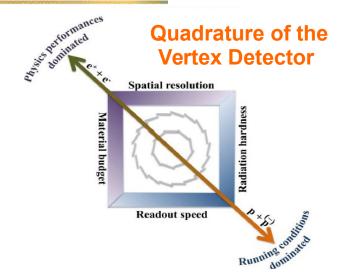
CPPM seminar – Feb. 22th 2016

From Vertex Detectors to Inner Trackers with CMOS Pixel Sensors

Alejandro Pérez Pérez IPHC – CNRS Strasbourg

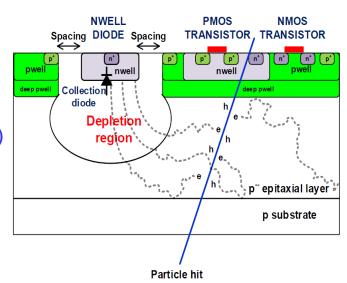

Outline

- Introduction to CMOS Pixel Sensors (CPS)
- CPS adapted to an inner tracker: ALICE-ITS Upgrade
- Next R&D challenges
- Summary

Introduction to CPS

CPS: Development motivation

- CPS triggered by the need of very granular and low material budget sensors
- CPS applications exhibit milder running conditions than at pp/LHC
 - Relaxed readout (r.o.) speed & rad. tolerance



- Application domain widens continuously (existing/foreseen/potential)
 - Heavy-ion collisions
 - STAR-PXL, ALICE-ITS, CBM-MVD, NA61...
 - e⁺e[−] collisions
 - BES-III, ILC, Belle II (BEAST II)
 - Non-collider experiments
 - FIRST, NA63, Mu2e, PANDA, ...
 - High-precision beam-telescopes (adapted to medium/low energy e⁺ beams)
 - Few μm resolution @ DUT achievable with EUDET-BT (DESY), BTF-BT (Frascati)

CPS: Main features

The basic working principle

- Secondary charges generated in epi-layer by ionization
 - Signal proportional to epi-thickness
- Charges transport driven by 3 potentials
 - P-well/coll. node/P++ (usually GND/few volts/GND)
- Epi-layer not fully depleted: $d_{dep} \sim 0.3 \sqrt{\rho_{sub}} U_{bias}$
 - ⇒ transport is mix of thermal diffusion & drift

Prominent features

- Signal processing integrated on sensor substrate ⇒ downstream electronics & syst. integration
- High granularity \Rightarrow excellent spatial resolution (O(μ m))
- Signal generated in thin (10-40 μ m) epi-layer \Rightarrow usual thinning up to 50 μ m total thickness
- Standard fabrication process ⇒ low cost & easy prototyping, many vendors, ...

CPS technology potential

- Mainly driven by commercial applications ⇒ Not fully optimized for particle detection
- R&D largely consists in exploiting as much as possible the potential of the accessible industrial processes

CPS @ PICSEL - IPHC: A long term R&D

■ Ultimate objective: ILC, with staged performances

CPS applied to other experiments with intermediate requirements

UNNIEUDET 2006/2010

Beam Telescope

ILC >2020
International Linear Collider

EUDET (R&D for ILC, EU project)

STAR (Heavy Ion physics)

CBM (Heavy Ion physics)

ILC (Particle physics)

HadronPhysics2 (generic R&D, EU project)

AIDA (generic R&D, EU project)

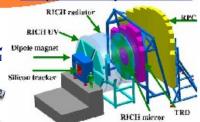
FIRST (Hadron therapy)

ALICE/LHC (Heavy Ion physics)

EIC (Hadron physics)

CUTC (Particle physics)

BESIII (Particle physics)


STAR 201

Solenoidal Tracker at RH

<u>CBM >2018</u>

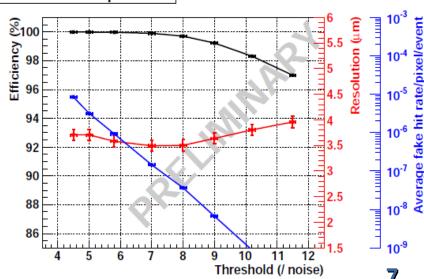
Compressed Baryonic Matter

On-going R&D S

HR-CMOS for X-rays (2018)

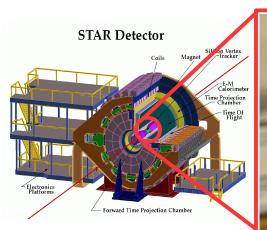
CPS State-of-the-Art in operation: STAR-PXL sensor

ULTIMATE main characteristics


- CMOS sensor (0.35 μm AMS twin-well) high-ρ epi-layer 15μm
- Sensor thinned to 50 μm (total thickness \Rightarrow 0.05% X_0)
- || column (rolling shutter) r.o. with in-pixel CDS & amplification
- End-of-column discriminator (1-bit) followed by Ø-suppression
- 960 x 928 (columns x rows) pixels of 20.7 μm pitch
 ⇒ 19.9 x 19.2 mm² sensitive area
- $t_{r_0} \lesssim 200 \,\mu s \,(\sim 5 \times 10^3 \,\text{frames/s}) \Rightarrow \text{suited for} > 10^6 \,\text{part./cm}^2/\text{s}$
- 2 outputs @ 160 MHz
- Operation @ T ~30 °C & W ≤ 150 mW/cm²

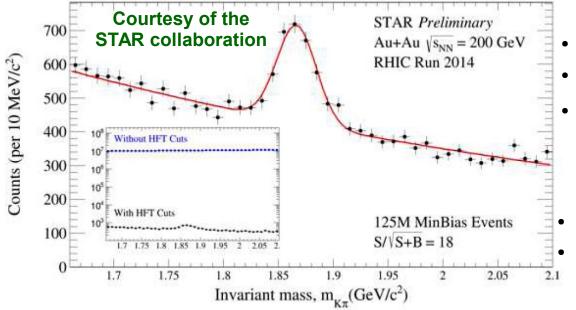
ULTIMATE Performances

- Noise < 15 e⁻ ENC @ 30-35 °C
- $\varepsilon_{det} \gtrsim 99.9\%$, $\sigma_{sp} \gtrsim 3.5 \mu m$, Fake rate $\lesssim 10^{-5}$
- Rad. hardness validated @ 30 °C (150 kRad ⊕ 3×10¹² n_{eq}/cm²)



MIMOSA 28 - epi 15 um

CPS State-of-the-Art in operation: STAR-PXL detector


STAR-PXL @ RHIC: 1st CPS @ a collider experiment!

STAR-PXL HALF-BARREL

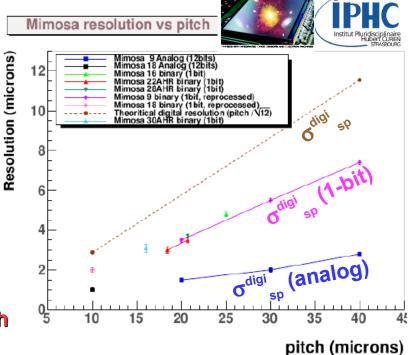
- 2 layers @ r = 2.8,8 cm
- 20 ladders (10 sensors) (0.37% X₀)
 - ⇒ 180M pixels
- Air flow cooling: T < 35°C

Several Physics-runs

- 1st /2nd run in 2014 & 2015
- Preparation for 3rd run (Jan. 2016)
- $\sigma_{in}(p_T)$ matching requirements
- ~40 μ m @ 600 MeV/c for π^{\pm}/K^{\pm}

Observation of D⁰ production

- **STAR:** peak significance = 18
- **ALICE:** peak significance = 5


CPS performances: Spatial Resolution (σ_{sp})

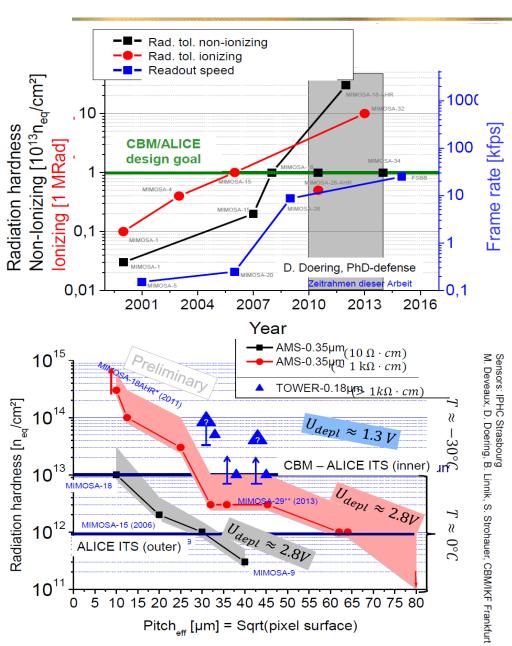
Several parameters govern σ_{sp}

- Pixel pitch
- Epi-layer: thickness & ρ
- Sensing node: geometry & electrical properties
- Signal-encoding resolution: Nb of bits
- σ_{sp} function of:
 pitch ⊕ SNR ⊕ charge-sharing ⊕ ADCu ⊕ ...

Pixel-pitch impact (analogue output)

- Pitch = 10 (40) μ m $\Rightarrow \sigma_{sn} \sim 1 \mu$ m ($\lesssim 3 \mu$ m)
- Nearly linear improvement in σ_{sp} vs pixel pitch

Signal-encoding impact (digital output)


• $\sigma^{\text{digi}}_{\text{sp}}$ = pitch/(12)^{1/2} \Rightarrow e.g. $\sigma^{\text{digi}}_{\text{sp}}$ ~ 5.7 μ m for 20 μ m pitch

Nb of bits	12	3-4	1	
Data	measured	reprocessed	measured	
σ_{sp}	\lesssim 1.5 μm	\lesssim 2 μm	\lesssim 3.5 μm	

- Significant improvement in $\sigma_{_{SD}}$ by increasing signal encoding resolution

CPS performances: r.o. speed & rad. hardness

- 15 years of experience of PICSEL group in developing CPS
- Strong collaboration with ADMOS group at Frankfurt

r.o. speed evolution

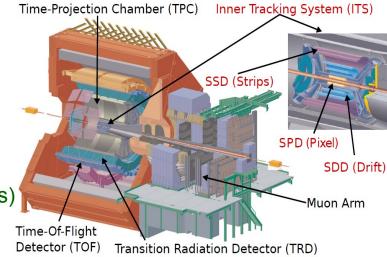
 Two orders of magnitude improvement in 15 years of research

Radiation tolerance

- Significant improvement with time
- Sensor validation up to 10 MRad ⊗ 10¹⁴n_{eq}/cm²
- Adequacy to ALICE-ITS and CBM applications

Development of CPS adapted to Vertex & Tracker detector

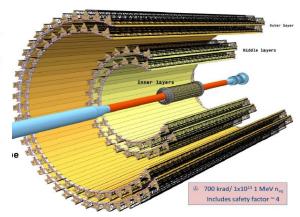
Next challenge: ALICE-ITS upgrade



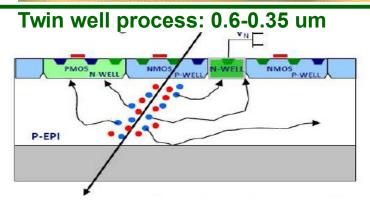
ALICE goals

- Study quark gluon plasma in heavy-ion collisions
- High precision measurements @ low-p₊

Upgraded ITS entirely based on CPS

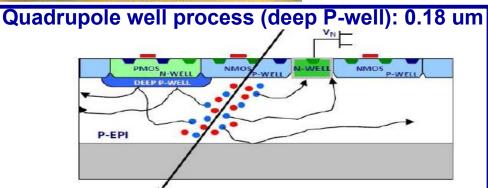

- Present detector: 2xHPD/2xDrift-Si/2xSi-strips
- Future detector: 7-layers with CPS (25-30k chips)
 - ⇒ 1st large tracker (~ 10 m²) using CPS
- ITS-TDR approved on March 2014 (Pub. In J.Phys. G41 (2014) 087002)

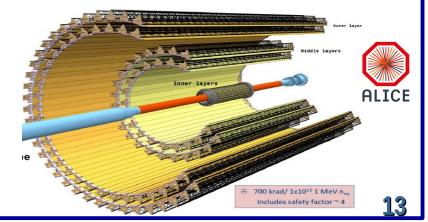
New ALICE-ITS requirements


	σ_{sp}	$t_{r.o.}$	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3\cdot 10^{12}~\mathrm{n}_{eq}/\mathrm{cm}^2$	30-35°C	160 mW/cm ²	$0.15~\mathrm{m}^2$
ITS-in	\lesssim 5 μm	\lesssim 30 μs	2.7 MRad	1.7·10 13 n $_{eq}$ /cm 2	30°C	$< {\rm 300~mW/cm^2}$	$0.17~\mathrm{m}^2$
ITS-out	\lesssim 10 μm	\lesssim 30 μs	100 kRad	$1{\cdot}10^{12}~\mathrm{n}_{eq}/\mathrm{cm}^2$	30°C	$< {\rm 100~mW/cm^2}$	\sim 10 ${ m m}^2$

 Different requirements on inner & outer layers calls for different chips designs!

⇒ 0.35 μm CMOS process (STAR-PXL) marginally suited to this r.o. speed & rad. hardness


CMOS Process Transition: STAR-PXL → ALICE-ITS

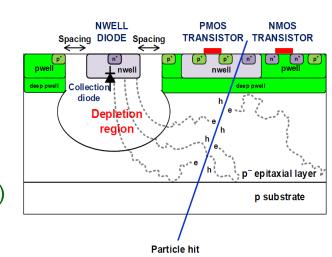

- Use of PMOS in pixel array not allowed
 ⇒ parasitic q-collection of additional N-well
- Limits choice of readout architecture strategy
- Already demonstrated excellent performances
 - > STAR-PXL: Mi-28 (AMS 0.35 μ m process) $\Rightarrow \epsilon_{det}$ > 99.5%, σ_{sp} < 4 μ m
 - > 1st CPS detector @ collider experiment

- N-well of PMOS transistors shielded by deep P-well
 - ⇒ both types of transistors can be used
- Widens choice of readout architecture strategies
 - New ALICE-ITS: 2 sensors R&D in || using TowerJazz CIS 0.18 um process (quadru. well)
 - → Synchronous Readout R&D: proven architecture ⇒ safety
 - → Asynchronous Readout R&D: challenging

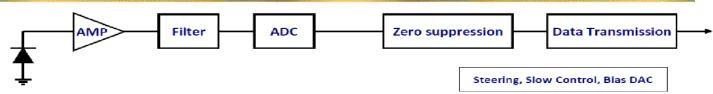
ALICE-ITS: Boundaries of the CPS Development

New fabrication process (TowerJazz CIS 0.18 μm)

- Expected to be ration tolerant enough
- Expected to allow for fast enough readout
- Larger reticule: ~ 25 x 32 mm²


STAR-PXL	ALICE-ITS	added-value
0.35 μm	0.18 μm	speed, TID, power
4 ML	6 ML	speed. power
twin-well	quadruple-well	speed, power
EPI 14/20 μm	EPI 18/40 μm	SNR
EPI \gtrsim 0.4 k $\Omega \cdot cm$	EPI \sim 1 - 8 k $\Omega \cdot cm$	SNR, NITD

Drawback of smaller feature size


- 1.8 V operative voltage (instead of 3.3 V)
 - ⇒ reduced dynamics in signal processing circuit and epi-layer depletion voltage
- Increase risk of Random Telegraph Signal (RTS) noise

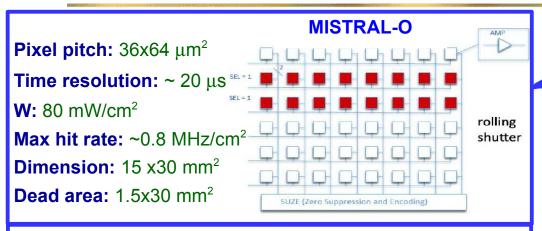
Requirements of the larger surface to cover

- Good fabrication yield ⇒ sensor design robustness
- Mitigate noisy pixels
- Sensor operation stable along 1.5 m ladder (voltage drop)
- Material budget
 - Minimize power consumption
 - Minimal connexions to the outside ⇒ sensor periphery (slow-control, steering, ...)

