

Jet performance in ATLAS; First 13 TeV jet results

Dimitris Varouchas

Particle Physics Seminar, Centre de Physique des Particules de Marseille, 25th January 2016

First Stable Beams

proton-proton collisions at 13 TeV

Run: 266904 Event: 9393006 2015-06-03 10:40:31 CEST

• LHC Run 2 since June 2015: centre of mass energy at 13 TeV for the first time in particle physics history

Unprecedented centre of mass energy

- A high-mass dijet event collected by ATLAS in September, 2015.
- The two central high-p_T jets have an invariant mass of 8.8 TeV

LHC Run 2, $\sqrt{s} = 13$ TeV

2015 peak luminosity 5.22 nb⁻¹/s: $\simeq 6 Z \rightarrow ff$ events/s

- 50ns and 25ns bunch crossing data taking
 - 25ns data ~3.9 fb⁻¹
 - ◆ 50ns data ~0.1 pb⁻¹
- Most of Run 2 results based on 25ns data

The price of high Luminosity: Pile-up

ATLAS

+ toroid

The ATLAS Calorimeter

- Large full coverage calorimeter system: |η|<4.9</p>
- Mixed technologies to match precision requirements
 - Electromagnetic central & endcap: LAr/lead
 - Hadronic central: iron/scintillator with tiled sampling structure
 - Hadronic endcap: LAr/copper
 - Forward: LAr/copper-tungsten
- Highly granular detector: ~200k readout channels

Jets and their performance

Jets introduction

- Energetic jets in LHC pp collisions are produced abundantly
 - Signal, QCD prediction
 - Significant background to other analyses
 - Indispensable element of almost all LHC analyses
- A new energy regime and new tools for the analysis of hadronic final states from theorists
 - ♦ New jet algorithms : anti-k_t
 - Jet substructure techniques
 - Unprecedented high luminosity environment: increase of pile-up

• Excellent detector capabilities

- Calorimeter granularity and tracking enabling sophisticated clustering algorithms and calibration.
- Combine information from sub-detectors (tracker +calorimeter + muon system)

What are jets?

- The challenge (and opportunity!) of jets comes from QCD physics: parton shower and hadronization
 - The particles we measure -π,
 K, p, n, etc- are **not** the particles from the hard scattering
- Jets are the outputs of the **clustering algorithms** that group **inputs** (truth particles or **calorimeter clusters**)
 - The goal: improve our ability to understand the event by providing proxies for quarks and gluons

Jet inputs in ATLAS: calorimeter clusters

 \Rightarrow Exploit high resolution of calorimeters and fine longitudinal segmentation

- 3-dimensional topological clustering of calorimeter read-out channels (cells)
 - Optimise to follow the shower development in the calorimeter
 - **Noise suppression**
 - Ideal for jet substructure (constituent level calibration)

0

.5

3

3.5

Jet inputs: calorimeter clusters

- Two energy scale calibrations for topological clusters
 - Electromagnetic (EM)
 - Local cluster weighting (LCW): Distinguish EM/HAD depositions

Jet algorithms

• Naively, jet algorithms are the inverse of the parton shower

Jet algorithms

• Naively, jet algorithms are the inverse of the parton shower

- But the parton shower is actually not invertible!
- There is no correct jet algorithm: only **better** or **worse**
- What are the metrics for useful algorithm?

IRC Safety

- Parton shower can split particles
- Clustering should not be sensitive to this!

- Parton shower can add extra soft radiation
- Also want to be insensitive to these effects!
- These are the main theoretical considerations on jet clustering
- → Can make comparisons to calculations much easier if these are followed!

Jet algorithms

- Inputs: energy of topological clusters
- Anti-k_T family of jet algorithms are all IRC safe: the standard at LHC experiments
 - Regular shape objects (easy to calibrate, more resilient to pile-up)

R choice (jet size)

Jet/Cone size: $R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

 \Rightarrow Use the R appropriate for the energy scale of the given signal

Boosted objects and large-R jets

- Decay products of a **boosted object** are **highly collimated** and can even **overlap**
- On the example of $t \rightarrow Wb$
 - Decay products most likely within DR~1 for p_T^{top}>350 GeV
 - Solution: use a single large jet containing all decay products

