ILC-VTX requirements
● Physics performances: 

b
 < 5 10/p sin3/2 m


sp

 ~3 m (~17 m pitch) & low material budget (~0.15% X
0
/layer)

● Occupancy  readout-speed:    few % occupancy (~5 hits/cm2/BX)

● Moderate radiation tolerance (/year): ~100kRad  1011 n
eq

/cm2

ILD-VTX design: 3 x double-sided ladders
● Alignment & tracking improvement (pointing)
● 1 support/2-layers  lower material budget
● Background rejection capabilities?

Mini-vector
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CPS State-of-the-Art in operation: STAR-PXL detectorCPS State-of-the-Art in operation: STAR-PXL detector

STAR-PXL @ RHICSTAR-PXL @ RHIC

11stst CPS @ a collider experiment! CPS @ a collider experiment!

ULTIMATEULTIMATE

(MIMOSA-28)(MIMOSA-28)

55

ULTIMATE Sensor (Mimosa28)

● Rolling shutter r.o. (t
r.o.

 < 200 s)

● T
operation

 = 30 – 35oC

● 
det

 > 99.9% 
sp

 > 3.5 m & f
rate

 < 10-5

● Rad. Hard: > 150kRad  31012n
eq

/cm2

STAR-PXL HALF-BARREL (180M pixels)
● 2 layers @ r = 2.8, 8 cm
● 20 ladders (10 sensors/ladder) (0.37% X

0
)

~

~

~ ~
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STAR-PXL @ RHICSTAR-PXL @ RHIC

11stst CPS @ a collider experiment! CPS @ a collider experiment!

Observation of D0 production
● STAR:  peak significance = 18
● ALICE: peak significance =  5

Courtesy of the 
STAR collaboration

Several Physics-runs
● 1st /2nd run in 2014/2015
● Currently 3rd run (Since Jan. 2016)

● 
ip
(p

T
) matching requirements

~40 m @ 750 MeV/c for K

~

~

~ ~

~
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How to improve r.o. speed and rad. tolerance while 
preserving 

sp
 (3-5 m) and material budget (< 0.1% X

0
)?

CPSCPS

CPS @ PICSEL - IPHC: A long term R&DCPS @ PICSEL - IPHC: A long term R&D

Quadrature of the 
Vertex Detector 
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We are currently here!
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Next challenge: ALICE-ITS upgradeNext challenge: ALICE-ITS upgrade

Upgraded ALICE-ITS (Installation during LS2)
● Present detector: 2xHPD/2xDrift-Si/2xSi-strips
● Future detector:   7-layers with CPS (25k sensors)

 1 1stst large tracker entirely based on CPS (~ 10 m large tracker entirely based on CPS (~ 10 m22))

0.35 m CMOS process (STAR-PXL) marginally suited to r.o. speed & radiation hardness

Transition to new CMOS process for improving readout speed and radiation hardness

 Tower-Jazz 0.18 m CIS

77

Requirements for ITS inner & outer layers (comparison with STAR-PXL chip)



Alejandro Pérez Pérez,    4ème JCL Meeting, Mar. 24th 2016 88

ALICE-ITS upgrade: 2 r.o. architectures R&DALICE-ITS upgrade: 2 r.o. architectures R&D

MISTRAL-O

ALPIDE
Goal: early available & reliable solution
● Conservative design based on STAR-PXL
● Big pixels  lower power & higher speed

● Moderate rad. hardness & 
sp

 ~10 m  OK

Pixel pitch: 36x64 m2

Time resolution: ~ 20 s

W: 80 mW/cm2

Max hit rate: ~0.8 MHz/cm2 

Dimension: 15 x30 mm2

Dead area: 1.5x30 mm2

Pixel pitch: 28x28 m2

Time resolution: < 5 – 10  s

W: 39 mW/cm2

Max hit rate: ~ 3 MHz/cm2 

Dimension: 15 x30 mm2

Dead area: 1.1x30 mm2

Goal: high performance, accept risks
● Aggressive design
● In-pixel discrimination
● Asynchronous r.o. (priority encoder)

● Both chips have same physical & electrical interfacesBoth chips have same physical & electrical interfaces
● Base-line solution: ALPIDE for all ITS layersBase-line solution: ALPIDE for all ITS layers

~
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MISTRAL-O: prototypes tested on beamMISTRAL-O: prototypes tested on beam