ALICE-ITS: Readout chain components

Typical readout components

- **AMP:** in-pixel low noise pre-amplifier
- **Filter:** in-pixel filter
- ADC (1-bit = discriminator): may be implemented at end-of-column or pixel level
- Zero suppression (SUZE): only hit pixel info is retained and transferred
 - Implemented at sensor periphery (usual) or inside pixel array
- **Data transmission:** O(Gbps) link implemented at sensor periphery

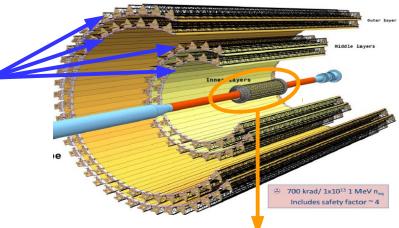

r.o. alternatives

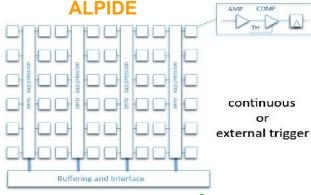
- Rolling shutter (synchronous): || column r.o. reading N-lines at the time (usually N = 1-2)
- data-driven (asynchronous): only hit pixels are output upon request (priority encoding)

Rolling shutter: best approach for twin-well process

Trade-off between performance, design complexity, pixel dimensions, power, ...
 e.g.: Mimosa-26 (EUDET-BT), Mimosa-28 (STAR-PXL)

ALICE-ITS: Two Architectures for the pixel chip




Goal: early available and reliable solution

- Conservative design based on STAR-PXL
- Big pixel ⇒ low power & high speed
- Moderate rad. hardness & σ_{sp} ~10 $\mu s \Rightarrow$ OK

Goal: high performance, accept risks

- Aggressive design
- In-pixel discrimination
- Data-driven r.o. (priority encoder)
- Both chips have same physical & electrical interfaces
- Base-line solution: ALPIDE for all ITS layers

Pixel pitch: 28x28 μm²

Time resolution: $\leq 5 \mu s$

W: 39 mW/cm²

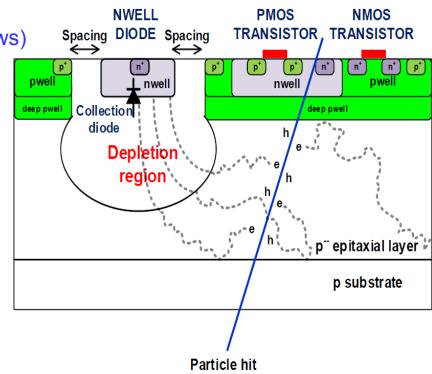
Max hit rate: ~ 3MHz/cm²

Dimension: 15 x30 mm²

Dead area: 1.1x30 mm²

Exploring the new technology

Technology Exploration & Sensor Performances


- Goal: understand the detection performances in terms of external parameters
 - ⇒ Optimization for ALICE-ITS (and evaluate adequacy for other applications)

External parameters

- Diode and spacing (footprint) size/geometry
- Pixel size/geometry: square vs elongated
 - Elongated pixels in row direction (less rows)
 - \Rightarrow Lower $t_{r.o.}$ of rolling shutter
- Diode layout of elongated pixels
 - Staggering ⇒ lower diode inter-distance
- **Epi-layer:** thickness and resistivity (profile)

Performances in terms of

- Noise
- CCE, SNR @ seed pixel
- Hit pixel multiplicity ⇒ data transmission
- ϵ_{det} , σ_{sp} & Fake-rate
- Rad. Tolerance

Exploratory chips: MIMOSA-32ter & MIMOSA-34

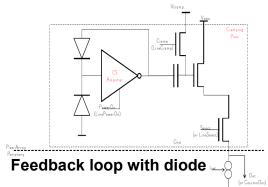
TowerJazz 0.18um technology validation & performances optimization

MIMOSA-32ter

- Analog-output: source follower or feedback-loop (t_{int} ~34 or 12 μ s)
- Sub-matrices of 16x64 pixels with different sizes (20x20,33,40,80 μm²), diodes geometries (octagonal vs square) and some with deep P-well
- Epi-layer: $18 \mu m HR (\rho = 1 k\Omega cm)$

MIMOSA-34

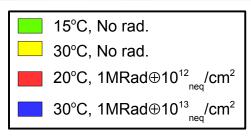
- Analog-output: source follower (t_{int} ~ 32μs)
- 30 sub-matrices with 16x64 staggered pixels
 - > **Dimensions:** 22 or 33 x(27, 30, 33, 44, 66) μ m²
 - Diode/footprint: 1+1, 2, 5, 5+5, 8, 11, 15 μm² / 11,15 μm²
- **Epi-layer**: 18, 20, 30 μ m HR (ρ = 1 6 $k\Omega$ cm)


Test purposes

- Validate new technology: epi-layer characteristics, deep P-well and Rad. tolerance
- Study: sensing node charge collection, elongated pixels performances

Vidiode Vdda Pixel SF-2T Select (or Line Select)

source follower

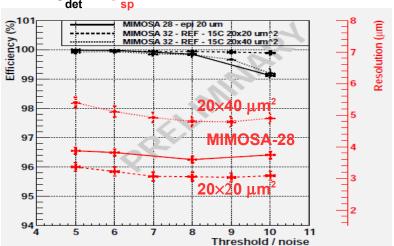

Diode & pre-ampli

MIMOSA-32ter: performances

CERN-SPS BT Set-up

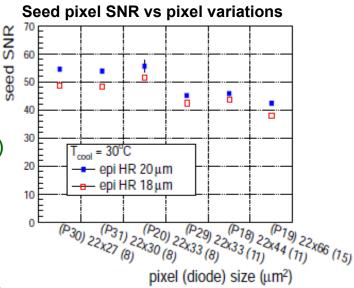
- **Beam**: 60-120 GeV/c π^+
- $T_{\text{cooling}} = 15, 20 \& 30^{\circ} \text{C}$

Main results

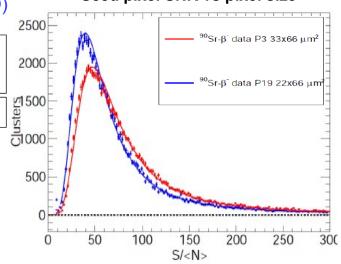

- 20x20 μm² pixel (performances vs rad. dose @ 30°C)
 - Small noise increase: 21 → 26 e⁻ ENC
 - > SNR_{seed} reduction: $26-28 \rightarrow 19 (30\%)$
 - \rightarrow ϵ_{det} > 99% for 1MRad \oplus 10¹³n_{eq}/cm²
 - \rightarrow $\sigma_{sp} \sim 3.2 \, \mu m$
- 20x40 μm² pixel (@ 20°C)
 - $\epsilon_{\rm det} > 99\%$ for 1MRad \oplus 10¹³n_{eq}/cm²
 - $\sigma_{sp} \sim 5.0 \ \mu m$

Technology validation

- HR epi-layer √
- deep P-well (no parasitic charge coll.)
- Radiation tolerance


MIMOSA-34: performances vs diode & pixels sizes

DESY BT Set-up (August 2013):

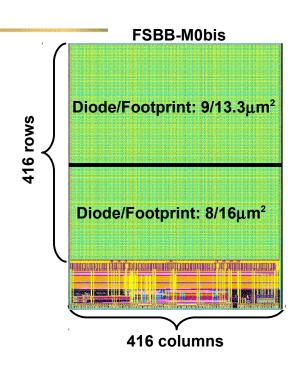

- 2BT: 8xSi-strips & 6xMIMOSA-26 (120 μm thick)
- ~4.4 GeV/c e⁻ beam
- MIMOSA-34: Various pixels & diode dimensions
 - Pixel (22x27,30,33,44,66) & diode (8,11,15) sizes (μm²)
 - Excellent SNR_{seed} for various considered pixels
 - \Rightarrow e.g. MPV > 40 for 22x66 μm^2 pixel $\Rightarrow \epsilon_{det}$ ~100%
 - **33x66** μ m² **pixel**: Not tested in BT but with β-source
 - ho Excellent MPV (> 50) \Rightarrow expects $ε_{det}$ ~100% & $σ_{sp}$ ~ 10μm
 - Pixel size adapted for ALICE-ITS outer layers (MISTRAL-O)

Process ⊳	0.35 μm	0.18 μm				
Pixel Dim. $[\mu m^2]$	20.7×20.7	20×20	22×33	20×40	22×66	33×66
$\sigma^{bin}_{sp}[\mu m]$	3.7 ± 0.1	3.2 ± 0.1	~ 5	5.4 ± 0.1	\sim 7	\sim 10 μm ?

- Variations showed acceptable degradation of performances for nominal TID + NIEL @ ALICE-ITS
- Next-step: optimization with pre-ampli scheme

Seed pixel SNR vs pixel size

Going MISTRAL-O


Main features of the Sensors Studied on Beam

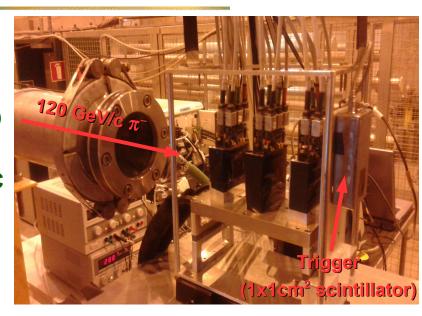
Full Scale Building Block (FSBB) sensor

- Complete (fast) chain of double-row r.o. and 2D sparcification (SUZE): $t_{ro} = 40 \mu s$
- Sensitive area (~1 cm²) ≈ area of final building bock
- Similar Nb of pixels (~170k) than complete final chip (160k)
- Epi-layer: high-ρ 18 μm thick
- BUT: pixels are small (22x32.5 μm² staggered layout) & sparsification circuitry is oversized (power!)

Large-pixel prototype (MIMOSA-22THRb)

- Two slightly different large pixels
 - > 36x62.5 μm² and 39x50.8 μm² (staggered layout)
- Pads over pixel array (3ML used for in-pixel circuitry)
- Double-row r.o. with no-sparsification ($t_{r.o.} \sim 5 \mu s$)
- Epi-layer: high-ρ 18 μm thick
- **BUT**: only ≤ 10 mm², 4k pixels & no sparsification

Mi22-THRB6: 36×62.5μm²


Main goals of MIMOSA-22THRb & FSBB-M0 Prototyping

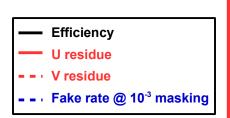
Parametres investigated	MIMOSA-22THRb7/6	FSBB-M0bis
Sensing node geometry	X	Χ
Epitaxial layer parametres	X	X
In-pixel signal processing	X	X
on 3 ML (Pre-Amp, clamping)	X	_
Pads over pixels	X	_
Large pixel detection efficiency	X	_
at 30°C (incl. after OB radiation load)	X	_
Large pixel single point resolution	X	_
Complete signal sensing & processing chain	_	Χ
Fake rate (160,000 pixels)	x	X
Impact of voltage drop	_	X
Cluster encoding data size	X	x

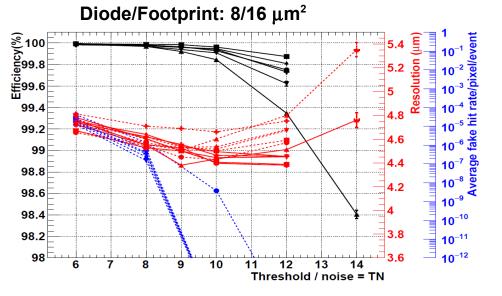
FSBB BT @ CERN-SPS in Oct. 2015

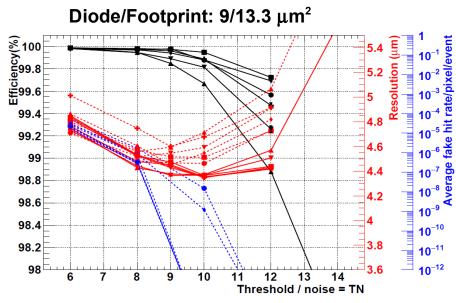
Experimental set-up

- 3 pairs of FSBB planes on T4/H6 (120 GeV/c π^-)
- Particle flux: trigger rate ~4, 25 & 100 kHz/cm²
- All measurements performed at T_{coolant} = 30 °C

Measurements vs discriminator threshold

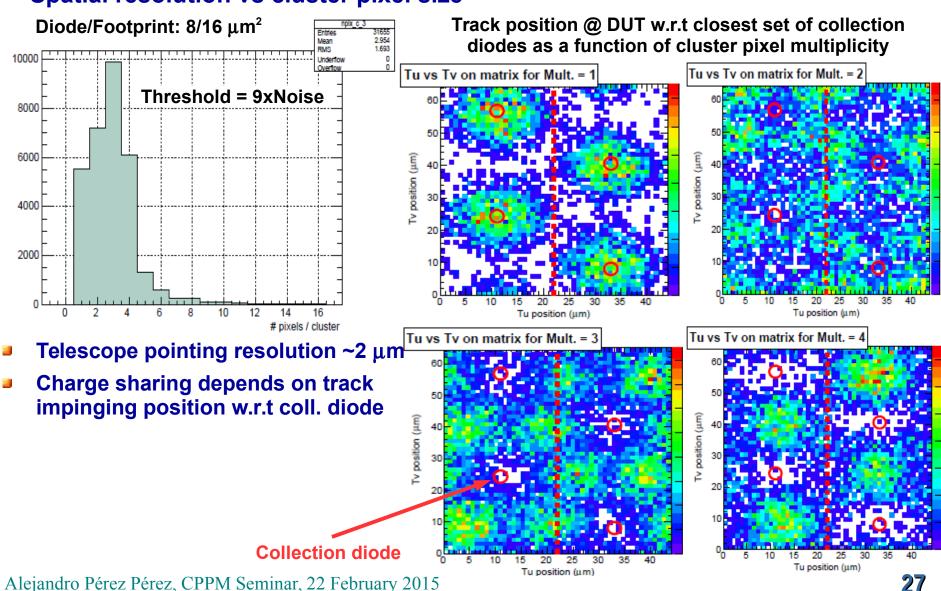

- Detection efficiency vs fake rate (noisy pixel)
- Spatial resolution associated with binary encoding of 22x32.5 μm² pixels
- Radiation tolerance @ T_{coolant} = 30 °C: up to 1.6 MRad ⊕ 1.0×10¹³ n_{eq}/cm²
- Studies of the impact of operation parameters on sensor performances
 e.g. input voltage (VDD), pixel current, ...
- Study of the impact of noisy pixel masking on efficiency and spatial resolution
- Main Goal: validation of r.o. architecture and pixel masking in full size chip


