

Science Performance Verification discussion

OUSIM Marseille

J. Amiaux CEA / Irfu / Sap

Follow-on Mission PDR

OUSIM Marseille

J. Amiaux CEA / Irfu / Sap

Mission PDR: Performances

51
Euclid

Fechnical Performance Measure		Requirement	CBE		
Image Quality	Image Quality				
	FWHM (@ 800nm)	180 mas	163 mas		
	ellipticity	15.0%	5.9%		
VIS Channel	R2 (@ 800 nm)	0.0576	0.0530		
	ellipticity stability σ(ει)	2.00E-04	2.00E-04		
	R2 stability σ(R2)/ <r2></r2>	1.00E-03	1.00E-03		
	Plate scale	0.10 " 1.00E-03 1.00E-03	0.10 "		
	Out-of-band avg red side		1.13E-05		
	Out-of-band avg blue side		2.12E-04		
	Slope red side	35 nm	15 nm		
	Slope blue side	25 nm	8 nm		
NISP Channel	rEE50 (@1486nm)	400 mas	217 mas		
	rEE80 (@1486nm)	700 mas	583 mas		
	Plate scale	0.30 "	0.30 "		
Sensitivity					
VIS SNR (for mAB = 24.5 sources)		10	17.1		
NISP-S SNR (@ 1.6um for 2xe-16 erg cm-2 s-1 source)		3.5	4.87		
	Y-band	5	5.78		
MSP - P SINK (10)	J-band	5	6.69		
mAB = 24 sources)	H-band	5	5.35		
NISP-S Performanc	ie in the second s				
Purity		80%	72%		
Completeness		45%	0.52		
Survey					
Wide Survey Coverage		15,000 deg2	15,000		
Survey length [yea	rs]	5.5 5.4			

OUSIM Marseille

- Performance at mission level in general in very good state (based on Current Best Estimate).
- Image quality of the system fully in line with needs.
- Ellipticity, R2 stability and Non-convolutive errors performance dictated mainly by ground processing and will be evaluated at SGS DR
- *Purity* not compliant with current data processing methods but expected to be recovered.

Euclid update Reference Survey

For Mission PDR, use of automatic Survey Generation tool taking into account:

- Spacecraft observational constraints and agility
- Calibration and orbit maintenance
- Best observable area on the sky
- For different operation scenario (nominal: 4400 s and with margin: 5000 s)

OUSIM Marseille

Euclid update Reference Survey

Survey can be implemented with required performance:

- Sky coverage of 15 000 deg² + calibration
- In less than 6 years of operations:
 - < 5,5 ans for nominal case (4400 s)
 - < 6 ans for case with margin (5000 s)
- While respecting the Spacecraft constraints

Key contributors: Calibrations + Deep + Station Keeping + Large Slewing						
		% of survey duration				
P-R-NP-CAL-F-002: NISP-P Survey Self-Calibration	37.5 days	1.8 %				
P-R-NP-CAL-F-005: NISP-P Absolute Standards Observations	4.6 days	0.3 %				
P-R-NP-CAL-F-009: NISP-P Color Gradient Observations	3.3 days	0.2 %				
P-R-NP-CAL-F-010: NISP-P Photo-z Training Sample	19.1 days	0.9 %				
P-R-NS-CAL-F-001: NISP-S Absolute Standards Observations	27.9 days	1.3 %				
P-R-NS-CAL-F-003: NISP-S Planetary Nebula Observations	4 days	0.2 %				
P-R-NS-CAL-F-004: NISP-S Purity Sample	41.7 days	2 %				
P-R-VS-CAL-F-003: VIS Non-Linearity Observations	1.9 days	0.1 %				
P-R-VS-CAL-F-004: VIS PSF Model 1	47 days	2.2 %				
P-R-VS-CAL-F-006: VIS Color Gradient Observations	4.9 days	0.3 %				
P-R-VS-CAL-F-009: VIS Absolute Standards Observations	2 days	0.1 %				
Deep Field (additional to calibration)	125.1 days	5.8 %				
Station Keeping	72 days	3.3 %				
Large Slewing	5.4 days	0.3 %				
(rotations from calibration to calibration targets and from calibration to wide survey pointings; wide to calibration slewing times are not accounted for here)						
Total NISP P	64.5 days	3 %				
Total NISP S	73.6 days	3.4 %				
Total VIS	55.8 days	2.6 %				
Total adjustion and Doop Survey account for						
Note: TOtal calibration and Deep Survey account for						
14 CO/ of mission time						
		1 %				
Total Calibration + Deep (the data used in the pie chart)	14.6 %					
Overall Total: Calibrations + Additional Deep + Station Keeping + Large sle	wing 396.4 days	18.2 %				

J. Amiaux CEA / Irfu / Sap

VG:6

J. Amiaux CEA / Irfu / Sap

iss 1.0 CPPM 14/01/16 - \

VG:7

OUSIM Marseille

J. Amiaux CEA / Irfu / Sap

OUSIM Marseille

J. Amiaux CEA / Irfu / Sap

Mission PDR was successful and this is a major achievement for Euclid

However, some point of discussions were raised requiring activities in the mid-term:

- 1. Need for joint Hardware (Instrument, Satellite) + Operations (Survey, Calibrations) + Data processing (pipeline prototype). This is within ESA verification scope.
- 2. Need for Science performance evaluation based on the current reference Euclid baseline. Beyond ESA scope including Space Segment / Ground Segment / ground data.

