

Stabilization R&D for future linear colliders (CLIC & ATF2)

Journées Collisionneurs Linéaires

B.Aimard¹, L. <u>Brunetti¹</u>, J.-P. Baud¹, G. Balik¹, A. Jeremie¹, Y. Karyotakis¹, S. Vilalte¹ B. Caron², C. Hernandez²,

1: LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France

&

²: SYMME-POLYTECH Annecy-Chambéry, Université de Savoie, Annecy, France

One of the CLIC Challenges : Beam stabilization

Final focus CLIC R&D:

- ☐ Many controls will be performed all along the collider
- Most stringent specifications are at the final focus interaction point

Final focus: LAPP responsibilities

CLIC Final focus – beam stabilization strategy

Beam trajectory control & mechanical active control:

Anti-solenoid

Vacuum

+Stabilization + prealignment

➤ At the Interaction Point (mechanical active control + beam feedback), we aim at 0,2 nm at 0,1 Hz

Beam control at the Interaction Point - IP Feedback

Beam trajectory control: simulation under Placet

☐ Bandwidth limited by the beam repetition

Luminosity vs control ON or OFF and vs model of seismic motion (deal under Placet)

- Caron B et al, 2012, "Vibration control of the beam of the future linear collider", Control Engineering Practice.
- G. Balik et al, 2012, "Integrated simulation of ground motion mitigation, techniques for the future compact linear collider (CLIC) ", Nuclear Instruments and Methods in Physics Research

Mechanical active control

Demonstration at a sub-nanometer scale

lacktriangle Control with commercial sensors (geophones and accelerometers): ${\color{red}0,6}$ nm ${\color{red}RMS@4Hz}$

- Balik et al, "Active control of a subnanometer isolator", JIMMSS, 2013.
- R. Le Breton et al, Nanometer scale active ground motion isolator, Sensors and Actuators A: Physical, 2013.

☐ Main limitation: SENSOR (simulation and experiment).

Transfer on a real scale

Active control of a real size magnet

- Structure : QD0 Magnet
- Sensors
- Actuators
- Integration: control, data processing, real time, layout, interfaces...

Example of a large actuator

Simulation of the whole system

Simulation studies of QD0 magnet:

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

- FEM: Modal analysis using finite elements Determination of the most significant modes (frequency response characteristics)
- Expression in the form of a state space model and study of the control stategy
- Integration in a control loop (using Simulink for example) with the <u>whole simulation</u> (sensor, actuactor, ADC, DAC, Data processing.... And seismic motion model and its coherence)
- Targets: several aspects have to be defined
 - Location and number of active feet
 - Type of active feet
 - Degrees of freedom
 - Type of control (SISO, MIMO)
 - To adjust the specifications of actuators and sensorsConditioning, real time processing...

 This upgrade stage is in progress before a real size prototype demonstration

Vibrations sensor: R&D

 \square Already the limitation for the «demonstration » active table:

- No commercial solution
- Internal development at LAPP

Development of a vibration sensor:

- Promising results (similar to the best commercial sensors)
- French patent (FR 13 59336), PCT extension in progress
- Outreach with the SATT of Grenoble (Linksium)
- Optimised version in test (measurement in vertical or horizontal) for measurements and for active control
- Triaxial version in progress

Prototypes developed since 2011

Latest one axis version

Prototype of tri-axes version8

Vibrations sensor: Results

Comparison with industrial sensors at CERN (ISR – January 2015):

Frequency [Hz]

Geophone
(Güralp 3-ESP)

Low frequencies

Accelerometer
(Wilcoxon 731A)
Mid-High frequencies

LAViSta sensor (x2)

Large bandwidth

First tests in control:

LAViSta sensor

ATF2: responsible of the final doublet relative displacement

In 2012

- Relative motion between shintake monitor and final doublets of 6 nm RMS @ 0,1 Hz in the vertical axis (i.e. B. Bolzon results).
- Analysis of the upgrades influences and of the drift.

2008 by B. BOLZON	Tolerance	Measurement [SM-QD0]	Measurement [SM-QF1]	
Vertical	7 nm (for QD0) 20 nm (for QF1)	4.8 nm	6.3 nm	
Perpendicular to the beam	~ 500 nm	30.7 nm	30.6 nm	
Parallel to the beam	~ 10,000 nm 36.5 nm		27.1 nm	
2013 by A. JEREMIE	Tolerance	Measurement [SM-QD0]	Measurement [SM-QF1]	
Vertical	7 nm (for QD0) 20 nm (for QF1)	4.8 nm	30 nm	
	20 IIII (101 Q1 1)			

ATF2 upgrades

LAPP support: feet and T-plate

☐ Main resonance peaks pushed to higher frequencies

	Spec Shintake Monitor	Old Magnet	Initial support	New LAPP support without perturbation	New LAPP support with perturbation
Horizontal Rel. Displ. RMS (nm) @ 1Hz	≈500	30	290	52	244-356
Vertical Rel. Displ. RMS (nm) @ 1Hz	≈20	4	21	6	17-21

In horizontal direction, there is a perturbation (cooling, mechanics...) at about the same frequency than the resonance of the system...

ATF2: expertise all along the collider

- Processing of 14 Guralp6T sensors
- ➤ Guralp 6T: 0,5Hz-100Hz, two directions connected (vertical and horizontal can be placed parallel or perpendicular to beam direction); sensors similar to the ones used in 2008

• Feedforward study: correlation between the ground and the beam motions.

Analysis and measurements activities on different experiments

☐ LHC measurements

IRSN vibrations analysis

☐ SuperB analysis

☐ *IPHC* measurements

Conclusions

CLIC

- Feasibility demonstration of active control at sub-nanometer scale
- Development of an efficient vibrations sensor
- Control of the QD0 magnet in progress

ATF2

- Optimization and analysis of the final doublet relative displacement
- Vibrations analysis of the experiment for the feedforward study