Main FSBB-M0 detection performances (1/3)


All the 6 sensor performances on the same plot

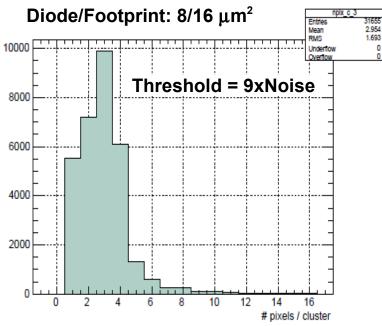
Excellent and uniform performances among sensors (thr < 10xNoise)

- detection efficiency: > 99%
- spatial resolution: < 5μm
- Fake rate: < 10⁻⁶ with moderate (10⁻³) hot pixels masking

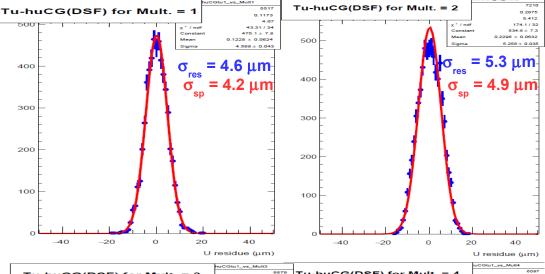


Detection performances stability

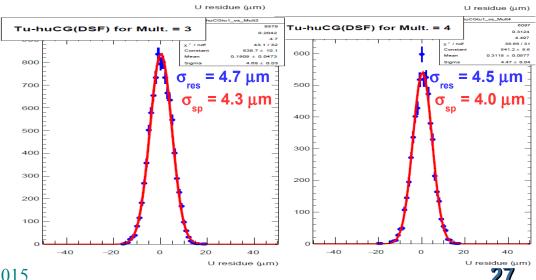
- Same results obtained @ DESY (4.5 GeV/c e^-) and CERN-SPS (120 GeV/c π^-)
- Same results for different particles rates: 1 25 hits/frame
- Robust performances in terms of operation parameters


Main FSBB-M0 detection performances (2/3)

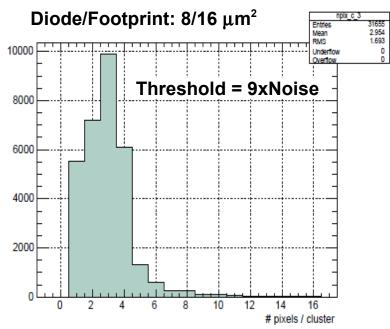
Spatial resolution vs cluster pixel size



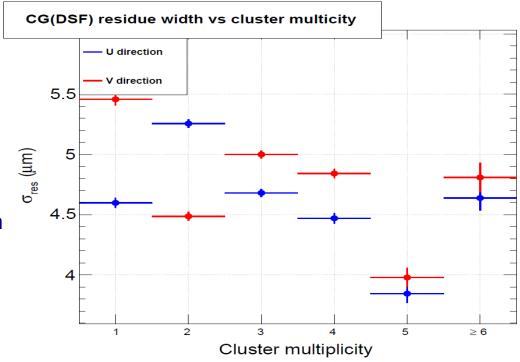
Main FSBB-M0 detection performances (2/3)


Spatial resolution vs cluster pixel size

Residue distribution in the raw parallel direction as a function of cluster pixel multiplicity



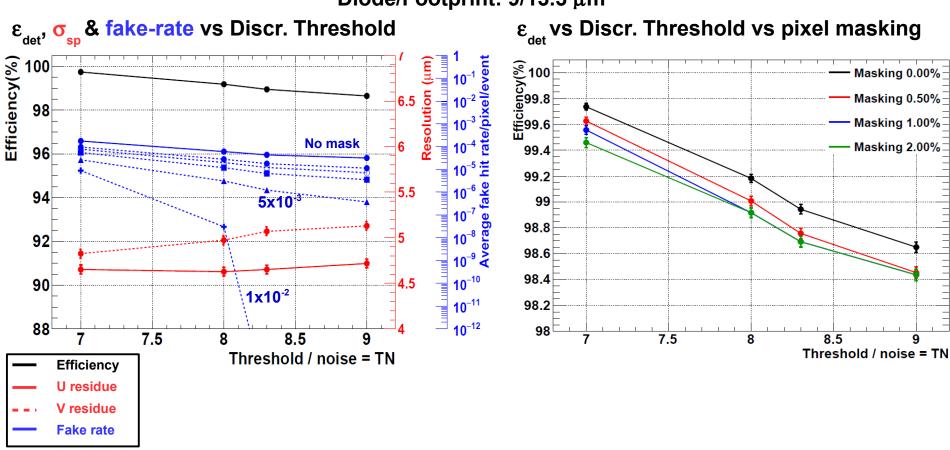
- Telescope pointing resolution ~2 μm
- Charge sharing depends on track impinging position w.r.t coll. diode
- Spatial resolution is mostly dependent on # pixels/cluster
- $\sigma_{\rm sp}$ (Mult=1) ~ 4.2 μ m < $\sigma_{\rm sp}^{\rm digi}$ ~ 7.8 μ m



Main FSBB-M0 detection performances (2/3)

Spatial resolution vs cluster pixel size

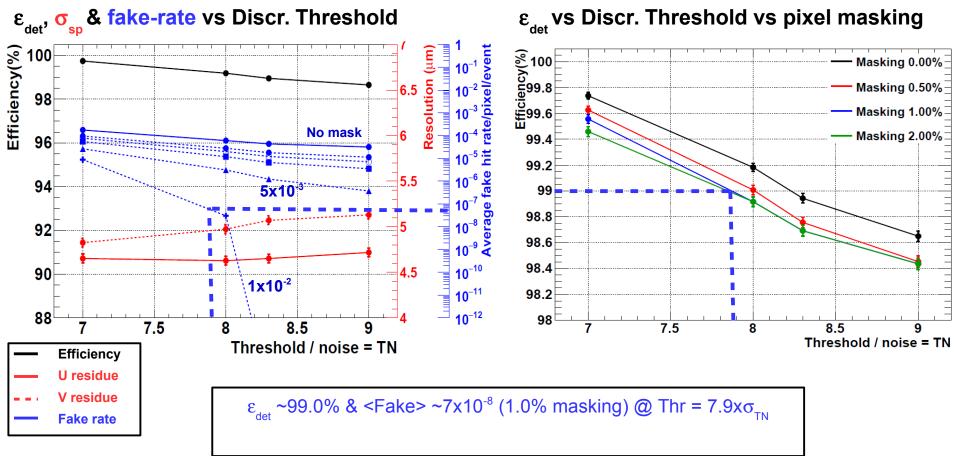
Residue RMS in the raw/column parallel direction as a function of cluster pixel multiplicity



- Telescope pointing resolution ~2 μm
- Charge sharing depends on track impinging position w.r.t coll. diode
- Spatial resolution is mostly dependent on # pixels/cluster
- $\sigma_{\rm sp}$ (Mult=1) ~ 4.2 μm < $\sigma^{\rm digi}_{\rm sp}$ ~ 7.8 μm
- ullet Staggering mitigates $\sigma_{_{sp}}$ difference in raw/column directions

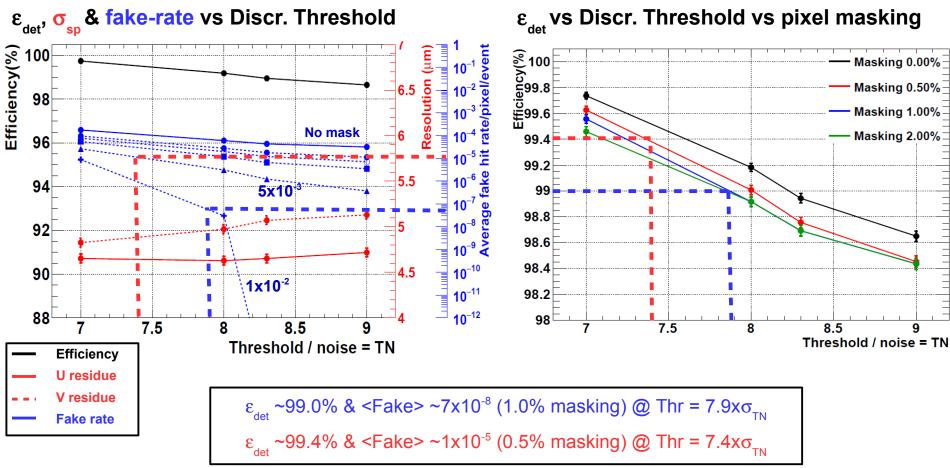
Main FSBB-M0 detection performances (3/3)

- Study of rad. tolerance @ T ≥ 30 °C: loads relevant to ALICE-ITS inner layers
 - Load: 1.6 MRad \oplus 10¹³n_{eq}/cm²


Diode/Footprint: 9/13.3 μm²

Main FSBB-M0 detection performances (3/3)

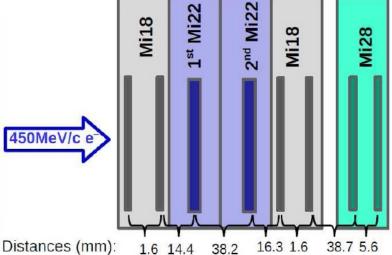
- Study of rad. tolerance @ T ≥ 30 °C: loads relevant to ALICE-ITS inner layers
 - Load: 1.6 MRad \oplus 10¹³n_{eq}/cm²


Diode/Footprint: 9/13.3 μm²

Main FSBB-M0 detection performances (3/3)

- Study of rad. tolerance @ T ≥ 30 °C: loads relevant to ALICE-ITS inner layers
 - **Load:** 1.6 MRad ⊕ 10¹³n_{eq}/cm²

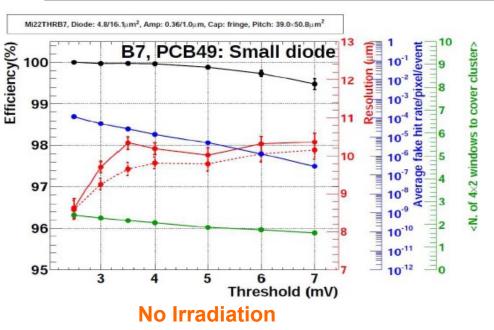
Diode/Footprint: 9/13.3 μm²

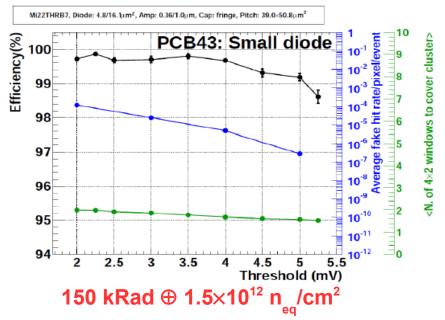


MIMOSA-22THRb BT @ Frascati in May 2015

Experimental set-up

- Beam: 450 MeV/c e⁻
- Telescope: 2xMi28 (digital output) and 4xMi18 (analog-output) sensors thinned to 50 μm
- **Trigger:** beam injection signal ⇒ synchronisation due to small spill length (few ns)


Mi18: σ_{sp} = 1-2 μ m Mi28: σ_{sp} ~ 3.5 μ m


Measurements vs discriminator threshold

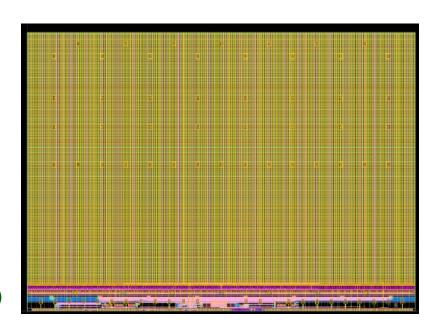
- Detection efficiency vs fake rate (noisy pixel)
- Spatial resolution associated with binary encoding of 36x65.2 μm² & 39x50.8 μm² pixels
- Radiation tolerance @ T_{coolant} = 30 °C: up to 150 kRad ⊕ 1.5×10¹² n_{eq}/cm²
- Main Goal: validation of large pixel performances

Main MIMOSA-22THRb detection performances (1/2)

Pixel type	Pixel dim.	Diode/Footprint	Pre-Amp T.	Clamping capa.	Integ. time
MIMOSA-22THRb7	39 μm x 50.8 μm	5/16 μm^2	N-MOS	MOS (N-well)	5 μs

- Excellent detection performances
 - ϵ_{det} > 99% & σ_{sp} ~ 10 μm (as expected)
 - Good performances for radiation load relevant for outer ALICE-ITS

Efficiency
U residue
V residue
Fake rate
<# Suze Windows>


Validation of large pixel design for the outer layers of the ALICE-ITS!

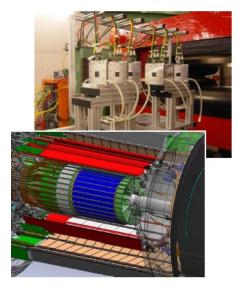
Final Sensor: MISTRAL-O

Combination of 4 FSBB-M0 with MIMOSA-22THRb7 pixels

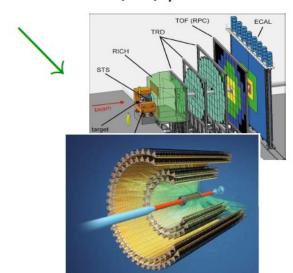
Main characteristics

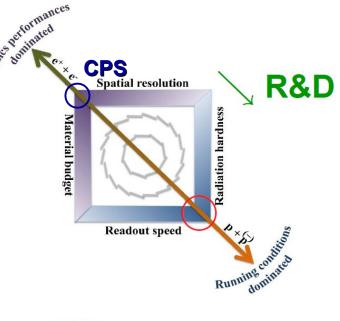
- Chip dimensions: 15 x 30 mm²
- Sensitive area: 13.5 x 29.95 mm²
 - 1.5 mm wide side band (insensitive) (evolving towards 1 mm)
- 832 columns of 208 (160k) pixels
- Pixel dimensions: 36 x 65 μm²
- In-pixel Pre-Amp & clamping (fringe capa)
- End-of-column signal discriminator
- Discriminator's output 2D sparsification (SUZE)
- Fully programmable control circuitry
- Pads over pixel array

Typical performances (based on FSBB-M0 & MIMOSA-22THRb tests)


- $t_{r.o.} \sim 20 \ \mu s; \ \sigma_{sp} \sim 10 \ \mu m; \ Power consumption \lesssim 80 \ mW/cm^2$
- Rad. Hardness > 150 kRad \oplus 1.5x10¹² n_{eq}/cm² @ T \gtrsim 30 °C

Forthcoming Challenges


Forthcoming Challenges: R&D @ IPHC


How to improve speed and rad. tolerance while preserving $\sigma_{_{SD}}$ (3-5 μ m) and material budget (< 0.1% $X_{_{\Omega}}$)?

