
Job Orchestration at SDC-ES
brownthrower (BT)

Pau Tallada



Contents
● Preface
● Definitions

○ Task
○ Job
○ Dependencies

● Data model
● Implementation

○ manager
○ runner
○ dispatcher

● Results



Preface
● IAL was not ready for mass-production
● BT already used in other projects

○ Re-use existing tools and knowledge at PIC
○ Very easy to integrate with OU-SIM pipeline

● But, this is a TEMPORARY solution until IAL is ready
● Brownthrower has some tightly coupled dependencies 

specific of PIC (gLite, among others) 



Task
● A piece of code that produces something
● Receives an input in YAML format
● Produces an output in YAML format
● Similar to the "pipeline" concept in Euclid

code outputinput



Job
● A "instance" of a task

○ A task with a concrete input and output

● Can be run in a computing node
● May depend on an arbitrary number of other jobs
● May decompose itself in subjobs, unlimited nesting
● Has a status that describes its state (QUEUED, RUNNING, 

FAILED, among others)
● Can be monitored and debugged in real-time



Dependencies

job job

job

...

job

job job

job

job

job job

job

job

job job

job

job

job job

job

job



Data Model

job

dependency

tag

● Just 3 tables:
○ Job: input, config, status, ...
○ Tag: user-defined data attached to a Job (backtrace, logs, ...)
○ Dependency: parent and child jobs



Manager
● Main interface (CLI) for job management

○ Intuitive, easy to use
○ Allows a user to create, edit, submit, abort, remove and link jobs
○ Supports multiple and concurrent clients
○ Automatic transaction retry in case of conflict





Runner
● Very complex and multiple responsibilities:

○ Isolate and provide a consistent environment for jobs
○ Monitor the job and update its status in real-time
○ Capture and dump logs, stdout, stderr and subprocesses
○ Catch exceptions, store the backtrace
○ Allow in-place debugging and profiling
○ Job pre-emption (user can abort any job any moment)

● Uses 3 independent processes and PostgreSQL NOTIFY calls
● Some of these features are already present in the 

EuclidSIM wrappers



Dispatcher
● Submits and monitors a set of jobs to be run on the farm
● Allows static (fixed number of pilots) or on-demand job 

scheduling
● Usable in BT 2.x, but not fault-tolerant
● Updates job and queue status in real-time





Results
● Most projects in our department are using it for 

production
○ MICE photoz, galaxy shapes, ...
○ PAU data management
○ DES galaxy clustering
○ Euclid OU-SIM

● More than 3 years since BT v1.0, 20 months running v2.x
● Lots of lessons, experience and knowledge
● More than 550.000 jobs successfully executed
● More than 20.000 hours (wall time) of work done


