QA/QC during construction

Final Design Review 9th November 2015

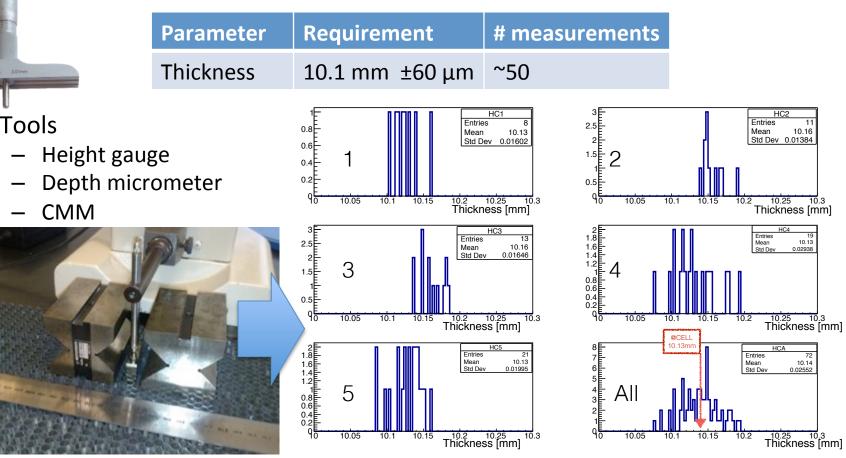
Fabien Jeanneau on behalf of MM community

Preliminary remarks

- Centralized order at Cern:
 - Check compliance of delivery (except for FR4 sheets for instance)
 - Dispatch in construction sites and complete check locally
 - Time needed to garantee replacement in case of nonconformity

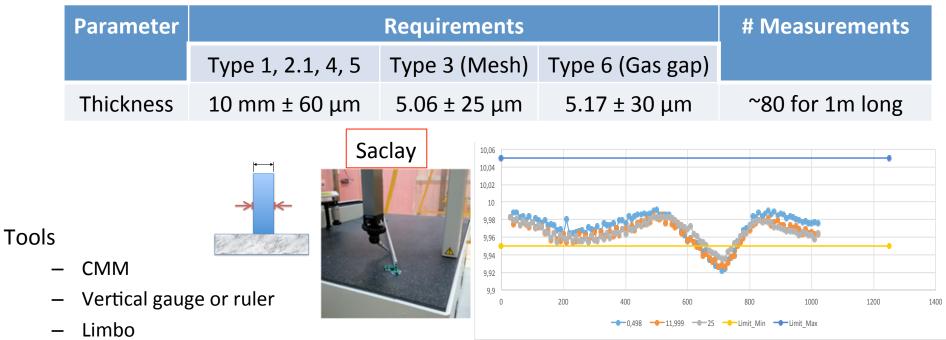
- Requirements:
 - Expressed in absolute tolerance and nominal value
 - Mean value, r.m.s., min and max are needed to evaluate the quality of a component and for acceptance/rejection decision in non-conformity procedure

Parameters


- Geometrical
 - Thickness (boards, panels, frames, inserts)
 - Planarity (panels, quadruplets)
 - Position, alignment (boards, strips, panel)
- Operational
 - Electrical (HV, grounding, insulation)
 - Gas tightness
 - Module validation (see presentation by P. lengo)

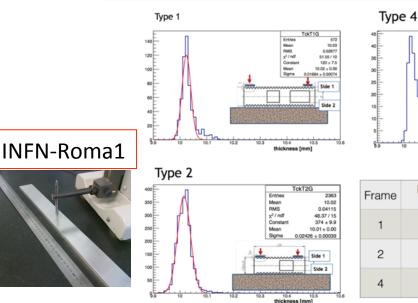
FR4 sheets thickness

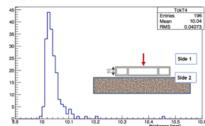
Parameter	Requirement	# measurements
Thickness	± 50 μm	~10


- Nominal thickness
 - Central drift and RO boards:
 - copper clad on one side
 - 0.5 mm + 0.17 μm
 - Outer skin of outer drift: raw FR4 sheet (0.5mm)
- Tool: digital thickness caliper
- Method: Measurements on 10 points on the edge of the sheet.
- 10% of batch for module 0 have been measure:
 - Thickness variations within a sheet are below 25 μ m, with an rms of 5–8 μ m

