de Physique des Particules

Stabilization R\&D for future linear colliders (CLIC \& ATF2)

Journées Collisionneurs Linéaires

B.Aimard ${ }^{1}$, L. Brunetti¹, J.-P. Baud ${ }^{1}$, G. Balik ${ }^{1}$, A. Jeremie ${ }^{1}$, Y. Karyotakis ${ }^{1}$, S. Vilalte ${ }^{1}$ B. Caron ${ }^{2}$, C. Hernandez ${ }^{2}$,

1: LAPP-IN2P3-CNRS, Université de Savoie, Annecy, France
2: SYMME-POLYTECH Annecy-Chambéry, Université de Savoie, Annecy, France

One of the CLIC Challenges : Beam stabilization

- Final focus CLIC R\&D:

\square Many controls will be performed all along the collider
- Most stringent specifications are at the final focus interaction point

CLIC Final focus - beam stabilization strategy

- Beam trajectory control \& mechanical active control:

Beam control at the Interaction Point - IP Feedback

- Beam trajectory control : simulation under Placet

- Bandwidth limited by the beam repetition

Luminosity vs control ON or OFF and vs model of seismic motion (deal under Placet)

- Caron B et al, 2012, "Vibration control of the beam of the future linear collider", Control Engineering Practice.
- G. Balik et al, 2012, " Integrated simulation of ground motion mitigation, techniques for the future compact linear collider (CLIC) ", Nuclear Instruments and Methods in Physics Research

Mechanical active control

- Demonstration at a sub-nanometer scale

- Control with commercial sensors (geophones and accelerometers) : $0,6 \mathrm{~nm}$ RMS@4Hz

IapP.
\square Main limitation : SENSOR (simulation and experiment).

Transfer on a real scale

- Active control of a real size magnet

One active foot

Displacement measurement Vibrations sensor

Vibrations control Actuators
\square Instrumentation have to be developed

- Mecatronics challenge
- Structure : QDO Magnet

Example of a large actuator

- Sensors
- Actuators
- Integration: control, data processing, real time, layout, interfaces...

Simulation of the whole system

- Simulation studies of QD0 magnet :

$[M][\ddot{z}]+[K][z]=[F]$

- FEM : Modal analysis using finite elements - Determination of the most significant modes (frequency response characteristics)
- Expression in the form of a state space model and study of the control stategy
- Integration in a control loop (using Simulink for example) with the whole simulation (sensor, actuactor, ADC, DAC, Data processing.... And seismic motion model and its coherence)
- Targets : several aspects have to be defined
- Location and number of active feet
- Type of active feet
- Degrees of freedom
- Type of control (SISO, MIMO)
- To adjust the specifications of actuators and sensors

$>$ This upgrade stage is in Conditioning, real time processing...

Vibrations sensor : R\&D

I Already the limitation for the «demonstration» active table:

> No commercial solution
> Internal development at LAPP

- Development of a vibration sensor:
- Promising results (similar to the best commercial sensors)
- French patent (FR 13 59336), PCT extension in progress
- Outreach with the SATT of Grenoble (Linksium)
- Optimised version in test (measurement in vertical or horizontal) for measurements and for active control
- Triaxial version in progress

Prototypes developed since 2011

Latest one axis version

Prototype of tri-axes versions

Vibrations sensor : Results

- (Güralp 3-ESP)
- Comparison with industrial sensors at CERN (ISR - January 2015):

- Accelerometer
(Wilcoxon 731A) Mid-High frequencies

L_ LAViSta sensor
(x2)
Large bandwidth

- First tests in control:

\square LAViSta Active Table
- LAViSta sensor

ATF2: responsible of the final doublet relative displacement

- Relative motion between shintake monitor and final doublets of 6 nm RMS @ $0,1 \mathrm{~Hz}$ in the vertical axis (i.e. B. Bolzon results).
- Analysis of the upgrades influences and of the drift.

2008 by B. BOLZON	Tolerance	Measurement [SM-QD0]	Measurement [SM-QF1]
Vertical	7 nm (for QD0) $20 \mathrm{~nm}($ for QF1)	4.8 nm	6.3 nm
Perpendicular to the beam	$\sim 500 \mathrm{~nm}$	30.7 nm	30.6 nm
Parallel to the beam	$\sim 10,000 \mathrm{~nm}$	36.5 nm	27.1 nm
2013 by A. JEREMIIE	Tolerance	Measurement [SM-QD0]	Measurement [SM-QF1]
Vertical	7 nm (for QD0) $20 \mathrm{~nm}($ for QF1) Parallel to the beam	$\sim 10,000 \mathrm{~nm}$	4.8 nm

ATF2 upgrades

LAPP support: feet and T-plate

	Spec Shintake Monitor	Old Magnet	Initial support	New LAPP support without perturbation	New LAPP support with perturbation
Horizontal Rel. Displ. RMS (nm) @ 1Hz	≈ 500	30	290	52	$244-356$
Vertical Rel. Displ.	≈ 20	4	21	6	$17-21$

RMS (nm) @ 1Hz

Horizontal

Vertical

- Main resonance peaks pushed to higher frequencies

ATF2: expertise all along the collider

$>$ Processing of 14 Guralp 6T sensors
$>$ Guralp 6T: $0,5 \mathrm{~Hz}-100 \mathrm{~Hz}$, two directions connected (vertical and horizontal can be placed parallel or perpendicular to beam direction); sensors similar to the ones used in 2008

Analysis and measurements activities on different experiments

Iapp. IRSN vibrations analysis

\square IPHC measurements

Conclusions

- CLIC
- Feasibility demonstration of active control at sub-nanometer scale
- Development of an efficient vibrations sensor
- Control of the QD0 magnet in progress
- ATF2
- Optimization and analysis of the final doublet relative displacement
- Vibrations analysis of the experiment for the feedforward study

