
TREQS Overview

by Bernard Chambon

NCSA ↔ CC-IN2P3 meeting

Thursday, 14th January 2016

TREQS overview, bernard.chambon@cc.in2p3.fr 1/9

Outline

TREQS’s aim

Technical details
• Functionalities

• Architecture

• Development process

Current status, schedule

TREQS overview, bernard.chambon@cc.in2p3.fr 2/9

TREQS aim 1/2

Memo about HPSS at CC-IN2P3
HPSS used for 15+ years, by 80 groups ; Currently 57 M files, amount of ∼32 PB
Wired to Oracle SL8500 (40,000 tape cells), with 3 media types T10K-B..D (D = 8.5 TB)
∼100 drives dedicated to HPSS

Access via RFIO using CLI 1 tools (rfdir, rfcp). (⇒ CERN RFIO built using HPSS API)
Major access from DCACHE, XROOTD
HPSS average access per day :
2000 tape mounts ; 50 K files accessed (16 K for reading), 35 TB (18 TB for reading)
16 K for reading : 10 K served by TREQS-1 2, 8 K are staging (2 K files already on disk)

TREQS motivation : regulation and optimisation of staging
Regulation

HPSS requests are processed in FIFO mode
No drive number limit per COS 3, for reading (and HPSS needs drives for writing)

Optimization
Several requests for files on same tape could lead to several mounts of that tape

TREQS main objectives (details in slide #5)
Optimisation Decrease number of tape movements (mount, rewind)
Optimisation Increase throughput for staging (ordering files)
Regulation Provide control upstream to HPSS

1. CLI : Command Line Interface ; WUI : Web User Interface
2. TREQS-1 : Old version of TREQS running on production (see next slide)
3. COS : HPSS Class Of Service

TREQS overview, bernard.chambon@cc.in2p3.fr 3/9

TREQS aim 2/2

TREQS positioning

TREQS story
A TREQS-1, inspired by a work at BNL (ERADAT, formally BNL Batch) from BNL 1

Initial version, running for 5 years, but without any evolution
TREQS-1 usage per day :
10,000 avg | 25,000 max staging requests, mainly from ATLAS experiment

A new TREQS-2 architecture and implementation, started at fall 2015

1. BNL : Brookhaven National Laboratory
TREQS overview, bernard.chambon@cc.in2p3.fr 4/9

TREQS-2 details > Functionalities

Decrease number of tape movements, Increase throughput for staging
Aggregate requests over time, per tape, to reduce number of tape mounts
Sort files to be staged in most efficient way, currently FPOT 1, (RAO 2 in the future ?)
Possibly add files to be staged while a tape is currently being read

Provide control upstream to HPSS
Limit number of allocated drives per drive-model (e.g. 25 drives for T10K-D tape model).
Fair share of drives among users (planned, but not yet available)
Limit access to granted users (white list)

About client
CLI to submit, but also to query and cancel requests, possibly per tape
Provide synchronous mode (rfcp for file transfer) and asynchronous mode (= pre-staging)
Provide bulk staging mode (= staging from a filelist)

1. FPOT: Logical File Position On Tape
2. RAO: Recommended Access Order

TREQS overview, bernard.chambon@cc.in2p3.fr 5/9

TREQS-2 details > Architecture 1/2

Main components (guideline = use standards !)
Client / Server : Java multithreaded server, python for client

REST API (http, json) : Lightweight client (CLI or WUI), easy to develop
JMS 1 : Components with well delimited scope, less shared data structures
H2 DB as persistence : Fast, embedded (or server), 100% java, freely available
JAAS 2 : To plug your own module (= site customization)
HPSS API via JNI 3
Mustache+Datatable for (minimal) real time monitoring

Schema of architecture ...

1. JMS : Java Messaging Service
2. JAAS : Java Authentication & Authorization Service
3. JNI : Java Native Interface

TREQS overview, bernard.chambon@cc.in2p3.fr 6/9

TREQS-2 details > Architecture 2/2

Schema

TREQS overview, bernard.chambon@cc.in2p3.fr 7/9

TREQS-2 details > Development process

Tools
Maven for project mgmt
Git as code repository (gitlab.in2p3.fr, private access)
Jenkins for continuous integration process
Sonar for code audit

Tests methods
Unit & integration tests
Load test (with elapse time metrics)
Metrics on staging throughput (e.g. without|with TREQS, without|with FPOT sort, etc.)

Our main concerns (guideline = quality)
• Provide a scalable and reliable server

• Provide a configurable, maintainable and portable software
No hard code value, use config file
Use standards (REST, JSON, JAAS,)
Modularity (authentication, scheduling algo)
Open source license

• Provide operation tools
Admin tool (possibly WUI)
Monitoring (integrated tool, detailed logs for external tool)

TREQS overview, bernard.chambon@cc.in2p3.fr 8/9

Current status, schedule

Current status about TREQS-2
Server, version 0.2, main components defined and implemented at 75%
Client commands available to submit, query and cancel requests

Key dates as schedule
Alpha version for 2016 Q1
Beta version for 2016 Q2
We aim a production version 1 for fall 2016 (2016 Q3)

Next steps
Advanced functionalities (Fair share, priority staging,) planned for the following version

For their feedback on this presentation, let me thank ...

Fabio Hernandez
Lionel Schwarz (TREQS software developer)
Pierre-Emmanuel Brinette (HPSS & TREQS administrator)
Yvan Calas (dCache & Xrootd service manager)

TREQS overview, bernard.chambon@cc.in2p3.fr 9/9