Honeycomb foils

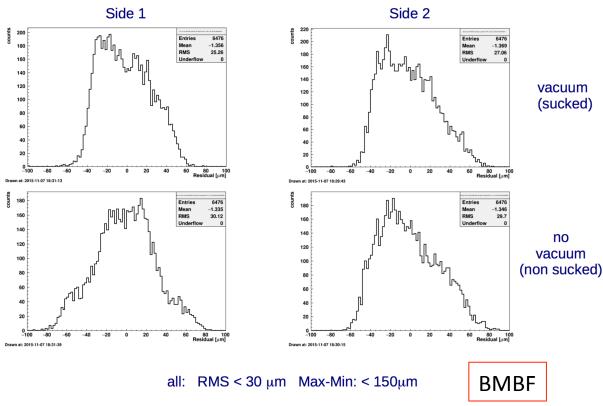
- Methods
 - Foils sticked on granite table with weight or by vacuum
 - Before cutting (delivery):
 - measurements are done in industry
 - Preliminary checks with a thickness caliper


Frames



Methods

- Before machining: sampling 10%
- After machining: each frame
- Pitch of measurement: 5 cm

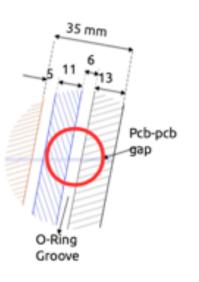

rame	MeanThickness (mm)	RMS (mm)
1	10.03	0.03
2	10.02	0.04
4	10.04	0.04

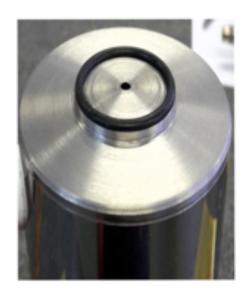
Panel thickness and planarity

Parameter	Requirement	# measurements
Thickness	 RO panel: 11.7 mm Drift panel (vacuum bag): 11.1 mm Drift panel (stiffback): 11.3 mm 	
Planarity	± 110 μm w.r.t. nominal thickness	~2000/side

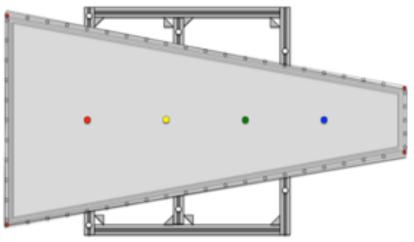
RMS: deviation from parallel plane to granite table (no tilt of fit-plane)

- Tools
- CMM
- Laser-tracker
- Probe-ruler
- Methods
- Panel are measured on a granite table every 10 or 20 cm, on both sides
- Combined measurement:
- Vacuum \rightarrow thickness
- Free (under its ow weight) → planarity (global shape)




Gas tightness

Parameter	Requirement	
Gas leak rate	< 10 ⁻⁶ bar L/s (10 ⁻⁴ vol/min)	
Flow rate loss	< 10 ⁻⁵ l/s	

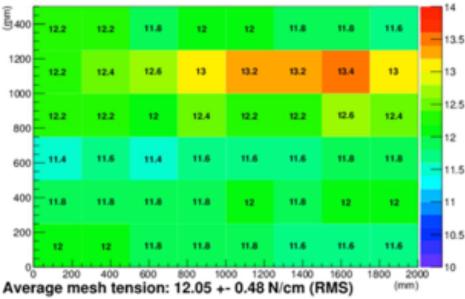

• Tools: Local detector or vessel based on a differential pressure sensor

Local tightness check (at the junction between 2 boards)

Global gas tightness check (with a vessel)

Drift panel completion

- Mechanical checks
 - Mesh-frame height after fixation: **5.06 mm ± 45 \mum**
 - Drift spacer (IC): 5 mm ± 45 μm
 - Tool/method: height or depth caliper
- Electrical and grounding tests
 - Mesh frame:
 - Shortcuts with cathode


- Grounding \rightarrow R < 0.1 Ohm (to be checked also for HC and frames)
- Cathode:
 - HV contact, continuity
 - Insulation: 500 V / <1 nA
- Tool/ method: Ohmmeter and power supply

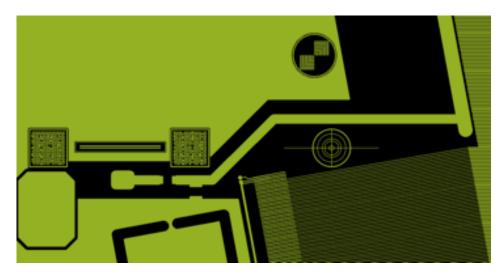
Mesh

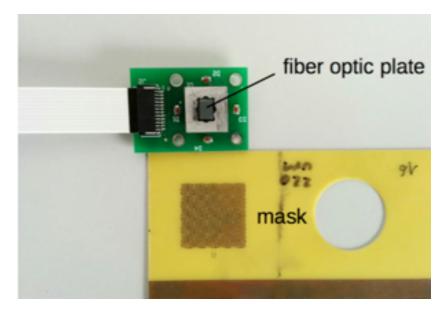
Parameter	Requirement	# measurements
Tension	nominal between 7 and 10 N/cm	50 - 100