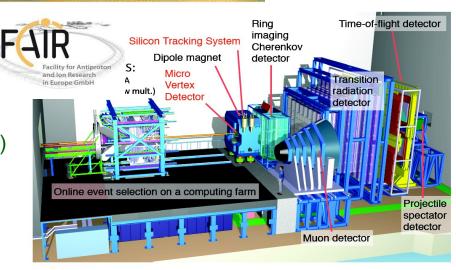
 $O(10^2) \ \mu s$

O(10) μs

O(1) μs

EUDET/STAR 2010/14

ALICE/CBM 2015/2019

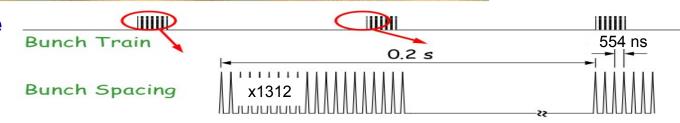

?X?/ILC

 $\gtrsim 2020$

Micro Vertex Detector (MDV) of CBM @ SIS100

Goals

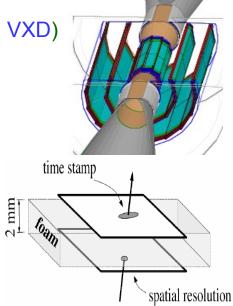
- Study of super-dense nuclear matter with relativistic ion-collisions
- Open charm from 30 GeV p-Au (10 MHz)
- Low-p tracker: 1-12 GeV Au-Au (30-100 kHz)
- Beam on target ≥ 2021
- MVD
 - 4 planes of pixels sensors
 - Sensor requirements



Sensor properties	MISTRAL - O	MIMOSIS-100 (preliminary)
Active surface	13.5 x 29.95 mm²	~ 10 x 30 mm²
Pixels	832 colls x 208 pixels	~ 1500 colls x 300 pixels
Pixel pitch	36 x 65 μm² —	-> 22x33 μm ²
Integration time	20.8 μs	30 µs
Data rate	320 Mbps	> 6x 320 Mbps
Rad tol. (non-io)	>10 ¹² n _{eq} /cm²	>3 x 10 ¹³ n _{eq} /cm²
Rad tol (io)	> 100 kRad	> 3 MRad
Operation Temperature	+30°C	-20°C in vacuum

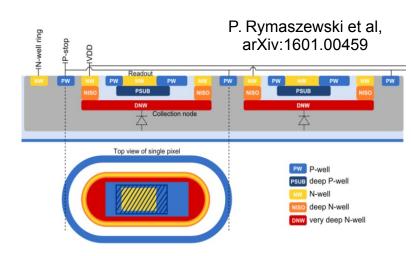
In reach with lightly modified APIDE (FSBB?)

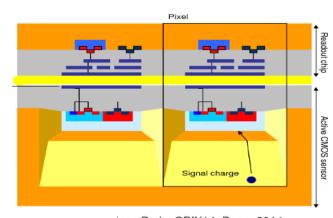
Towards ILC vertex detector


ILC collision scheme

- Vertex detector (VXD) layout: 3 layers of double-sided CPS
 - Mini-vectors: associate hits in double-sided layers (track seeding in VXD)
 - Different optimization approaches for the different layers
 - Innermost layers: low surface & larger occupancy
 - → Workout σ_{time} (reduce pile-up) & σ_{sp} (impact parameter)
 - Outer layers: larger surface & lower occupancy
 - \rightarrow Can deal with degraded $\sigma_{\text{time}} \& \sigma_{\text{sp}}$
 - → Minimize power consumption ⇒ material budget

- Innermost layer: two digital output sensors with $\sigma_{\text{time}} \sim 1 \ \mu\text{s}$ (~2 bunches pile-up) in one side and $\sigma_{\text{sp}} \lesssim 3 \ \mu\text{m}$ on the other \Rightarrow Combine asynchr. (σ_{time}) and synchr. (σ_{sp}) readouts
- Outer layers: larger pixels with higher signal-charge-encoding resolution (3-4 bits)




Technology Perspectives for Performance Improvements

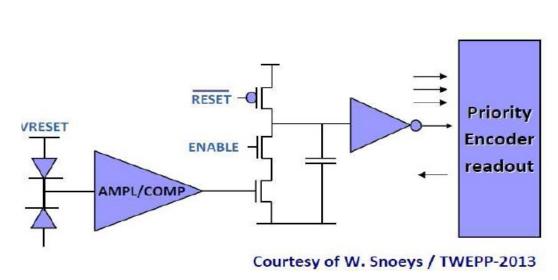
- HV/HR-CMOS sensors: $d_{dep} \sim 0.3 \sqrt{\rho_{sub} \times U_{bias}}$
 - Extend sensitive volume & improved q-collection
 - ⇒ Faster signal & stronger rad. tolerance
 - Not bound to CMOS processes using epi-layers
 - Easier access to VDSM (< 100 nm) process
 - Higher in-pixel μ-circuitry density
 - Unanswered questions
 - Minimal pixel dimensions (σ_{sp}) ?
 - Uniformity over large sensitive area & production yield?

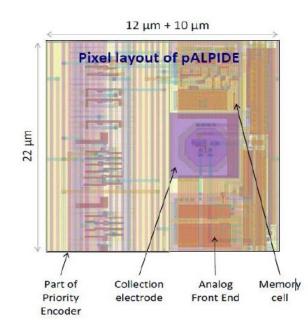
2-tiers chips

- Signal sensing (front-end) & processing (r.o.) parts distributed over two interconnected tiers (AC coupling)
- Smart sensor ⇒ 1 r.o. pixel addressing N pixel-front-ends
 ⇒ Reduce density of interconnections
- Can combine 2 diff. CMOS processes: front-end/r.o.
- Benefits: small pixels ⇒ resolution, speed, datacompression and robustness
- Challenges: interconnection technology (reliability & cost)

van Peric: CPIX14, Bonn, 2014

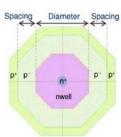
Summary

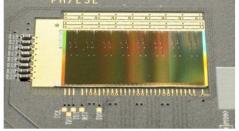

Summary


- Substantial experience has been collected with running STAR-PXL proving added value of CPS to physics
 - Demonstrated that CPS can provide spatial resolution and material budget required for numerous applications
- CPS are suited for vertex detectors (<< 1 m²) and have attractive features for tracking devices (>> 1 m²)
- Forthcoming Challenges
 - CPS for inner trackers: ALICE-ITS ⇒ large area (10 m²) to cover with 20-30k sensors
 - Improve rad. tolerance: CBM experiment @ FAIR/GSI ⇒ ≥ 10MRad ⊕ ≥ 10¹⁴ n_{eq}/cm²
 - Improve readout speed: ILC vertex detector ⇒ ≤ 1 μs
- Perspectives for technological advances
 - HV/HR-CMOS sensors: improvement on charge collection
 - ⇒ faster signal and stronger rad. tolerance
 - 2-tier sensors: combine of 2 CMOS processes for sensing & r.o. parts
 - ⇒ more in-pixel intelligence

ALPIDE (ALice Plxel DEtector): readout architecture

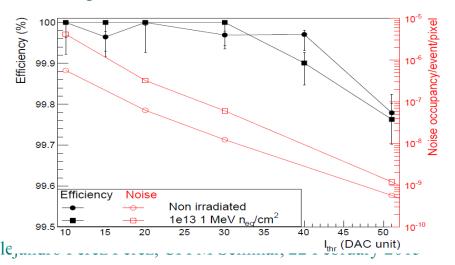
- Concept similar to hybrid pixel readout architecture
 - TowerJazz CIS quadrupole well process: both N & P MOS can be used
- Continuously power active in each pixel
 - Low power consumption analogue front-end (< 50nW/pixel) based on single stage amplifier with shaping
 - High gain ~100
 - Shaping time few μs
 - In-pixel discriminator
 - Binary output stored into multi-event buffer awaiting for external readout
- Only zero-suppressed data transferred to periphery ⇒ priority encoder readout

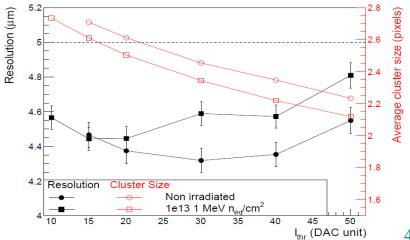


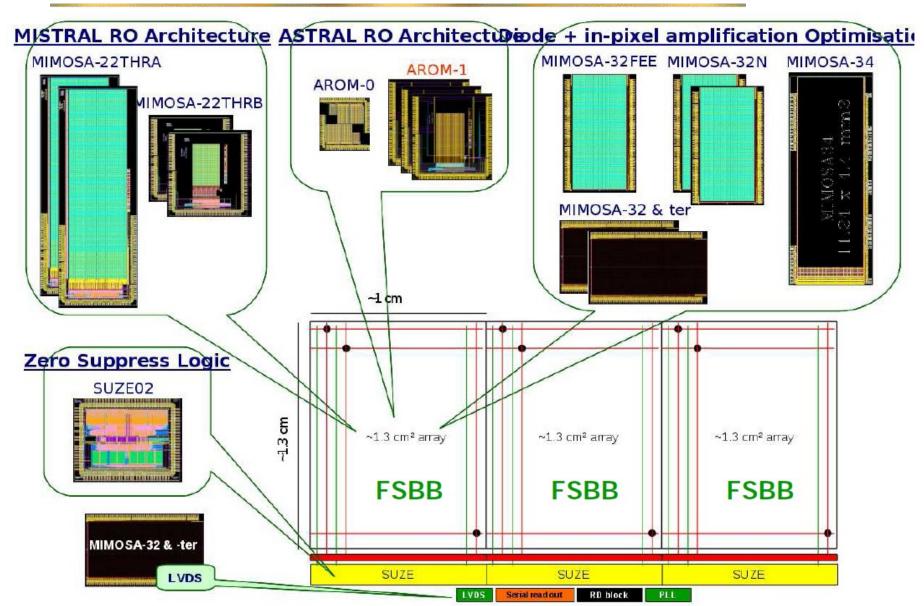


ALPIDE: performances assessment

APIDE-1 beam test @ DESY (5-7 pions)

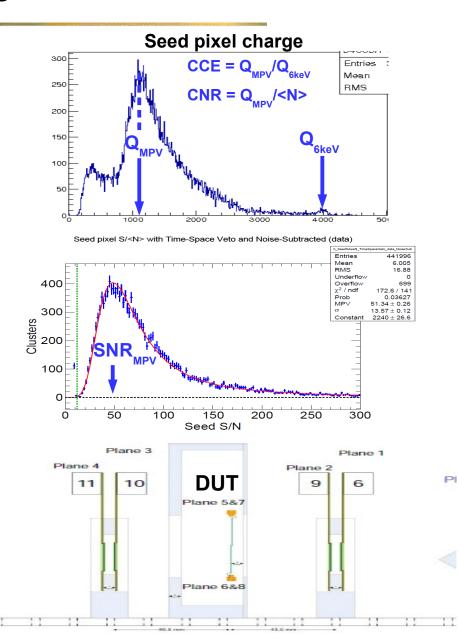

- Final sensor dimensions: 15x30 mm²
- ~0.5M pixels of 28x28 μm²
- 4 different sensing node geometries
- Possibility of reverse biasing the substrate
 - ⇒ default is -3 V (better epi-layer depletion)
- Possibility to mask pixels (fake-rate mitigation)
 - \Rightarrow default is O(10⁻³) pixels




Performances

- $\epsilon_{det} > 99\%$, $\sigma_{sp} < 5\mu m$, fake-rate < 10^{-5}
- Slight deterioration after irradiation

Exploring full sensor chain: Prototypes fabricated

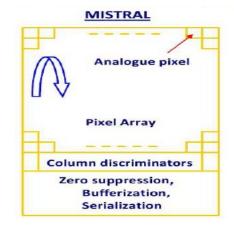

The Testing Probes

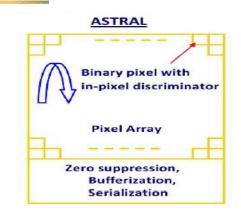
Laboratory tests

- Noise characterization and fake rate
- 55Fe X-ray source
 - ~6keV line
 - Gain, CCE and CNR
- 90 Sr β^{-} source (Q = 2.28 MeV)
 - > SNR, $\epsilon_{_{det}}$ and cluster multiplicity

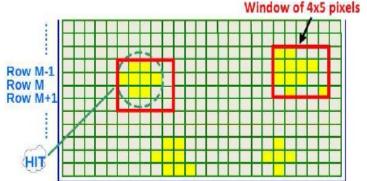
Test-beam (TB) facilities

- SPS: ~100 GeV/c π[±]
- DESY: ~5 GeV/c e⁻
- Frascati: ~500 MeV/c e⁻
- SNR, $\epsilon_{_{det}}$, cluster multiplicity and $\sigma_{_{_{SP}}}$



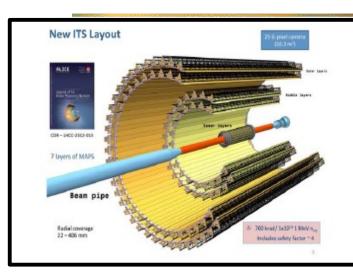

MISTRAL-O: Synchronous readout

Design addresses 3 issues


- Increasing S/N at pixel-level
 - Sensing node optimization
- ADC @
 - → end-of-column ⇒ MISTRAL
 - pixel

 \Rightarrow **ASTRAL**

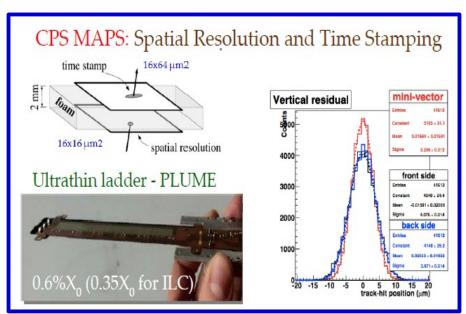
- SUZE at chip periphery
 - 2D sparsification algorithm with 4x5 pixels window (evolution from 1D sparsification on ULTIMATE chip)