FSBB-M0bis

4
1

6
 r

o
w

s

416 columns

Diode/Footprint: 8/16m2

Diode/Footprint: 9/13.3m2

99

Full Scale Building Block (FSBB) sensor
● Full 2-row r.o. chain & 2D sparsification t

r.o.
 = 40 s

● Sensitive area (~1 cm2)  final building bock
● Similar Nb of pixels (~170k) to final chip
● Epi-layer: high-18 m thick
● BUT: small pixels (22x32.5 m2) & sparsification 

circuitry is oversized (power!)
● Tested in 2015 @ DESY (3-6 GeV/c e) & CERN 

(120GeV/c )

Large-pixel prototype (MIMOSA-22THRb)
● Two slightly different large pixels

➢ 36x62.5 m2 & 39x50.8 m2

● Pads over pixel (3ML used for in-pixel circuitry)
● Epi-layer: high-18 m thick
● BUT: only < 10 mm2, 4k pixels & no sparsification
● Tested @ Frascati (450 MeV/c e) March 2015

~

Mi22-THRB6: 3662.5m2
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MISTRAL-O: prototypes tested on beamMISTRAL-O: prototypes tested on beam
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Asynchronous r.o. architecture: ALPIDEAsynchronous r.o. architecture: ALPIDE

Concept similar to hybrid pixel r.o. architecture

Continuously power active in each pixel
● FEE: single stage amplifier (~100) + shaping (~5 s) / current comparator
● Dynamic memory cell, ~80fF storage capacitor which is discharged by an 

NMOS controlled by the FE

Data driven readout  only zero-suppressed data transferred to periphery

1010

pALPIDE-3 pixel layout

Pixel FEE

Priority 
Encoder
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Sensor Integration in Ultra-Light devicesSensor Integration in Ultra-Light devices

PLUME collaboration (Britol, DESY, IPHC)

Plume 01 prototype (fabricated in 2012)
● 2x6 Mi26 sensors on 2 mm thick foam SiC (0.6% X

0
)

● Air cooling
● Validated in beam @ CERN (2011)
● New test-beam @ DESY in April 2016

Plume 02 prototype: 6 ladders for 2016

● Reduced material budget:  0.35/0.42 % X
0
 (Al/Cu flex PCB)

Plume 02 fully functional prototype

Application @ SuperKEK-BApplication @ SuperKEK-B

Beam-background measurement @ Belle II

2 Plume 02 ladders will be installed inside Belle 
II inner volume in 2017

MIBEL project (ANR-2016): 1st stage cleared
● PI: Isabelle Ripp-Baudot (IPHC)
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On-chip background rejection with Neural NetworkOn-chip background rejection with Neural Network

Small feature size (0.18 m) & new imaging algorithms
● Neural Network (NN) on chip

NN advantages
● Reconstruction of particle incident angles (& )
● Potential reduction of bandwidth & power

NN application @ ILC
● Filter beam-background hits in VTX
● Improve double-sided ladder hit association

Preliminary simulation results

  (20 m pitch & 12 bits ADC)



 < 1o for  60o

 vs  Background distribution

CIRENE (Défi instrumentation aux limites 2016 CNRS)CIRENE (Défi instrumentation aux limites 2016 CNRS)
● PI: Auguste Besson (IPHC)
● Success (with Bourgogne University)
● 2016

➢ NN proof of principle (implemented in FPGA)
➢ Data taking with different sources (lases, , ...)

● 2017: summit a dedicated chip

~
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Improving epitaxial-layer depletionImproving epitaxial-layer depletion

Motivations
● HEP: faster signal  better tolerance to NIEL
● X-Ray detection: thicker sensitive volume Charged

particle
X-ray

Beam-test @ SOLEIL (Mi26 sensor)
● Validation of rolling shutter architecture

Pegasus-1/2 prototypes (Tower/Jazz 0.18 m CIS)

● V
Bias

 = 0 – 30 V + AC-coupling to Pre-Amp

● 56 x 8 pixels (25 m pitch)

● Epi-layer: 18 m & 1 k cm

● TN  16  1 e ENC @ 10oC

          SYNAPS project partnership withSYNAPS project partnership with

High granularity/counting-rate CPS for soft X-ray detection (0.1 – 5 keV)

SYNAPS project (ANR-2016): 1st stage cleared
● PI: Jérôme Baudot (IPHC)
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Next-to-next challenge: MVD of CBM @ SIS100Next-to-next challenge: MVD of CBM @ SIS100

1414

Sensor properties FSBB MIMOSIS-100 (preliminary)