Action within the consortium to organise an additional cycle of science verifications:

- Cycle 01: Science Performance Verification 01 (jan 2012)
- Cycle 02: Science Performance Verification 02 (June 2017)
- Cycle 03: Science Performance Verification 03 (April 2019)

Planning for Science Performance Cycle

OUSIM Marseille

J. Amiaux CEA / Irfu / Sap

- 1. Need for joint Hardware (Instrument, Satellite) + Operations (Survey, Calibrations) + Data processing (pipeline prototype):
- PSF calibration and corrections
- Galaxy Shape performance
- CTI correction performance
- Signal-to-Noise ratio simulations with realistic PSF, background, galaxy properties, etc
- Spectroscopy processing chains and impact on Completeness and Purity

These performance will rely on integration of OUSIM pixel simulations and OU pipeline. Need typically few (10) x 10 deg² Patches with realistic system effects (straylight, CTI, PSF, detectors...).

- 2. Need for Science performance evaluation based on the current reference Euclid baseline:
- P(k), C(l), C(l,k) projection analysis comparison
- Ha Luminosity function knowledge and sensitivity
- Joint WL + GC Figure of Merit update
- Impact of relative spectrophotometry on GC
 Performance

These simulations will rely on catalog generations through by-pass to be used by Science Working group. Need typically 2000 to 20 000 deg of joint WL and GC catalogues.

These different needs can lead to parallel approaches with different levels of integration in the Euclid infrastructure.

Images including parameters impacting radiometry and background:

- Zodi / Straylight (on/off)/ Extinction (on/off)
- PSF / Ghosts (on/off)/ Detectors (on/off)

- Background substraction
- Detector effect Correction
- Evaluation of SNR on point source
- Evaluation of SNR on galaxy
- Spectroscopy processing chains and impact on Completeness and Purity

20 fields x 1 deg²:

Stars

20 fields x 1 deq²:

- Need for joint Hardware (Instrument, Satellite) + Operations (Survey, Calibrations) + Data processing (pipeline prototype)
- Images including parameters impacting radiometry and background:
- Zodi / Straylight / Extinction
- PSF / Ghosts / Detectors
- Zodi / Straylight / Extinction
- PSF / Ghosts / Detectors
- Zodi / Straylight / Extinction
- PSF / Ghosts / Detectors
- Zodi / Straylight / Extinction
- PSF / Ghosts / Detectors
- Zodi / Straylight/ Extinction
- PSF / Ghosts / Detectors
- Zodi / Straylight/ Extinction
- PSF / Ghosts / Detectors

 Spectroscopy processing chains and impact on Completeness and Purity

Images including parameters:

- Cosmics
- CTI

- Background substraction
- Detector effect Correction
- Evaluation of SNR on point source
- Evaluation of SNR on galaxy
- Spectroscopy processing chains and impact on Completeness and Purity

20 fields x 1 deq²:

Stars

Joint Input catalog for WL and GC. For a reference cosmological model With correct clustering, magnitude, size, shape parameter, redshift, spectrum. • Science Performance of Euclid in the current baseline.

		1		
SR#6: Input Simulation for SC#7	Level 1	~250 deg² imaging ~2000 deg² catalogues blind systematics (x4)	15/04/2017	SPR Cycle 02
SR#7: Simulation Scenario for E2E#1	TBD	-	31/05/2017	
SR#6b: Complementary Simulation	MER / SHE / EXT / SPE / PHZ / LE3	Same as SR#7	01/07/2017	
SR#8: Simulation Scenario for E2E#2	TBD	-	15/05/2018	
SR#9: Input Simulation for SC#8	LE3	10000 deg² (3x cosmologies)	15/07/2018	
SR#9b: Complementary Simulation	Level 1 / EXT	500 deg² + 1 deep field (3x cosmologies)	31/08/2018	
SR#10: Simulation Scenario for E2E#3	TBD	-	15/05/2019	
SR#11: Additional Simulation	Level 1 / EXT / LE3	~2500 deg ² imaging (Year 1 of observation: DR1) ~15000 deg ² catalogues (Full survey)	01/07/2019	SPR Cycle 03
SR#12: Additional Simulation	Level 1 / EXT/ LE3	~500 deg² imaging ~10000 deg² catalogues	01/12/2020	

Mission PDR was successful and this is a major achievement for Euclid

Already succesful Satellite + Survey + Data processing realised for GC at Mission PDR:

lessons learned and follow-on activities to carry on with specific emphases on:

- OUSIM capabilities to generate pixel level simulations of galaxies
- OU pipeline prototype availability
- Integration OUSIM / OU
- Joint catalog for GC + WL
- By-pass to generate the Euclid catalogues
- Ground data model