Power vs Speed

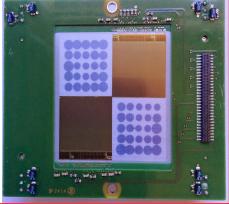
- Power: only the selected rows (N=1,2,3 ...) to be readout
- Speed: N rows of pixels are readout in ||

> Integration-time (t_{int}) = frame readout time $\Rightarrow t_{int}$

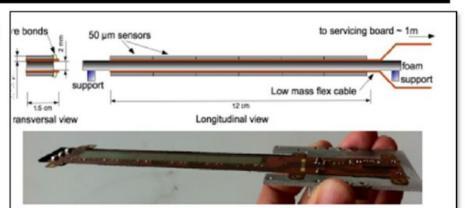
 $t = \frac{\left(Row\ readout\ time\right) \times \left(No.\ of\ Rows\right)}{N}$

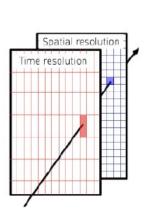

R&D of CMOS pixel sensors

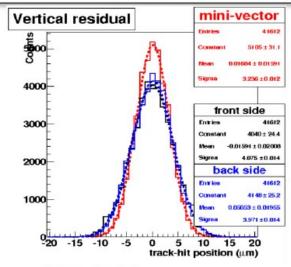
ALICE-ITS = NEW DRIVING APPLICATION OF CPS

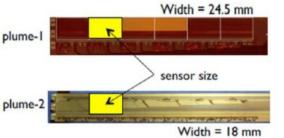

based on a better suited (180 nm) CMOS process (TDR approved by LHCC in March '14)

- ❖ 1st real scale sensor prototype adapted to 10 m² fabricated
 - → 1st test results validate achitecture in 180 nm technology
 - → 2-4 times faster read-out w.r.t. 0.35 µm technology, with up to 60 % power reduction


AIDA Telescope

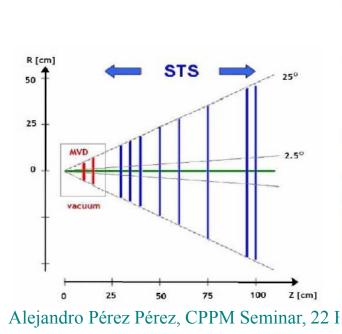

- Big surface and thin reference planes with high spatial resolution
- Sensing area = 4x3.8cm2
- Additional plane with
 - high temporal resolution
 - ⇒ time stamping

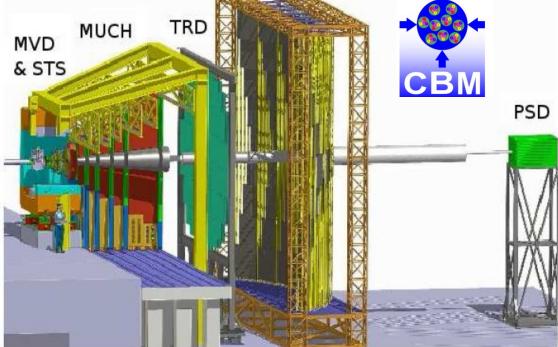



Sensor integration in Ultra Light Devices

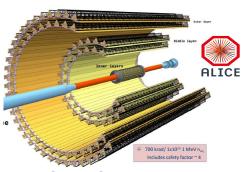
- Double sided ladders expected benefits
 - Alignment & tracking (pointing)
 - Beam background rejection ?
 - Material budget, 1 mechanical support
 - Redundancy (efficiency)
 - Each layer optimized
 - > read-out speed vs resolution
- PLUME coll. (Bristol, DESY, IPHC)
- Plume 01 prototype (<2012)
 - Fabricated
 - 2 x 6 Mimosa 26 chips
 - 2 mm low density SiC foam
 - Validated in test beam (2011)
 - > Operated with air cooling
 - > 0.6 % X₀
- Plume 02 prototype
 - Under construction (spring 2015)
 - Reduced mat. Budget
 - Reduced width (24.5 mm ⇒18mm)
 - > Lighter (alu) flex cable, mechanical support
 - \gt 0.6 % $X_0 \Rightarrow \sim 0.35$ % X_0 (cross-section)

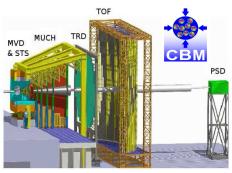
Next Forthcoming device: CBM Micro-Vertex Detector (MVD)


CBM-MVD at FAIR/GSI


3 double-sided stations in vacuum at T < 0°C

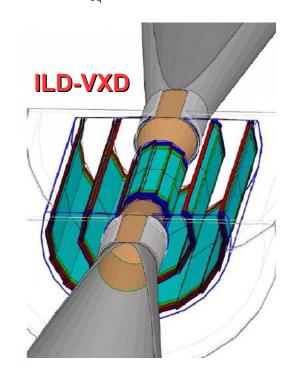
 $\sigma_{sp} \lesssim 5 \,\mu m$


TOF

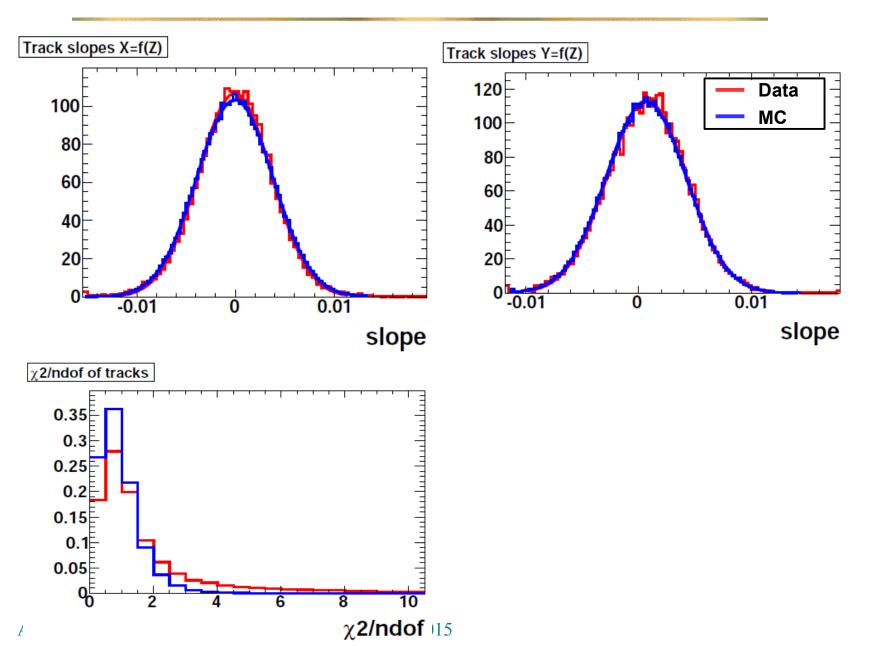

- ~ 0.5 % X₀ / station
- Radiation load: ≥ 10¹⁴ n_{ag}/cm²

Device under Study: ILC Vertex Detector

ALICE-ITS 2018/19

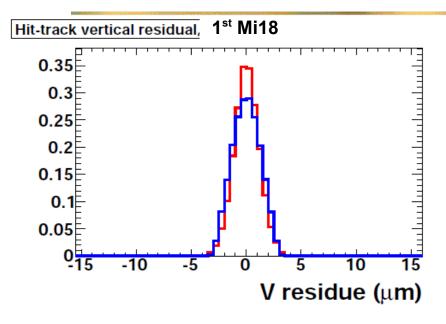

CBM-MVD > 2020

ILD Alejand

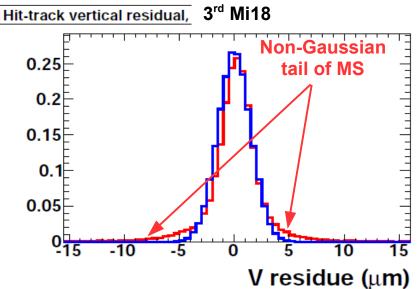

ILD-VXD at ILC

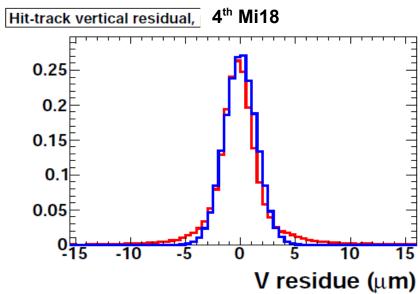
3 double-sided layers

- $\sigma_{sp} \lesssim 3 \,\mu m$
- ~ 0.3 % X₀ / layer
- Radiation load: O(100) kRad +
 O(10¹¹) n_{eq}/cm² (1yr)

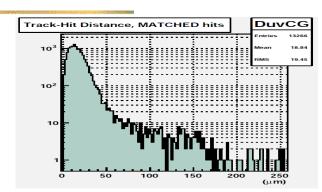


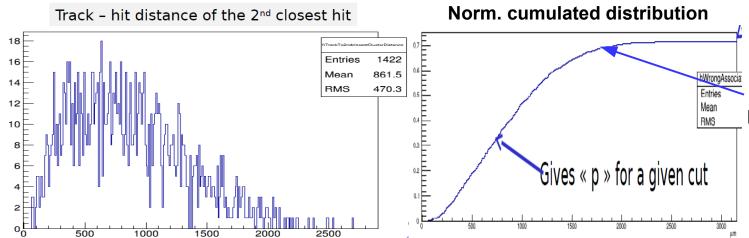
BTF Telescope Simulation: Performances (I)




53

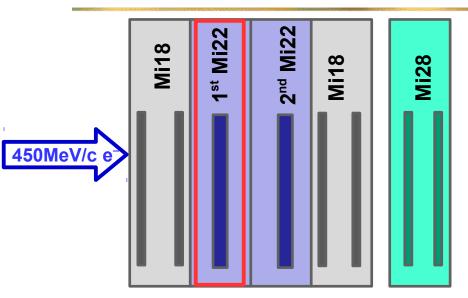
BTF Telescope Simulation: Performances (II)




BTF Analysis strategy & Efficiency correction

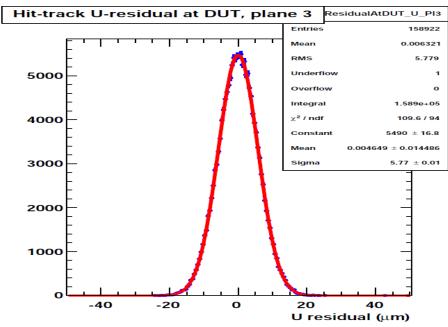
Analysis strategy

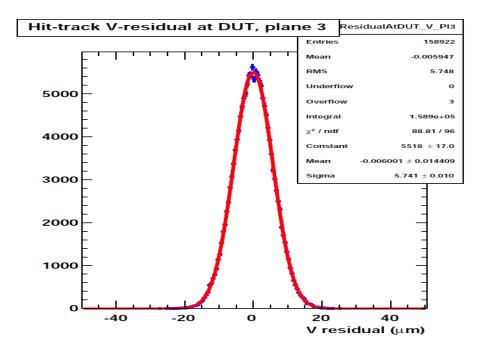
- Reconstruct tracks and extrapolate @ DUT
- Associate DUT hits to track within track-hit distance cut
- Evaluate DUT $\epsilon_{_{\hspace{-0.5em} ext{det}}}$ and $\sigma_{_{_{\hspace{-0.5em} ext{sp}}}}$
- **Efficiency Correction:** $ε_{det}^{corr} = (ε_{det}^{raw} p)/(1 p)$



- Due to MS non-Gaussian tails some track-hit distance seems quite large (few 100μm)
 - Enlarging the track-hit distance has 2 consequences on non-efficient events
 - → Increases probability to get a fake hit in this area
 - → Increases probability to associate a real hit from other track
- Method
 - Use efficient events to get the distribution of the 2nd closest hit to the track
 - Use normalized cumulated distribution to estimate p

Doesn't saturate to 1 because some events have only one hit


BTF Telescope Simulation: σ_{Tel} @ 1st DUT position



Telescope resolution @ 1st DUT position (both DUTs supposed thinned to 50μm)

$$\boldsymbol{\sigma}_{_{Tel}}$$
 = (5.77 \pm 0.01 $_{_{Stat}}$ \pm 0.20 $_{_{Syst}}$) μm

Telescope resolution confirmed with Geant3 based simulation

CMOS Pixel Sensors: Established Architecture

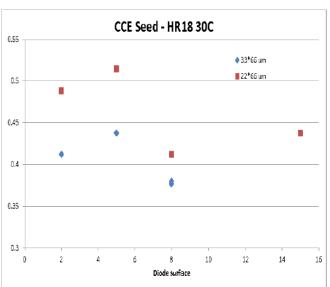
Main characteristics of MIMOSA-26 sensor equipping EUDET BT :

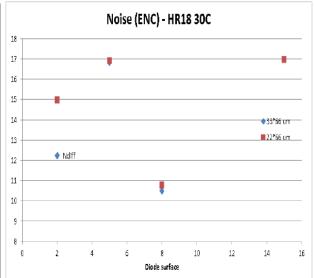
- o 0.35 μm process with high-resistivity epitaxial layer (coll. with IRFU/Saclay)
- column // architecture with in-pixel amplification (cDS)
 and end-of-column discrimination, followed by Ø
- binary charge encoding
- active area: 1152 columns of 576 pixels (21.2×10.6 mm²)
- o pitch: 18.4 $\mu m \rightarrowtail \sim$ 0.7 million pixels $> {\rm charge\ sharing} \Rrightarrow \ \sigma_{sp} \sim$ 3.-3.5 μm
- $t_{r.o.} \lesssim 100~\mu s~(\sim 10^4~{\rm frames/s})$ $\hookrightarrow {\rm suited~to} > 10^6~{\rm part./cm}^2/{\rm s}$
- JTAG programmable
- rolling shutter architecture
 - \Rightarrow full sensitive area dissipation \cong 1 row $\triangleright \sim$ 250 mW/cm² power consumption (fct of N_{col})
- $_{ extsf{o}}$ thinned to 50 μm (yield \sim 90 %)

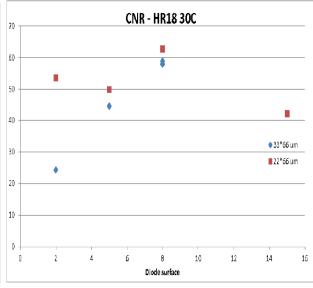
CMOS 0.35 µm OPTO technology
Chip Size: 13.7 x 21.5 mm²

In each pixel:
In each p

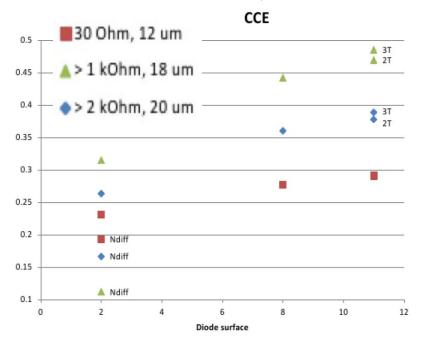
Pixel array: 576 x 1152, pitch: 18.4 µm

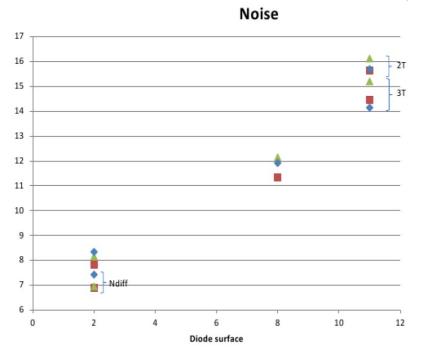



Various applications: VD demonstrators, NA63, NA61, FIRST, oncotherapy, dosimetry, ...


