

Tracker TPC: MicroMegas Status

D. Attié, D. S. Bhattacharya, P. Colas, S. Ganjour

CEA-Saclay/IRFU, Gif-sur-Yvette, France

Journées Collisionneur Linéare Paris Mars 23-24, 2016

TPC is the central tracker for International Linear Detector (ILD)

- Is Large number of 3D points
 - continuous tracking
- Real Particle identification
 - \Rightarrow dE/dx measurement
- Low material budget inside the calorimeters (PFA)
 - \blacksquare barrel: $\sim 5\% {
 m X}_0$
 - \blacksquare endplates: $\sim 25\% X_0$
- \bowtie Two gas amplification options:
 - Gas Electron Multiplier (GEM)
 - MicroMegas (MM)
 - \rightarrow pad-based charge dispersion readout
 - \rightarrow direct readout by the TimePix chip

TPC Requirements in 3.5 T

Momentum resolution:

- $\Rightarrow \delta(1/p_T) \le 9 \times 10^{-5} GeV^{-1}$
- Single hit resolution:
 - $\Rightarrow \sigma(\mathbf{r}\phi) \leq 100 \mu \mathrm{m}$ (overall)
 - $\blacksquare \sigma(\mathbf{Z}) \simeq 400 \mu \mathrm{m}$
- IS Tracking efficiency:
 - \blacksquare 97% for $p_T \geq 1 GeV$
- $rac{dE}/dx$ resolution: 5%

- $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ TPC point resolution is x10 worse than Si
 - would need x100 more points
 - met always practical
 - Iarger tracking volume
 - include 2 inner Si layers (SIT) and 1 outer Si layer (SET, ETD)