- QC of mesh is detailed in ATL-M-CD-0001 v.1
- Tool : commercial tensometer (e.g. SEFAR tensocheck 100)

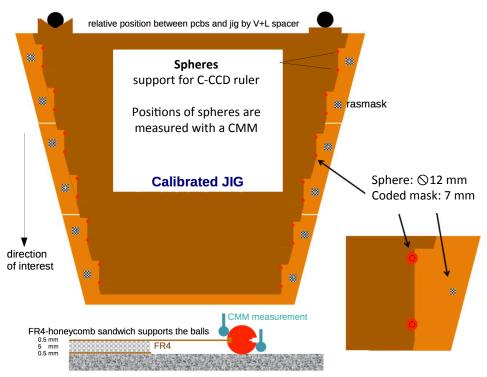
SM2 test mesh #1, horizontal, after gluing to transfer frame

Quadruplets


- Gas tightness: same requirement than for panels
 - Leak rate <10⁻⁶ bar L/s
 - Flow rate loss < 10^{-5} l/s
- Planarity: same requirement than for panels
 - ± 110 μm w.r.t. nominal thickness
 - Nominal thickness \rightarrow 77 < T < 77.6 (stiffback vs vacuum bag)
- HV tests:
 - Resistive strips
 - At 800 V in air, i < 40 nA/m² (affected by humidity)
 - At 580 V in standard gas mixture, i < 1 nA/m²
 - Cathode
 - i=0 nA @ 1000V in air

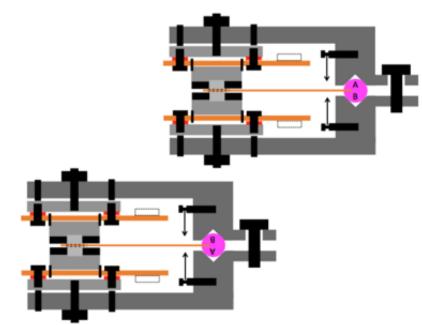

Alignment checks

Parameter	Requirement
Strips on one side	±40 μm (with constant allowed displacement ±20 μm)
Strips relative positioning side-to-side	\pm 60 μm (with constant allowed displacement $\pm 35~\mu m)$
Strips relative positioning panel-to-panel	\pm 60 μm (with constant allowed displacement $\pm 35~\mu m)$
2 RO panels relative position	± 20 μm (perpendicularity of alignment pin)


Tools for strip-alignment checks are based on:

- Contact-CCD: CCD + fiber optics
- Coded masks: rasmask

Strip-alignment checks: methods and tools


Strip position **on one side** is checked using a calibrated jig made of FR4-Honeycomb sandwich with spheres to position the C-CCD ruler on the coded masks

C-CCD rulers can be mounted on a U-shape mechanics.

Side-to-side strip positioning can be checked with a "doublet clip"

A dedicated mechanical support can be used ti check the **alignment of strips panel-to-panel**

Acceptance criteria

- Non-conformity procedures must be defined case by case for
 - Thickness: HC, perimeter frames (type 2.1, 4, 5), panels, quadruplet
 - Alignment:
 - Strip on one side
 - Strip side-to-side
 - 2 RO panels
 - Gas tightness
 - Mesh tension
 - Grounding
- Following requirements are very tight and components out of specs must be rejected:
 - FR4 thickness
 - Frames with tight thickness (type 3 and 6, mesh frame and gas-gap frame)
 - Mesh-frame height after gluing and drift spacer (IC)
 - Cooling leaks
 - Electrical tests:
 - Cathode insulation
 - Resistive strips current consumption

Conclusion

- Each steps of QC during construction is well identified
- Most of the tooling is ready (still need to finalize C-CCD tool)
- Methods:
 - Not all have been tested (will be during completion of module-0)
 - Some need to be refined (e.g. number of measurements to achiev the requested accuracy)
- Acceptance criteria are still mainly based on tolerance
 - Case by case aceptance/rejection criteria still need to be defined (Nonconformity procedures)