⁵⁵Fe source: CCE/Noise/CNR vs diode for large pixels

CCE, TN and CNR vs sensing node for large pixels with HR18 epi-layer

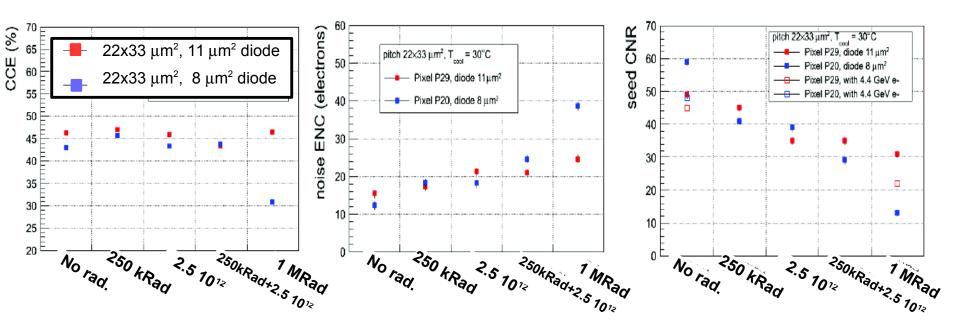




- Good to excellent CCE, even for small sensing diodes or for 33x66 μm² pixels
- \sim TN ~ 17/11 e⁻ ENC for single 10.9/8 μm² sensing diodes
- TN ~ $17/15 e^-$ ENC for pairs of $5/2 \mu m^2$ sensing diodes
- High CNR: up to ~60 for 8 μm² sensing diodes
- Pixel detection performances fully satisfactory ⇒ confirmation from beam test (see next slide)

⁵⁵Fe source: CCE & Noise vs diode for small pixels

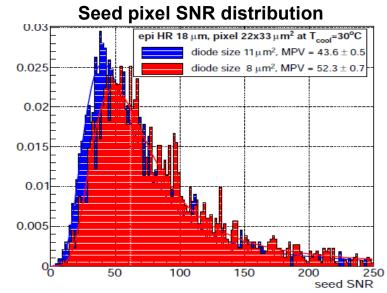
CCE and TN for 22x33 μm² pixels for different diode dimensions (footprint 10.9 μm²)

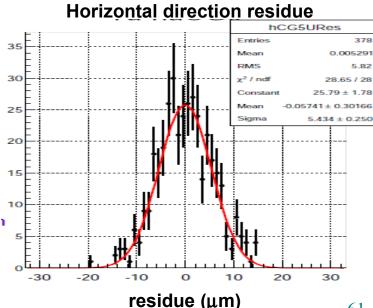


- CCE is highest for HR18 epi-layer
- Weak dependence of CCE with diode dimensions ⇒ around 30% for 2μm²
- Nearly linear variation of TN with diode dimensions $\Rightarrow 8 \rightarrow 16 \text{ e}^{-1}$ ENC for diode $2 \rightarrow 10.9 \ \mu\text{m}^{-2}$
- Small sending diode with > 10 μm² footprint attractive in terms of CCE

⁵⁵Fe source: radiation tolerance for 22x33 μm² pixels

MIMOSA-34:

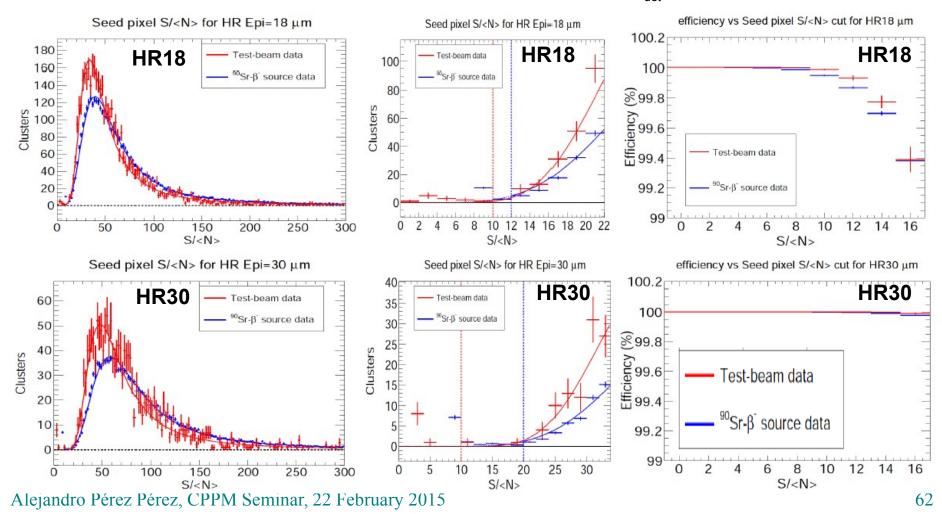

- 22x33 μ m² pixels with diode of 8 and 10.9 μ m²: TN and CCE/CNR @ T = 30°C from ⁵⁵Fe source for different irradiations
- Comparison when possible of CNR and SNR from 4.4 GeV e⁻ TB (DESY)
- Comments:
 - Small diode more sensitive to TID
 - TID impacts both CCE and TN
 - CNR of 10.9 μm² diode pixel exceeds 20 (MPV) after 250 kRad + 2.5x10¹²n_{eq}/cm²



MIMOSA-34: sensing node impact for small pixels

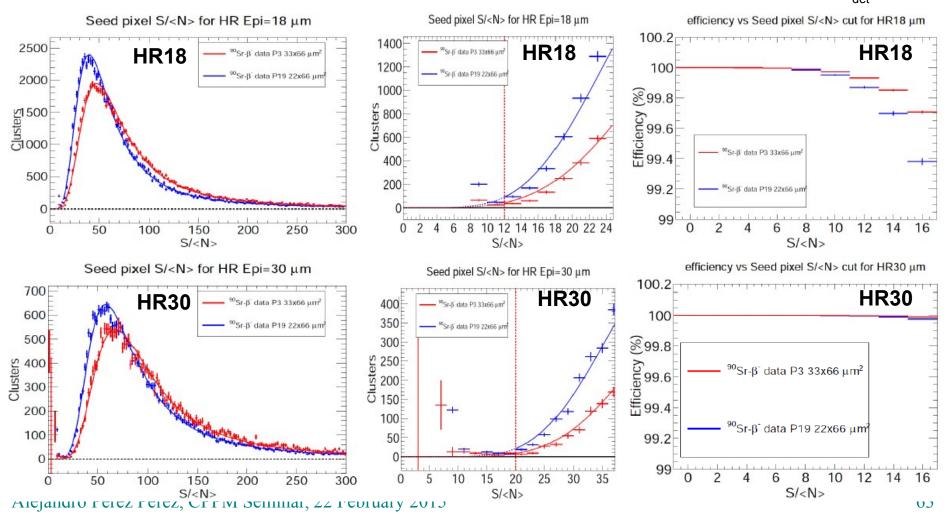
DESY BT Set-up (August 2013):

- 2BT: 8xSi-strips & 6xMIMOSA-26 (120 μm thick)
- ~4.4 GeV/c e⁻ beam
- **MIMOSA-34:** 22x33 μ m² pixels @ T = 30°C
 - **Sensing node impact (HR18)**
 - Sub-arrays: P-29 10.9/10.9 µm² diode/footprint P-20 8.0/10.9 μm² diode/footprint
 - 8µm² diode features ~20% higher SNR (MPV) \Rightarrow slightly higher $\epsilon_{\mbox{\tiny det}}$ (both > 99%)
 - $Q_{clus} \sim 1350/1500 \text{ e}^- \text{ for } 8/10.9 \mu\text{m}^2 \text{ diode}$ ⇒ marginal charge loss
 - Binary residue: 5-5.5 μ m \Rightarrow σ_{sn} < 5 μ m



β⁻ (⁹⁰Sr) source vs 4.4 GeV e⁻ (DESY)

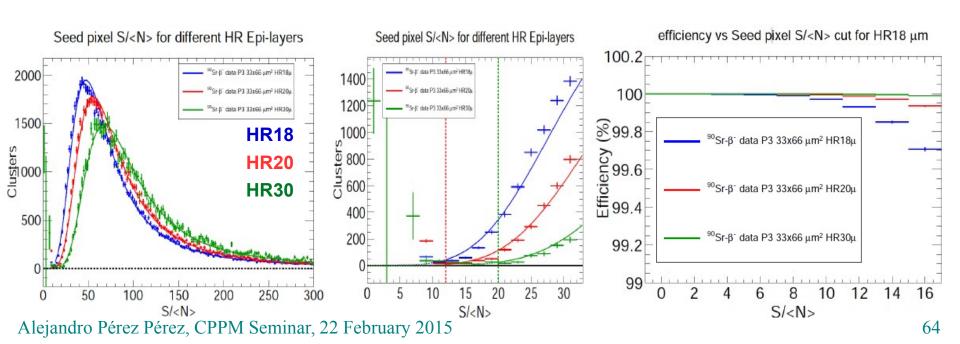
MIMOSA-34:


- β^- (90 Sr) vs 4.4 GeV e $^-$ for 22x66 μm^2 pixels: SNR & $\epsilon_{_{det}}$ for HR18/HR30
- Conclusion: lab test with β^- ($^{90}Sr)$ source allow estimating $\epsilon_{_{det}}$

From 22x66 to 33x66 µm² pixels

MIMOSA-34:

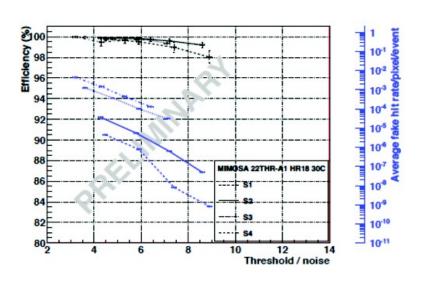
- 22x66 vs 33x66 μm^2 pixels: SNR & ϵ_{det} with β^- (90 Sr) for HR18/HR30
- Comment: 33x66 μm^2 (8/15 μm^2 diode/footprint) pixels exhibit high SNR \Rightarrow high ϵ_{det}

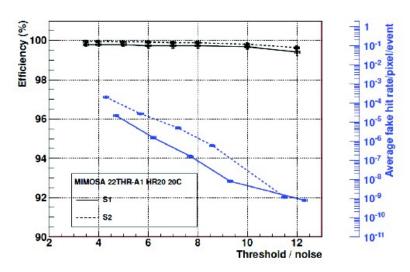

33x66 μm² pixels vs epitaxial-layer

MIMOSA-34:

• 33x66 μ m² pixels (8/15 μ m² diode/footprint): SNR & ϵ_{det} with β^- (90Sr) for HR 18,20,30

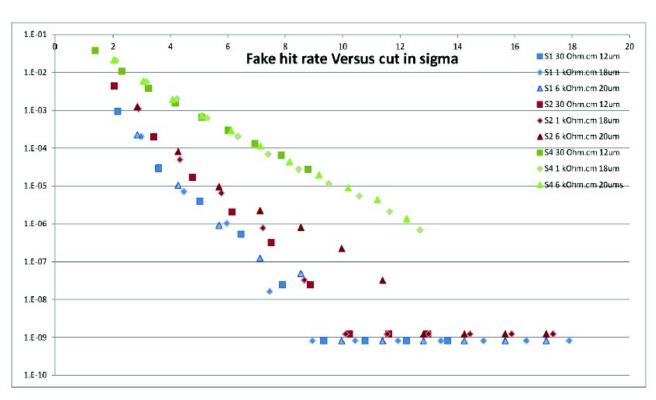
Comments:


- Single 8/15 μ m² diode/footprint provides high SNR despite large pixel (low sensing node density)
- HR30 epi-layers gives high SNR (MPV ~ 70) from β^- (90 Sr) \Rightarrow pretty high ϵ_{det} for high SNR cut (e.g. 10)
- Expected spatial resolution for 33x66 μm^2 pixels: $\sigma_{sp} \approx 10 \mu m$



Det. Efficiency & Fake rate

▶ Measured from 128 columns ended with discriminators: MIMOSA-22THRa1



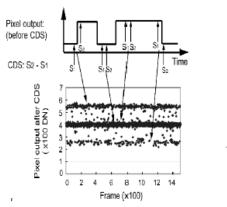
- For threshold within 5 to >10 times the <noise>
 - Efficiency > 99.5 %
 - Fake hit rate ≤ O(10⁻⁵)

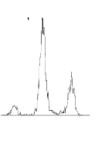
- S1 = T gate: 2x0.36 μm²
- S2 = T gate: 1x0.36 μm²
- S3 = T gate: $1 \times 0.18 \mu m^2$ (small diode)
- S4 = T gate: 1x0.18 μm²

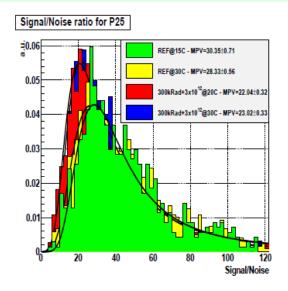
MISTRAL-like: fake rate

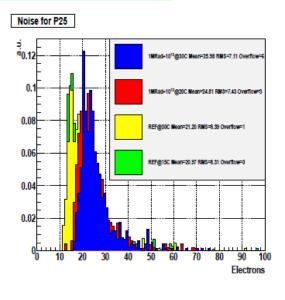
Input transistor gate

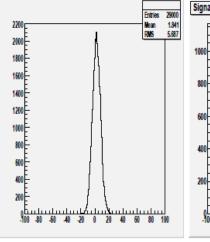
- S1 = $2 \times 0.36 \ \mu \text{m}^2$
- S2 = $1 \times 0.36 \mu m^2$
- S3 = 1x0.18 μm² (small diode)
- S4 = $1 \times 0.18 \ \mu \text{m}^2$

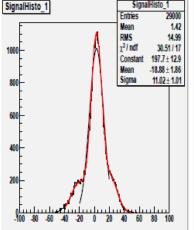

Enlarged input transistor gate:

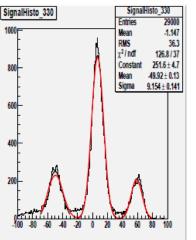

➡ Effective mitigation of fake rate due to noisy pixels

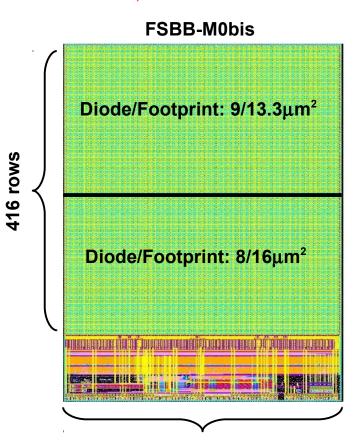

STEPS VALIDATED IN 2012 :