r ILC flagship measurement

- ``` recoil mass $e^+e^- \rightarrow Z(ll)X$
- \blacksquare driven by both beam spread ($\sigma_{
 m B}$) and momentum resolution($\sigma_{
 m D}$)
- IIII $\sigma_{
 m B}=400~{
 m MeV}$ from TDR
- $\blacksquare \sigma_{\mathrm{D}} = 300 \ \mathrm{MeV}$ at $\mathrm{R}_{\mathrm{out}} = 1.8 \ \mathrm{m}$

$$\rightarrow \sigma_{\mathrm{D}} = 400 \; \mathrm{MeV}$$
 at $\mathrm{R}_{\mathrm{out}} = 1.4 \; \mathrm{m}$

S.Ganjour

Tracker TPC

Extensive R&D for ILC TPC is active research area of the LCTPC Collaboration

The EUDET/AIDA test beam (TB) facility at DESY provide a 6 GeV electron beam

 Large Prototype (LP) TPC consists of a field cage equipped with an endplate with 7 windows to receive up to 7 fully equipped modules French activity encompases the MicroMegas readout for ILD TPC

- \blacksquare Prehistory of TB with MM modules:
 - \blacksquare Mar 2010: one-module setup
 - \blacksquare May 2011: cross-talk problem
 - **Jul 2012:** multi-module setup with 6 operated modules; coherent noise
 - Jan-Feb 2013: multi-module setup with 7 fully operated modules; many disconnected pads
 - ➡ Feb 2014: same as in 2013 with some pads' connection problem
- Isst beam test of 7 MM modules took place at DESY, 1–14 March, 2015
 - Involved groups:
 - → Bonn, Carleton, DESY, KEK, Saclay

Prototype Concepts

- ${\tt I\!S\!P}$ Charge density function
 - $\rho(r,t) = \frac{RC}{2t} \exp[-\frac{-r^2 RC}{4t}]$
 - R- surface resistivity C- capacitance/unit area

INF MM: T2K readout concept

➡ 72-channel AFTER chip (12-bit)

drift volume

GEM: modified ALTRO readout

■ 16-channel ALTRO chip (10-bit)

S.Ganjour

Tracker TPC

Module test setup at CERN

 ${}^{\tiny \hbox{\tiny ISP}}$ Module assembly and test using ${}^{55}\mathrm{Fe}$ x-ray source

- calibration, pedestal, etc
- homogeneous gas gain across the module (mesh uniformity)
- Solution See The Section Section 1998 See The Section 1998 Section
 - new PCB with resistive kapton (CLK) to disperse the charge
 - very solid (Diamond-Like Carbon) and uniform
 - \blacksquare pecisely determined resistivity (5 MOhm/ \Box)
 - procurement of DLC can be done in Japan

Baseline module configuration for TB2015

2-phase CO_2 cooling support

Equipped with 7+2(spare) MM modules for this test beam
 Use KEK cooling plant TRACI made in NIKKEF for CO₂ cooling

 \blacksquare 10°C at P=45 bar system operation

About $30^{\circ}C$ stable temperature was achieved during operation of 7 MM modules

- ☞ 7 MM modules with charge dispersion by resistive anode
 - \blacksquare pads of the size 3×7 mm^2
 - 24 rows with 72 pads each
 - 1728 pads per module
- Beam data taking program:
 - magnetic field: B=0, 1 T
 - \blacksquare drift field: E=140, 230 V/cm
 - ******* z-scan [5-50]cm every $\Delta z = 5 \,\mathrm{cm}$
 - $``` shaping time <math display="inline">\tau \text{-scan:}\ 100\text{-}1000 \ \text{ns}$
 - \blacksquare ZS: 4.5 σ (baseline) and 3 σ
 - beam energy scan [1-5] GeV
 - \blacksquare varying θ angle up to 30°
- INFIGURE Cosmic data: cover a whole LP volume (T_0 calibration)

View from inside

S.Ganjour

- ${\tt I\!S\!S}$ Prototype operates with T2K gas
 - \implies Ar(95%), CF₄(3%), iC₄H₁₀(2%)
 - $^{\shortparallel}$ gas purity: 60 ppm O_2 , 100 ppm H_2O
 - deploy Magboltz calculations

 \blacksquare Absolute T_0 calibration:

- ➡ beam trigger: dedicated z-scan at V_{drift} = 140, 230 V
 - \rightarrow T₀ = 645ns from fit
- cosmic trigger: accumulate a whole LP volume data events

 $\rightarrow T_0 = 22 \times 40 \text{ns} = 880 \text{ns}$

	E=140 V/cm	E=230 V/cm
V_d Data	$56.7 \pm 0.1 \mu m/ns$	$74.1 \pm 0.2 \ \mu m/ns$
V_{d} Magboltz	$57.9 \pm 1.0 \mu \mathrm{m/ns}$	$75.5 \pm 1.0 \mu \mathrm{m/ns}$
D_{\perp} Magboltz	$74.5 \pm 2.5 \mu \mathrm{m}/\sqrt{\mathrm{cm}}$	$94.8 \pm 3.1 \mu \mathrm{m}/\sqrt{\mathrm{cm}}$

About 250 ns differnce for T_0 between

S.Ganjour

Distortions

\bowtie Non-uniform E-field near module boundaries induces $\mathbf{ExB}\ \mathbf{effects}$

- reach about 0.5 mm at boundaries
 - \rightarrow worth to minimize at design level
- metaccounted as systematic residual offsets
- determined on a row-by-row basis from residuals
- $^{\shortparallel}$ correct resuduals to zero at about $20 \mu {\rm m}$

Residual offsets are due to distortions (ExB) and misalignment (multi-module setup)

- Reference Alignment is accounted as overall rotations (θ) and shifts (x and y)
 - ${}^{\scriptstyle \hbox{\tiny IIII}}$ uses all data at B=0T to exclude ExB effects
 - corrections are obtained in an iterative procedure unless they are within errors (3 serie)
 - determined in module-by-module basis
 - we uses multi-dimensional χ^2 minimization with Millipede II interfaced to GBL tracks