Active surface (mm2) 9.2  13.7 ~10  30

# pixels (cols  rows) 416  416 (173k) 1500  300 (450k)

Pixel pitch (m) 22  33 22  33

Integration time (s) 40 30

Data rate (Mbps) 2  320 > 6  320

NEIL (103 n
eq

/cm2) > 1 3 (*)

TID (MRad) >  1.6 3 (*)

T
opetation

 (oC) +30 -20

>

~

~

(*) per year of operation

Micro Vertex Detector (MVD)
● Layout: 4 planes of pixels sensors
● Factor 10 improvement in rad. Hardness
● Vacuum compatible
● Operation @ negative T
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Summary and outlookSummary and outlook

CPS with rolling shutter r.o. (mainly AMS-0.35 m process) in use for several years
● High precision beam-telescopes: multi-GeV  sub-GeV beams (CERN, DESY, LNF)
● Vertex detectors for flavour tagging (STAR-PXL, FIRST)

Ultra-light double-sided ladders
● Added value for tracking & alignment (studies showed in previous meetings)
● Ultra-light ladder assembly validated & getting improved  PLUME collaboration
● Spin-off (MIBEL): beam-background measurement @ SuperKEKB/Belle II

Tower-Jazz 0.18 um CIS technology validated for future projects
● STAR-PXL chip successfully translated  2-4 faster & > 10 times more rad. tolerant

● Asynchronous r.o. progressing towards t
r.o.

 < 10 s (ALPIDE)

● ALICE-ITS: 1st large tracker fully based on CPS

Outlook
● Depleted epitaxy CPS under study  SYNAPS project
● Few s asynchronous r.o. CPS for CBM @ FAIR & ILC @ Japan

1515

~
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CPS: Development motivationCPS: Development motivation

CPS triggered by the need of very granular and 
low material budget sensors

CPS applications exhibit milder running 
conditions than at pp/LHC

● Relaxed readout (r.o.) speed & rad. tolerance

Quadrature of the 
Vertex Detector 

Application domain widens continuously (existing/foreseen/potential)
● Heavy-ion collisions

➢ STAR-PXL, ALICE-ITS, CBM-MVD, NA61…
● ee collisions

➢ BES-III, ILC, Belle II (BEAST II)
● Non-collider experiments

➢ FIRST, NA63, Mu2e, PANDA, …
● High-precision beam-telescopes (adapted to medium/low energy e beams)

➢ Few m resolution @ DUT achievable with EUDET-BT (DESY), BTF-BT (Frascati)
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CPS: Main featuresCPS: Main features

The basic working principle
● Secondary charges generated in epi-layer by ionization

➢ Signal proportional to epi-thickness
● Charges transport driven by 3 potentials

➢ P-well/coll. node/P++ (usually GND/few volts/GND)

● Epi-layer not fully depleted: d
dep 

~ 0.3 
sub

U
bias

 transport is mix of thermal diffusion & drift

Prominent features
● Signal processing integrated on sensor substrate downstream electronics & syst. integration

● High granularity  excellent spatial resolution (O(m))
● Signal generated in thin (10-40m) epi-layer  usual thinning up to 50 m total thickness
● Standard fabrication process low cost & easy prototyping, many vendors, …

CPS technology developments
● Mainly driven by commercial applications  Not fully optimized for particle detection
● R&D largely consists in exploiting as much as accessible industrial processes
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CPS performances: Spatial Resolution (CPS performances: Spatial Resolution (
spsp

))

Several parameters govern 
sp

Pixel-pitch impact (analogue output)
● Pitch = 10 (40) m  

sp
 ~ 1 m (< 3 m)

● Nearly linear improvement in Nearly linear improvement in 
spsp

 vs pixel pitch vs pixel pitch

Signal-encoding impact (digital output)
● digi

sp
 = pitch/12)1/2

 e.g. digi

sp 
~ 5.7 m for 20 m pitch

● Significant improvement in Significant improvement in 
spsp

 by  increasing signal encoding resolution by  increasing signal encoding resolution

~

● Pixel pitch
● Epi-layer: thickness & 
● Sensing node: geometry & electrical properties
● Signal-encoding resolution: Nb of bits

● 
sp

 function of:

pitch  SNR  charge-sharing  ADCu 


digi

sp

digi
sp
 (1-bit)

digi
sp

 (analog)
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CPS performances: r.o. speed & rad. hardnessCPS performances: r.o. speed & rad. hardness