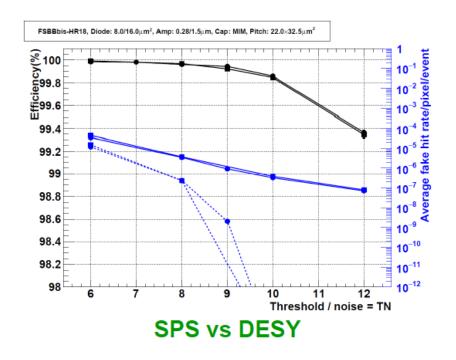

- * Several in-pixel amplifier variants lead to satisfactory SNR & det. eff. (20 \times 20 μm^2) incl. after 1 MRad & 10 13 n $_{eq}$ /cm 2 at 30 $^\circ$ C
- * Results pres. at VCI-2013 (J. Baudot)
- CALL FOR IMPROVEMENT:
 - * Pixel circuitry noise : tail due few noisy pixels

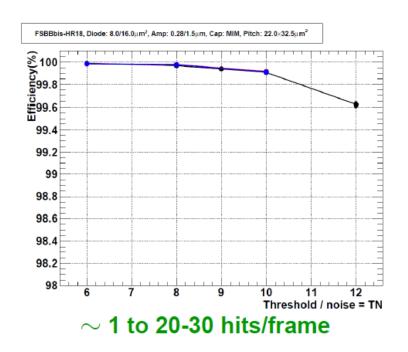

 - ⇒ required optimising T geometries





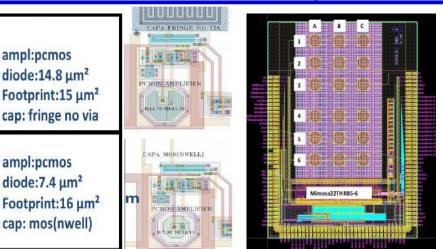



FSBB-M0bis main features

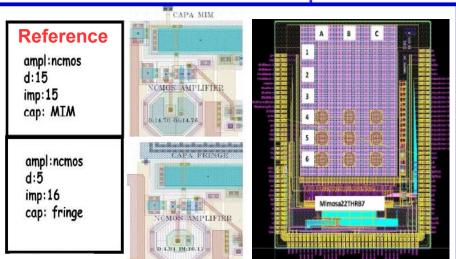

- TJsc-0.18 CIS process, HR (~1–2kΩcm) 18/25/30μm epitaxy, thinned to 50μm
- Staggered pixel: 22x32.5 μm² including pre-amplification and clamping with 6 metal layers (ML)
- 416x416 = 173k of col. x row of pixels ended by discriminator (8-cols with analogue output)
- Double-row readout at 160MHz clock frequency ⇒ 40μs integration time
- On-chip 3-stage sparsification: SUZE-02 (different from MISTRAL-0, SUZE-03)
- 4 Memories of 512x32 bits
- 2 output nodes at 320Mbits/s (used only one for TB)
- Integrated JTAG and regulators
- Sensitive area is 13.7 x 9.0 mm ~ 1.2cm²
- Improvements w.r.t FSBB-M0 ⇒ shortcomings solved
 - Mitigation of cross coupling effects
 - ⇒ now capable of operating full matrix
 - Bit transmission: bit inversion at discriminator output
- Two sensing node variations in same chip
 - > (NMOS T_{input} Pre-Amp W/L = 1.5/0.28 μ m)
 - Diode/Footprint: 8/16 μm²
 - Diode/Footprint: 9/13.3 μm²

Main FSBB-M0 Detection Performances (2/3)

- Study of detection efficiency stability :
 - * Difference between SPS (120 GeV pions) & DESY (4.5 GeV electrons)
 - $_st$ Effect of occupancy : from \sim 1 hit/frame to \sim 25 hits/frame


⇒ No variation observed

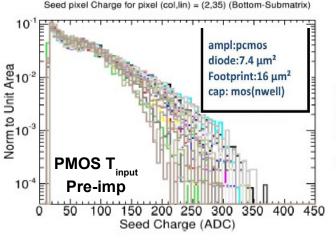
MIMOSA-22THRb6/7: characteristics

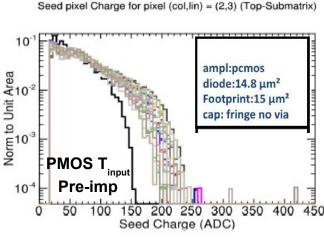

Design features

- 64x64 pixel array (staggered): 56 columns ended with discri. and 8 with analog output
- Readout ≈ 5µs (100MHz clock)
- Epitaxial layer: HR18

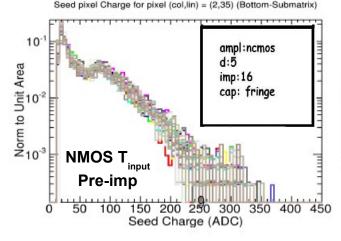
Mi22-THRB6: $36 \times 62.5 \mu m^2$

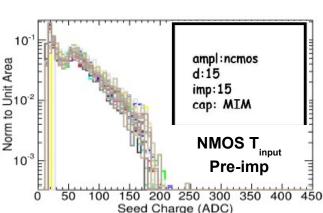
Mi22-THRB7: 39×50.8μm²


Purpose of the chip

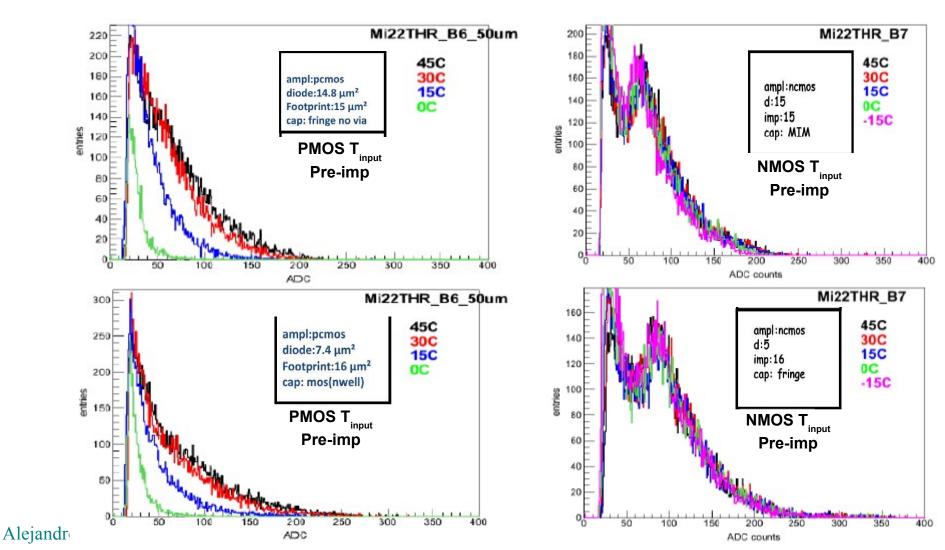

- Validate pads over pixels
- Validate in-pixel circuitry concentrated on ≈ 3ML ⇒ modified clamping capacitor
- Validate large pixel performances w.r.t. TDR requirements on layers 3 6
 - ⇒ MISTRAL-O

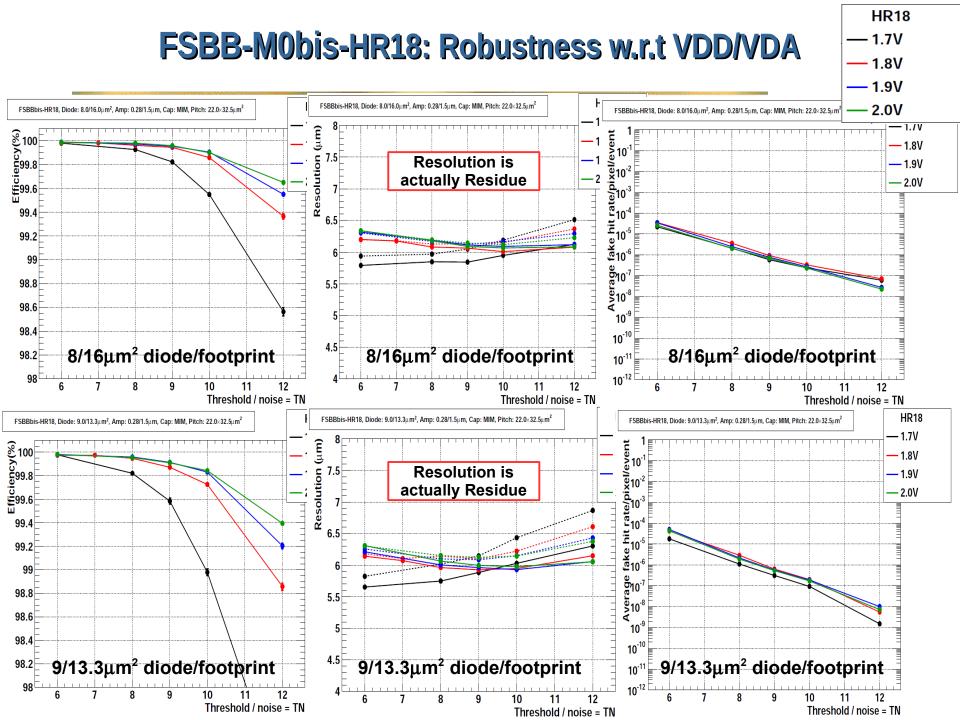
Reminder of lab results: Individual pixel response to ⁵⁵Fe X-rays


- Mi22THRb7 has a gain quite uniform
- \blacksquare Mi22THRb6 shows gain dispersion among pixels \Rightarrow were not sure about the effect on $\epsilon_{\mbox{\tiny det}}$


MIMOSA-22THRb6
 analog outputs

MIMOSA-22THRb7
 analog outputs





Seed pixel Charge for pixel (col,lin) = (2,3) (Top-Submatrix)

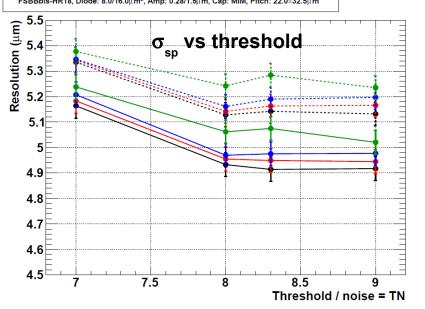
Reminder of lab results: Temp. dependence of pixels to ⁵⁵Fe X-rays

- Mi22THRb7 has quite stable response vs T
- Mi22THRb6 shows a significant dependence with T: /T ⇒ /gain

Hot pixel masking effect on ε_{det} & σ_{so} : Motivation

Reducing I_{pix}

- Increases $\varepsilon_{\text{\tiny det}}$ ⇒ dramatical effect for highly irradiated sensors
- Increases fake rate ⇒ factor of 10 increase for highly irradiated sensors
- Masking procedure can be a good strategy for highly irradiated sensors
 - \Rightarrow can reduce fake rate by $\sim 1-2$ orders of magnitude depending masking fraction
- It is then important to study the effect of masking on ε_{det} & σ_{so}
 - Masking will cut away some single pixel clusters
 - ε_{det} relative reduction should be prop. to (masking fraction) x (fraction mult. = 1 clusters)
 - Should be a marginal effect due to sizeable pixel cluster multiplicity of FSBB
 - > $\Delta\epsilon_{\text{det}}$ vs (fraction mult. = 1 clusters) should be linearly related
 - σ_{so} should get marginally degraded due to loss of hit position information of masked pixels
- Tested the above hypothesis on different sensors and varied configurations
 - Non-irradiated sensors @ nominal configuration
 - Highly irradiated sensor (1.6MRad + 10^{13} n_{eq}(MeV)/cm²) for I_{pix} = 30 & 50 (nominal) μ A

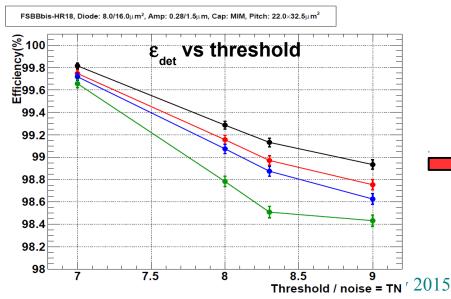

Hot pixel masking effect on ε_{det} & σ_{sp} : Results (I)

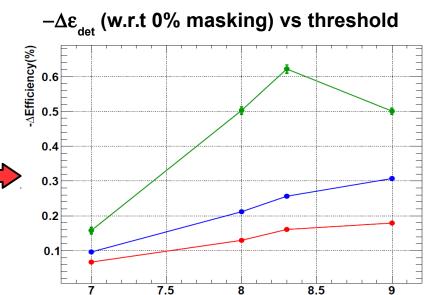
— Masking 0.00%

Masking 0.50%

Masking 1.00%

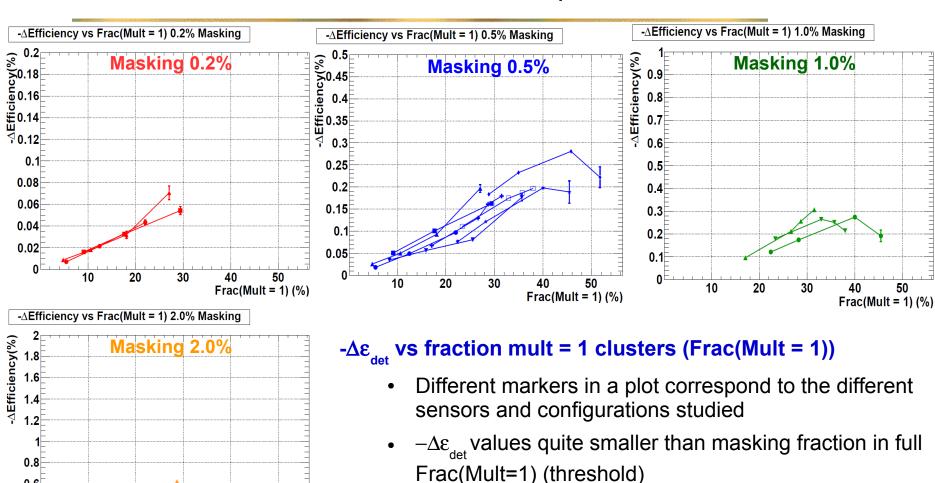
— Masking 2.00%




Example:

Irradiated sensor 1.6MRad + 10¹³n_{eq}/cm²

Diode/Footprint: 8/16μm²


- Marginal increase of $\sigma_{_{\text{sp}}}$
- Small reduction of $\varepsilon_{_{
 m det}}$
 - ⇒ quite smaller than masking fraction

Threshold / noise = TN

Hot pixel masking effect on ε_{det} & σ_{so} : Results (II)