Available TB data allowed us to study the whole set of systematic effects relevant to the multi-module setup

real Fit data with: $\sigma(z) = \sqrt{\sigma_0^2 + rac{D_\perp^2}{N_{eff}}z}, \; \sigma_0^2 = b^2/N_{eff}$

 $\rightarrow \sigma_0$ - the resolution at z=0, N_{eff} - the effective number of electrons

 \blacksquare Magboltz calculations of D_{\perp} at about 3% precision

IN We do not plan to make any big hardware investment before beginning of 2017 ■

- $\ensuremath{\mathbb{I}}\xspace^{\ensuremath{\mathbb{R}$
- - $\stackrel{\scriptstyle \mbox{\tiny II}}{\rightarrow}$ if there is an endplate II to be tested, or
 - if we have an idea of a fixup for distortions

I™ Priority in the next two years

- to analyze the data (MarlinTPC)
- to understand distortions systematically
- to work on simulations
- publications (this year)

As far as hardware is concerned

- $\blacksquare \mathbf{gating}$ with a large aperture GEM, by doing ion back-flow measurements
- ${}^{\scriptstyle{\scriptsize{\scriptsize{\scriptsize{\tiny{\tiny{\tiny{\tiny{m}}}}}}}}}$ simulating in hardware an ${\bf ion}~{\bf disk}$ using a UV lamp

\bowtie A vast R&D program carried out by LCTPC collaboration in the past

- **EUDET**/AIDA facility at DESY allows a variety of measurements with LP TPC
- we vast amount of data taken in various configuration were accumulated
- major systematic effects relevant to multi-mudule setup were studied
- me number of technical issues have been tested and demonstraited
 - → 2-phase CO₂ cooling long-term operation at 30°C of electronic circuit

\bowtie Publications on behalf of LCTPC collaboration

- MM: possibly paper on 2010 one-module setup (could be short)
- MM: detailed paper on 2015 analysis (possibly within one year)
- GEM: draft is available for LCTPC collaboration wide review

I™ Preparation for next beam tests

- me module with common pad structure is being discussed
- \blacksquare integration for gating and ion back flow tests
- possibly production of endplate II to address distortions

The EUDET/AIDA test beam facility at DESY provide a 6 GeV electron beam

- Setup was designed for a Large TPC Prototype (LPTPC) for the ILC experiment
- LP readout modules operate in a strong magnetic field
 - provides a superconducting solenoid magn⁽ Ø85 cm and a length ∼1 m
 - a magnetic field
 strength of up to
 1.25 T

Consists of a field cage equipped with an endplate with 7 windows to receive up to 7 fully equipped identical modules

Different layouts are considered for ILD: 4-wheel and 8-wheel scheme

Multi-module setup

A multi-module detector sensitive to misalignment and distortions

 \bowtie Low material budget is required for ILD-TPC

- ${}^{\scriptstyle{\hbox{\tiny \tiny IMP}}}$ endplates: ${\leq}0.25 X_0$
- current MM module design:

$${
m d/X_0}\simeq 0.24$$

S.Ganjour

\bowtie Beam, Laser, and Cosmic triggers are deployed

- A cosmic trigger based on
 - \rightarrow 12 scintillator plates
 - ightarrow readout by silicon PMs
 - → SiPM signal discrimination and coincidence logic with NIM modules
- Image: BAQ 120 Hz maximum event taking rate (designed and produced at CEA-Saclay)
 - 6 AFTER chips are digitized in parallel by 8-channel ADC at 20 MHz
 - 4 sequential iterations are needed to readout a FEMi
 - \blacksquare each iteration takes 79 x 511 clock cycles at 20 MHz
 - \blacksquare irreducible dead-time of 8 ms

About 26 W power consumption is currently measured per MM module

 $^{\hbox{\tiny I\!S\!S}}$ Temperature of the circuit rises up to 60°C

- cause a potential damage of electronics
- covect gas to TPC due to a pad heating

Cooling of the electronic circuit is required!

- Image: Second structure in the second structure in the second structure is and a much larger latent heat than all usual refrigerants
 - the two phases (liquid and gas) can coexist at room temperature under pressure
 - wery small pipes suffice
 - hold high pressure with low material
- $\bowtie 10^{\circ}C$ at $P{=}45~bar$ system operation

About 30°C stable temperature was achieved during operation of 7 MM modules

S.Ganjour

Module 6 (S3B)

Readout system for the MM prototype TPC is conceptually identical to what is deployed in the T2K experiment

(designed and produced at CEA-Saclay)

- IS 72-channel AFTER chip
 - charge signal amplification
 - ➡ shaping (100 ns)
 - waveform sampling in a 511-time-bin SCA
- 4 AFTER chips are mounted on a Front-End Card (FECi)
- ☞ 6 FECi are digitalized and readout by FE Mezzanine (FEMi)
- Each FEMi communicates with
 a Data Concentrator Card
 (DCC) over duplex optical link
- DCC transfers events to DAQ PC via a Gigabit Ethernet port