R ^{th,nnpdf} =	14TeV	to 8	TeV	xsec	ratios
-					

Cross Section	$R^{ m th,nnpdf}$	$\delta_{ ext{PDF}}$ (%)	δ_{α_s} (%)	$\delta_{ m scales}$ (%)
$t\overline{t}/Z$	2.12	\pm 1.3	-0.8 - 0.8	-0.4 - 1.1
(tī	3.90	\pm 1.1	-0.5 - 0.7	-0.4 - 1.1
Ζ	1.84	± 0.7	-0.1 - 0.3	-0.3 - 0.2
W^+	1.75	± 0.7	-0.0 - 0.3	-0.3 - 0.2
W^-	1.86	± 0.6	-0.1 - 0.3	-0.3 - 0.1
W^+/W^-	0.94	± 0.3	-0.0 - 0.0	-0.0 - 0.0
W/Z	0.98	\pm 0.1	-0.1 - 0.0	-0.0 - 0.0
ggH	2.56	± 0.6	-0.1 - 0.1	-0.9 - 1.0
$t\bar{t}(M_{tt} \ge 1 \text{ TeV})$	8.18	\pm 2.5	-1.3 - 1.1	-1.6 - 2.1
$t\bar{t}(M_{ m tt} > 2~{ m TeV})$	24.9	± 6.3	-0.0 - 0.3	-3.0 - 1.1
$\sigma_{ m jet}(p_T \geq 1 { m ~TeV})$	15.1	\pm 2.1	-0.4 - 0.0	-1.9 - 2.4
$\sigma_{ m jet}(p_T \geq 2 { m ~TeV})$	182	± 7.7	-0.3 - 0.2	-5.7 - 4.0

Jet calibration in ATLAS

Why calibrate jets?

Need a calibration to reach the particle jet energy level

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction
 - Jet area and residual pileup corrections to decrease pile-up contamination

- Start from calorimeter jets
 - Origin correction: to account for the hard scattering primary vertex. Changes the jet direction
 - Jet area and residual pileup corrections to decrease pile-up contamination Jet-by-jet pile-up sensitivity

$$p_T^{corr} = p_T - \rho A_T - \alpha (N_{PV} - 1) - \beta \langle \mu \rangle$$

Event-by-event pile-up activity (**pile-up density**)

ATLAS-PHYS-PUB-2015-015

ATL-PHYS-PUB-2015-015

24

- Global sequential calibration (GSC **reduce fluctuation effects**
 - Use jet-by-jet information to correct the response of each jet individually
 - Improves jet energy resolution

- GSC variables
 - Longitudinal structure of the energy depositions within the calorimeters
 - Track information associated to the jet
 - Information related to the activity in the muon chamber behind a jet (**muon segments**)
 - Modelling of variables at 13 TeV already tested: Good Data/MC agreement

Global Sequential Calibration

• Derived using MC, parametrised in p_T and η

ATLAS-CONF-2015-002 ATL-PHYS-PUB-2015-015

η relative in-situ corrections

- **MC simulation** typically describes the **data** to within about **10%**
- |η|~1.4 and 3.1<|η|<4.9: 50% deviation
- More adequate calibration for forward region is performed: η inter-calibration in data dijet events to correct η dependence of jet response

Absolute in-situ corrections

- In-situ measurement using a jet recoiling against well-calibrated object as a reference
- Combination of 3 in-situ measurements

JES uncertainties in Run 1

ATLAS-CONF-2015-037

- Final JES uncertainties components O(60), a combination of in-situ and estimated upstream in calibration chain
- Statistical methods have been developed to reduce the number of final components

Jet energy resolution (JER)

Measure jet resolution combining Run 1 in-situ γ+jet, Z+jet and dijet for the first in-situ γ+jet, Z+jet, Z+jet,

stochastic term

Constraint fit at low p_T via an in-situ
 noise study

noise term

 $\frac{\sigma_{p_T}}{p_T}$

 p_T

ATLAS-CONF-2015-037

Jet performance in Run 2

- The idea is to be based on the Run-I knowledge
- Use the **2012** in-situ
- Need to apply a correction/uncertainty based on 2012→2015 simulation changes to maintain the applicability of the 2012 in-situ corrections to 2015 data
 - Detector: IBL added material because of IBL services, mainly in the forward region
 - *◆* Beam conditions: 8→13 TeV ; 50→25 ns (pile-up)

ATLAS-PHYS-PUB-2015-015

Jet calibration performance in Run 2

- Many checks with Run 2 data
 - Jet response in events of photon jet balance
 - + Jet response in events of high p_T jet balancing against lower p_T jets
- Remarkable agreement between Data and MC

Jet energy uncertainties in Run 2

ATL-PHYS-PUB-2015-015

- ~3% additional uncertainty with respect to Run 1 at low p_T
 ★ Negligible for jet p_T > 200 GeV
- Final 2015 jet calibration very close to be finalised
 - Preliminary results show performance similar to Run 1

Searches for New Physics

Searches for New Physics

J. Olsen, CMS CERN Seminar (December 2015)

Dijet resonance searches

arXiv:1512.01530v2

• Search for non-SM features in di-jet final, two analyses

New resonances in m_{jj} spectrum

- Select events with leading (subleading) jet $p_T > 440(50)$ GeV
- Search for a bump in invariant mass m_{jj}
- Deviations in angular variables
 - Complementary analysis to m_{jj} resonance search

• Full 2015 dataset has been analysed

Dijet resonance search

arXiv:1512.01530v2

• Fit m_{jj} distribution using analytic function

 Compare fit with observed data

 No significant excess found, data are consistent with the background hypothesis

Dijet resonance search

Mass [TeV]