- Nearly linear correlation between $-\Delta \varepsilon_{\text{det}}$ & Frac(Mult=1)
 - ⇒ Useful to predict efficiency reduction for a given masking fraction and threshold

50 Frac(Mult = 1) (%)

0.6

0.4 0.2

10

20

30

Motivation for depleted CPS

- High energy physics trend
 - Tolerate high non-ionizing part. Fluences 10^{15} n_{eq} /cm² (tracker / vertex)
 - Integration time ≪ µs
- X-rays detection
 - Require thickness (Beer-Lambert attenuation law)
 - Require equivalent collection properties all over epi-layer
- Fully depleting the sensitive layer is a key
 - However situation different / sensors for hybrid-systems (CERN-RD50)
 - Same substrate embed sensitive and first amplification layer

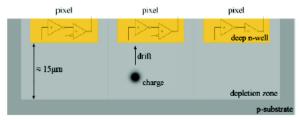
Open questions

- Which structure to enforce depletion?
 - Depth & uniformity on chip area
- impact on in-pixel treatment µ-circuits?
 - Noise, transistor behavior

Way 1: High Voltage

Experiments

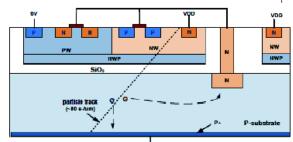
- ATLAS, µ2e, CLIC
- Groups in Bonn, CERN, Genève, Heidelberg, Karlsruhe, Marseille...
- new collab. → CERN-RD53


Concept

- Low resistivity ($10-20 \Omega.cm$)
 - → High Voltage applied few 10s V
- HV-compliant CMOS technologies

HV-CMOS

- Deleted depth demonstrated
 5 to 15 µm with 60-70V
- Fast amplification ~ 1 µs
- Only 30% signal loss after 10¹⁵ n_{ea}/cm²


! Prototypes area 10 mm²

S.Feigl et al., PoS (TIPP2014) 280

HV-SOI

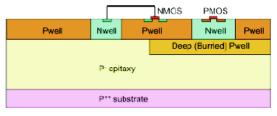
- Depleted depth demonstrated 40-50 µm with 150-200 V
- Hint of tolerance beyond 10¹⁴ n_{eq}/cm²

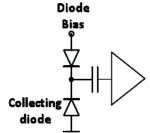
T.Hemperek et al., arXiv:1412.3973

J. Baudot - Fully depleted CPS - ANIMMA April 2015

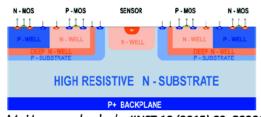
Way 2: High Resistivity

- Experiments
 - ALICE, CBM
 - soft X-rays detection
 - Groups in Bonn, CERN, RAL, Strasbourg


- Concept
 - High Resistivity thin epi-layer
 - → moderate voltage ≤ 10 V


See next slides for IPHC developments

Depleted-CPS prototypes



- 2 Technologies explored
- Tower Jazz 0.18 µm → Pegasus-1/2
 - Various sensitive layers
 - epi with >1 k Ω .cm, 18, 30, 40 µm thick
 - Czochralski substrate-thick
 - Main architecture tested
 - Analogue readout with 10 µs integration time
 - Collection node AC-coupled to amplificator
 - Small matrix: 32 columns x 56 rows
 - Pixel size 25x25 µm²

- EPC-ESPROSS 0.15 µm → MIMOSA-33
 - high resistivity 50 µm thinned + passivated substrate
 - Main architecture tested
 - Analogue read-out with 11 µs integration time
 - Back-side biasing through IP structure
 - Small matrix: 8 columns x 44 rows
 - Pixel size 25x25 µm²

M. Havranek et al., JINST 10 (2015) 02, P02013

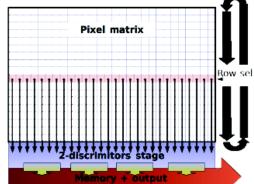
Ready for back-side illumination!

10

J. Baudot - Fully depleted CPS - ANIMMA April 2015

Ongoing prototypes design

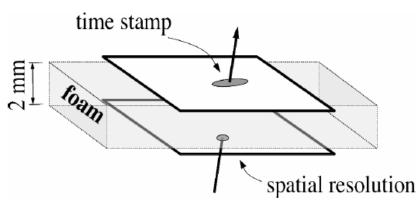
Submission to Tower-Jazz 0.18


µm technology (June 2015)

■ MIMOSA - 22 SX

- Forerunner of sensors dedicated to X-rays with energy < 5 keV
 - Pixel pitch ≤ 25x25 µm² and ≈10⁴ photons/pixel/sec
- Developed with the detector group of SOLEIL
- "Not so small" matrix: 5.6x 4.4 mm²
- combine:
 - AC coupled collection diode from PEGASUS
 - read-out architecture developed for ALICE
- Binary output:
 - From 2 discriminators/column → energy window selection
 - Photons detected individually → counting & spatial resolution

Small analogue prototype


- Faster amplification → target 10⁶ photons/pixel/sec
- Mitigation of noise

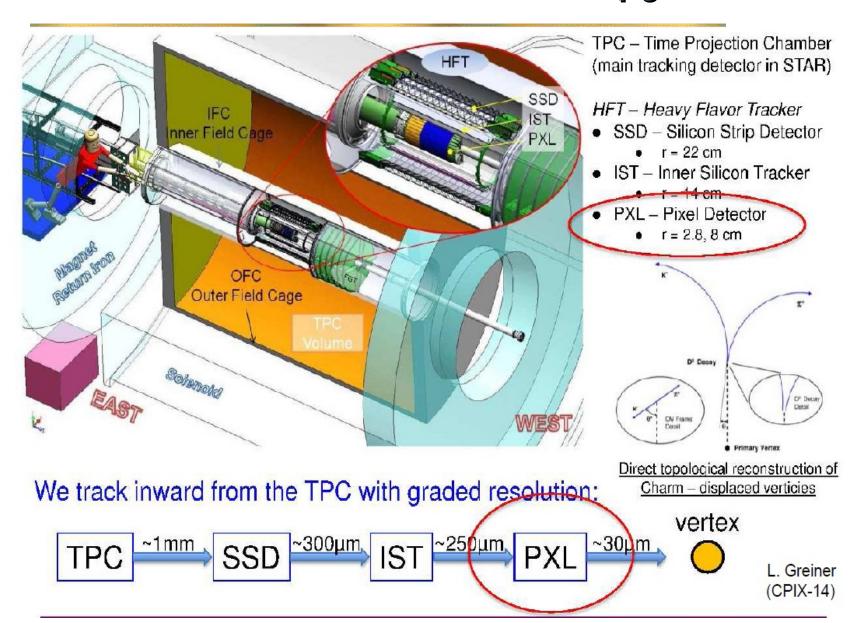
ILD - VXD Concept Addressed

Two types of CMOS Pixel Sensors :

- Inner layers: Priority to read-out speed & spatial resolution
- Outer layers: Priority to power consumption and good resolution
- ullet Inner layers : \sim 300 cm 2
 - $_{\rm 0}$ L1 : small pixels with end-of-column binary charge encoding $\mapsto ~\lesssim$ 3 μm
 - $_{ extbf{=}}$ 20×14 μm^2 with 2-row read-out : \lesssim 40 μs
 - \approx 17×17 μm^2 with 1-row read-out : 60 μs
 - \hookrightarrow 2-row read-out : 30 μs (tbc)

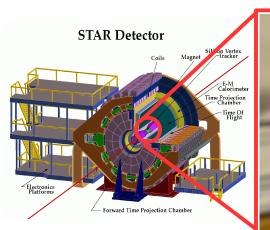
- $_{f o}$ L2 : elongated pixels with in-pixel binary charge encoding $\mapsto \, \sim$ 5 μm
 - $_{ hilde{\circ}}$ 22×33 μm^2 with 2-row read-out : \sim 8 μs
 - $_{ airgo}$ 22×33 μm^2 with 4-row (tbc) read-out : \sim 4 μs
- ullet Outer layers : \sim 3000 cm 2
 - L3-6: large pixels with end-of-col 3-4 bit ADCs
 - $_{ullet}$ 35imes35 μm^2 pixels : \lesssim 4 μm & 120 μs
 - 25×50 μm^2 pixels : \lesssim 4 μm & 80 μs

Processes Suited to the R&D


- ullet Specific aspects of Tower 0.18 μm CIS process: established contact
 - access to various starting materials (incl. in MPW)
 - designing details well known by the designers and testing crews
- Comparison to L-Foundry (INFO. TBC): used by HL-LHC R&D groups

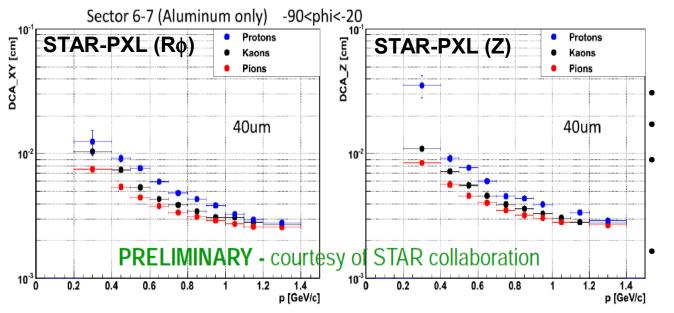
Process	Feature Size	Supply Voltage	Number of ML	Type	Comments
Tower-SC	180 nm	1.8 V (3.3 V)	6	4-well	
L-Foundry	150 nm	1.8 V (3.3 V)	8	4-well	110 nm : 1.2 V

Process	min. area MPW runs cost duration			MLM r area	uns cost
Tower-SC	5 x 5 mm 2	37,500 USD	\gtrsim 4.5 months	none	
L-Foundry	???	???	???	11x11 mm ²	60-80 kE


Process		Comments			
	thickness	resistivity	source	availability	
Tower-SC	18-40 μm or more	\sim 1 - 10 k $\Omega \cdot cm$	internal & external	MPW, ER	
L-Foundry	??	High-Res	internal only?	MLM, ER	

PXL in STAR Inner Detector Upgrades

CPS State-of-the-Art in operation: STAR-PXL detector


STAR-PXL @ RHIC: 1st CPS @ collider experiment!

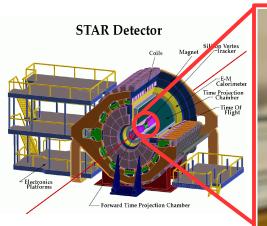
STAR-PXL HALF-BARREL

- 2 layers @ r = 2.8,8 cm
- 20 ladders (10 sensors) (0.37% X₀)
 - ≥ 200 sensors \Rightarrow 180x10⁶ pixels
- Air flow cooling: $T < 35^{\circ}C$

Several Physics-runs

1st run Mar-Jun 2014

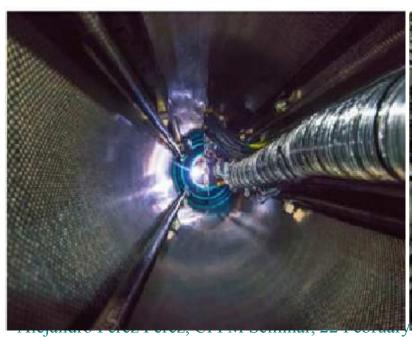
2nd run Jan-Jun 2015


Measured $\sigma_{ip}(p_T)$ matching requirements (~40 μ m @

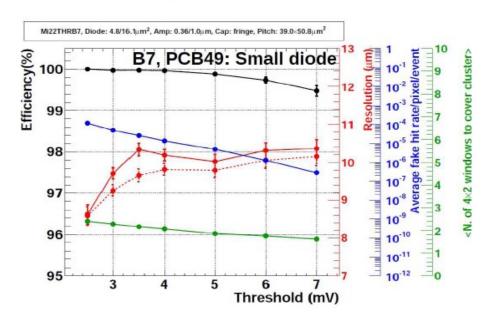
600 MeV/c for π^{\pm}/K^{\pm})

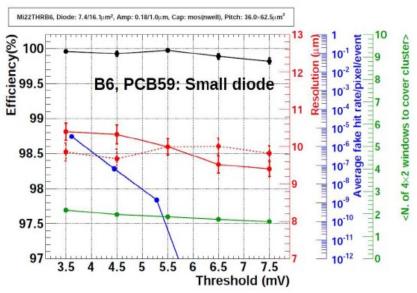
Getting prepared for 3rd run (Jan. 2016)

CPS State-of-the-Art in operation: STAR-PXL detector


STAR-PXL @ RHIC: 1st CPS @ a collider experiment!

STAR-PXL HALF-BARREL

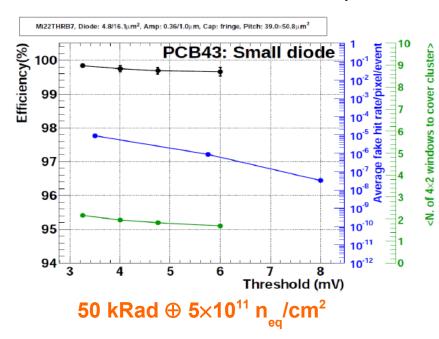

- 2 layers @ r = 2.8,8 cm
- 20 ladders (10 sensors) (0.37% X₀)
 - ⇒ 180M pixels
- Air flow cooling: T < 35°C

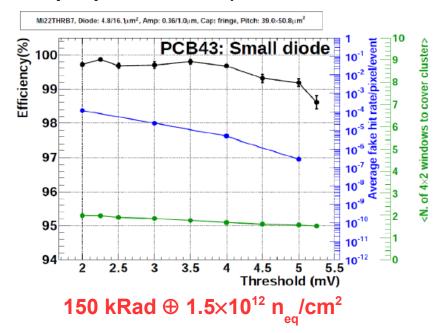


Main MIMOSA-22THRb detection performances (1/2)

Pixel type	Pixel dim.	Diode/Footprint	Pre-Amp T.	Clamping capa.	Integ. time
MIMOSA-22THRb7	39 μm x 50.8 μm	5/16 μm^2	N-MOS	MOS (N-well)	5 μs
MIMOSA-22THRb6	36 μm x 62.5 μm	7/16 μm^2	P-MOS	fringe (metal layers)	5 μs

Excellent detection performances for both chip variations


- ϵ_{det} > 99% & σ_{sp} ~ 10 μm (as expected)
- P-MOS vs N-MOS Pre-Amply input transistor
 - P-MOS: less RTS noise, higher gain and sensing node voltage
 - N-MOS: better pixel response uniformity, less T-dependency and maturity (STAR-PXL)


Main MIMOSA-22THRb detection performances (2/2)

- Study of rad. tolerance @ T ≥ 30 °C: loads relevant to ALICE-ITS outer layers
 - Load: up to 150 kRad ⊕ 1.5×10¹²n_{eq}/cm²

EfficiencyFake rate<# Suze Windows>

MIMOSA-22THRb7 (N-MOS Pre-Amp input transistor)

- Good detection performances after irradiation
- Validation of large pixel design for the outer layers of the ALICE-ITS!