15 years of experience of PICSEL 
group in developing CPS
Strong collaboration with ADMOS 
 group at Frankfurt

r.o. speed evolution
● Two orders of magnitude 

improvement in 15 years of research

Radiation tolerance
● Significant improvement with time
● Sensor validation up to 10 MRad  

1014n
eq

/cm2

● Adequacy to ALICE-ITS and CBM 
applications
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ALICE-ITS: Readout chain componentsALICE-ITS: Readout chain components

Typical readout components
● AMP: in-pixel low noise pre-amplifier
● Filter: in-pixel filter
● ADC (1-bit  discriminator): may be implemented at end-of-column or pixel level
● Zero suppression (SUZE): only hit pixel info is retained and transferred

➢ Implemented at sensor periphery (usual) or inside pixel array
● Data transmission: O(Gbps) link implemented at sensor periphery

r.o. alternatives
● data-driven (asynchronous):    only hit pixels are output upon request (priority encoding)
● Rolling shutter (synchronous): || column r.o. reading N-lines at the time (usually N = 1-2)

➢ Best approach for twin-well process 

 trade-off between performance, design complexity, pixel dimensions, power

e.g.: Mimosa-26 (EUDET-BT), Mimosa-28 (STAR-PXL)
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Synchronous readout Architecture: Rolling Shutter ModeSynchronous readout Architecture: Rolling Shutter Mode

Design addresses 3 issues
● Increasing S/N at pixel-level
● Analogue to Digital Conversion

➢ At end of column  MISTRAL
➢ Inside pixel           ASTRAL

● Zero suppression (SUZE) at chip edge

Power vs Speed
● Power: only the selected rows (N=1,2,3 …) to be readout 
● Speed: N rows of pixels are readout in ||

➢ Integration-time (t
int

) = frame readout time  
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CPS @ PICSEL - IPHC: A long term R&DCPS @ PICSEL - IPHC: A long term R&D

ru
nning

ru
nning running

running

O
n-going R

&
D

O
n-going R

&
D

O
n-going R

&
D

O
n-going R

&
D

HR-CMOS for 
X-rays (2018)

On-going R&D

On-going R&D
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CMOS Process Transition: STAR-PXL CMOS Process Transition: STAR-PXL   ALICE-ITS ALICE-ITS

● Use of PMOS in pixel array not allowed               
 parasitic q-collection of additional N-well

● Limits choice of readout architecture strategy
● Already demonstrated excellent performances

➢ STAR-PXL: Mi-28 (AMS 0.35 m process)  
 

det
 > 99.5%, 

sp
 < 4m

➢ 11stst CPS detector @ collider experiment CPS detector @ collider experiment

● N-well of PMOS transistors shielded by deep P-well     
 both types of transistors can be used

● Widens choice of readout architecture strategies
➢ New ALICE-ITS: 2 sensors R&D in || using 

TowerJazz CIS 0.18 um process (quadru. well)
➔ Synchronous Readout R&D:

proven architecture  safety
➔ Asynchronous Readout R&D: challenging

Twin well process: 0.6-0.35 um Quadrupole well process (deep P-well): 0.18 um

ULTIMATEULTIMATE

(MIMOSA-28)(MIMOSA-28)
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ALICE-ITS: Boundaries of the CPS DevelopmentALICE-ITS: Boundaries of the CPS Development

New fabrication process (TowerJazz CIS 0.18 m)
● Expected to be ration tolerant enough
● Expected to allow for fast enough readout
● Larger reticule: ~ 25 x 32 mm2

Drawback of smaller feature size
● 1.8 V operative voltage (instead of 3.3 V)

 reduced dynamics in signal processing circuit & epi-layer depletion voltage 
● Increase risk of Random Telegraph Signal (RTS) noise

Requirements of the larger surface to cover: Mainly outer layers
● Good fabrication yield sensor design robustness
● Mitigate noisy pixels
● Sensor operation stable along 1.5 m ladder (voltage drop)
● Minimize material budget

➢ Minimize power consumption
➢ Minimal connexions to the outside
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Main MIMOSA-22THRb detection performances (1/2)Main MIMOSA-22THRb detection performances (1/2)

Excellent detection performances
● 

det
 > 99% & 

sp
 ~ 10 m (as expected)

● Good performances for radiation load relevant for outer ALICE-ITS

Validation of large pixel design for the outer layers of the ALICE-ITS!Validation of large pixel design for the outer layers of the ALICE-ITS!