Mass [TeV]

No significant excess found, data are consistent with the background hypothesis

arXiv:1512.01530v2

- ◆ QBH: M_{th} < 8.3 TeV excluded @ 95% CL
- Significantly better than Run 1 sensitivity

Highest mass candidate, m_{jj}=6.9 TeV

Run: 280673 Event: 1273922482 2015-09-29 15:32:53 CEST

 $Jet_1 p_T = 3.2 TeV, Jet_2 p_T = 3.2 TeV, E_T^{miss} = 46 GeV$

First tī cross section measurement at 13 TeV

Top quark trivia

- Why the top quark pair production? Cross section increases by a factor of ~4 $(8 \rightarrow 13 \text{ TeV})$
 - Excellent precision tests of Standard Model
 - Sensitive to QCD effects, PDF, top quark mass
 - Probe of new physics

Top quark trivia

- Why the top quark pair production?
 Cross section increases by a factor of ~4

 (8 → 13 TeV)
 - Excellent precision tests of Standard Model
 - Sensitive to QCD effects, PDF, top quark mass
 - Probe of new physics

Measurements at 13 TeV

e/µ + b-jets at 13 TeV

ATLAS-CONF-2015-033

- Select opposite-sign eµ pair
- Two signal regions with Nb-tag jets = 1 or 2
- Dominant uncertainties
 - Luminosity 10%
 - Statistics 6%
 - Theory 5%
 - 13.5 % total uncertainty
 - It was 4% for full Run-1 dataset analysis
 - JES uncertainty subdominant

Result

$$\sigma_{t\bar{t}} = 829 \pm 50 \text{ (stat)} \pm 56 \text{ (syst)} \pm 83 \text{ (lumi) pb}$$

 Theory NNLO+NNLL
 $832^{+40}_{-46} \text{ pb at } m_t = 172.5 \text{ GeV}$

 Czakon, Fiedler, Mitov

 PRL 110 252004

tt production at 13 TeV

Lepton-jets at 13 TeV

ATLAS-CONF-2015-049

Lepton-jets at 13 TeV: results

ATLAS-CONF-2015-049

Theory NNLO+NNLL prediction

$$832_{-46}^{+40}$$
 pb at $m_{t} = 172.5$ GeV

Differential tt+jets cross section at 13 TeV

Unfolded jet multiplicity to particle-level jets

• Good agreement with MC predictions. JES uncertainty being the dominant systematic

47

tt cross section in ATLAS

NNLO+NNLL predictions consistent with 13 TeV measurements

tt cross section in LHC

• Five measurements already at 13 TeV from ATLAS and CMS

• All consistent with theory and within each other

Conclusions

- Jets in LHC: challenging but extremely interesting objects
 - Huge amount of work optimising their energy calibration and performance
- Run 2 (13 TeV) remarkable results already published challenging/exceeding Run 1 sensitivity
 - + tt cross section inclusive and differential measurements
 - Searches of New Physics in di-jet final states
- Robust jet performance in Run 2: key ingredient for most ATLAS physics analyses
 - Perform jet energy calibration and evaluate related uncertainties in a very short time scale during last summer
- ATLAS Run 2 jets ready for ambitious physics program
- ➡ Stay tuned for 2016 dataset: ×(8–10) more data than 2015
 - LHC Performance workshop (Chamonix 2016) on going this week

If time permits

A large-R analysis from 8 TeV: VV resonance

How to search for diboson resonances

- Observable: invariant mass of diboson system m_{VV}
- Here: search for narrow resonance on top of smoothly falling background distribution

Decay modes:

- Semi-leptonic final state
- Full-hadronic final state:
 - Large branching ratio:

$$\begin{array}{l} \mathrm{BR}(W \to qq) \approx \ 3 \times \sum_{\ell=e,\mu} \mathrm{BR}(W \to \ell\nu) \\ \\ \mathrm{BR}(Z \to qq) \approx 10 \times \sum_{\ell=e,\mu} \mathrm{BR}(Z \to \ell\ell) \end{array}$$

 $\ell = e, \mu$

- No MET
- large dijet background

• Full-leptonic final state

- Clean signature and low background
- Small branching ratio
- (Not considered here)

A large-R analysis from 8 TeV: VV resonance

arXiv:1506.00962

$VV \rightarrow qq qq (2 large-R jets) m_{JJ} spectrum$

- Good agreement between data and background model over full dijet mass range except for region around m_{JJ}=2 TeV
- Frequentist approach used to interpret data
 - Local significance: WZ: 3.4σ , WW: 2.6σ , ZZ: 2.9σ
 - Global significance: WZ: 2.5σ

Same large-R analysis in 13 TeV

VV—>qqqq (2 large-R jets) m_{JJ} spectrum

- No significant excess is observed
- However sensitivity, not high enough for conclusive statement on Run 1 excess
- Need more data in 2016 for a conclusive statement. Stay tuned!

ATLAS-CONF-2015-073