Efficiency

U residue

V residue

Fake rate

<# Suze Windows>

150 kRad  1.51012 n
eq

/cm2

No Irradiation
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All the 6 sensor performances on the same plot

Excellent and uniform performances among sensors (thr < 10xNoise)
● detection efficiency: > 99%
● spatial resolution:    < 5m
● Fake rate: < 10-6 with moderate (10-3) hot pixels masking

Efficiency

U residue

V residue

Fake rate @ 10-3 masking

Main FSBB-M0 detection performances (1/3)Main FSBB-M0 detection performances (1/3)

Detection performances stability
● Same results obtained @ DESY (4.5 GeV/c e) and CERN-SPS (120 GeV/c )
● Same results for different particles rates: 1 – 25 hits/frame
● Robust performances in terms of operation parameters

Diode/Footprint: 8/16 m2 Diode/Footprint: 9/13.3 m2
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Main FSBB-M0 detection performances (2/3)Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size
Diode/Footprint: 8/16 m2

Threshold = 9xNoise

Track position @ DUT w.r.t closest set of collection 
diodes as a function of cluster pixel multiplicity

Telescope pointing resolution ~2 m

Charge sharing depends on track 
impinging position w.r.t coll. diode

Collection diode
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Main FSBB-M0 detection performances (2/3)Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size
Residue distribution in the raw parallel direction 

as a function of cluster pixel multiplicity

Telescope pointing resolution ~2 m

Charge sharing depends on track 
impinging position w.r.t coll. diode

Spatial resolution is mostly Spatial resolution is mostly 
dependent on # pixels/clusterdependent on # pixels/cluster


spsp

(Mult=1) ~ 4.2 (Mult=1) ~ 4.2 m m   digidigi

spsp
 ~ 7.8  ~ 7.8 mm


res

 = 4.6 m 
res

 = 5.3 m


res

 = 4.7 m 
res

 = 4.5 m


sp

 = 4.2 m 
sp

 = 4.9 m


sp

 = 4.3 m 
sp

 = 4.0 m

Diode/Footprint: 8/16 m2

Threshold = 9xNoise
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Main FSBB-M0 detection performances (2/3)Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size

Residue RMS in the raw/column parallel direction 
as a function of cluster pixel multiplicity

Telescope pointing resolution ~2 m

Charge sharing depends on track 
impinging position w.r.t coll. diode

Spatial resolution is mostly 
dependent on # pixels/cluster


sp

(Mult=1) ~ 4.2 m  digi

sp
 ~ 7.8 m

Diode/Footprint: 8/16 m2

Threshold = 9xNoise

Staggering mitigates Staggering mitigates 
spsp

 difference in raw/column directions difference in raw/column directions
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No mask

5x10-3

1x10-2

Diode/Footprint: 9/13.3 m2


det

 ~99.0% & <Fake> ~7x10-8 (1.0% masking) @ Thr = 7.9x
TN


det

 ~99.4% & <Fake> ~1x10-5 (0.5% masking) @ Thr = 7.4x
TN

Main FSBB-M0 detection performances (3/3)Main FSBB-M0 detection performances (3/3)

Study of rad. tolerance @ T > 30 oC: loads relevant to ALICE-ITS inner layers
● Load: 1.6 MRad  1013n

eq
/cm2

~


det

, 
sp 

& fake-rate vs Discr. Threshold 
det 

vs Discr. Threshold vs pixel masking

Efficiency

U residue

V residue

Fake rate
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Auguste Besson

Performances vs pitch (simulations)

CIRENE, 21 mars 2016 39



Auguste Besson

Performances vs ADC (for pitch = 20 µm)

CIRENE, 21 mars 2016 40



Auguste Besson

Performances vs ADC (for pitch = 15 µm)

CIRENE, 21 mars 2016 41
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Improving epitaxial-layer depletion: via sensing diodeImproving epitaxial-layer depletion: via sensing diode



Alejandro Pérez Pérez,    4ème JCL Meeting, Mar. 24th 2016

Vertexing, tracking and alignment studiesVertexing, tracking and alignment studies

Tracking with mivi-vectors (G. Voutsinas PhD thesis, now @ DESY)

Sample: ttbar, s = 500 GeV, 
fast CMOS VXD,

pair bkg overlayed

          FPCCD tracking

          CA mini-vector tracking

Tracking efficiency

Ghost tracks

Alignment with mini-vectors (L. Cousin PhD Thesis, defended in 2015)
● Use beam-backgrounds particles

 low momentum tracks (p > few 100 MeV/c)
● Quick alignment (~10k tracks/hour)
● Expect a sub-micron precision

~
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