

IN TRAP POLARISATION OF RADIOACTIVE ION BEAMS

P. Delahaye for WINNINGMOTIONS

β-decay as a laboratory for weak interaction

Probing intrinsic symmetries

C. S. Wu et al., Phys Rev 105(1957)1413

Parity violation in 60Co decay

- Paul trapping of radioactive isotopes
 - LPCTrap at GANIL: achievements
- Laser Polarisation of ions
 - Experience from COLLAPS
 - Laser polarization at LPCTrap?
- D correlation measurement

- Paul trapping of radioactive isotopes
- LPCTrap at GANIL: achievements See former
 Laser Polarisation of ions
 - Experience from COLLAPS
 - Laser polarization at LPCTrap?
- D correlation measurement

- Paul trapping of radioactive isotopes
 - LPCTrap at GANIL: achievements
- Laser Polarisation of ions
 - Experience from COLLAPS
 - Laser polarization at LPCTrap?
- D correlation measurement

Polarization by optical pumping @ COLLAPS

- The nuclear spin I interacts with the atomic one J → F=I+J
- σ + or σ light to scan the hyperfine structure forces ions in the m_F=±F state

Polarization of Mg isotopes:

³¹Mg: G. Neyens et al, PRL 94, 022501 (2005)

³³Mg: D. T. Yordanov et al, PRL

²¹⁻³²Mg: D. T. Yordanov et al, PRL 108, 042504 (2012)

Similar possibilities using LUMIERE at DESIR

- Paul trapping of radioactive isotopes
 - LPCTrap at GANIL: past achievements
- Laser Polarisation of ions
 - Experience from COLLAPS
 - Laser polarization at LPCTrap?
- D correlation measurement

Measurement of polarization

 A_{β} measurement

$$A_{eta} rac{\left\langle ec{J}
ight
angle}{J} \cdot rac{ec{p}_{e}}{E_{e}}$$

Remember: C. S. Wu et al., Phys Rev 105(1957)1413

Extended interaction time with laser light >95 % polarization could be hoped for

Using:

- •ISCOOL for beam cooling and bunching
- the COLLAPS laser setup for polarization
- A LPCTrap like transparent trap

Optical pumping simulations

Transition probabilities: numerical simulations W. Gins and X. Fléchard Taking into account the velocity of the trapped ions

L1+L2 lasers using an optical modulator

Collisions with He atoms (no spin) do not depolarize

With the power available at COLLAPS: More than 99% achievable in 0.2ms

Probable limitation: laser light polarization

- Paul trapping of radioactive isotopes
 - LPCTrap at GANIL: achievements
- Laser Polarisation of ions
 - Experience from COLLAPS
 - Laser polarization at LPCTrap?
- D correlation measurement

D correlation measurement

D correlation measurement

Correlation max around 135°

Precision measurements of the triple correlation D

- A non-zero D can arise from CP violation
 - CP violation observed in the K and B meson decays is not enough to account for the large matter – antimatter assymetry
 - T-odd correlations in beta decay (D and R) and n-EDM searches are sensitives to larger CP violations by 5 to 10 orders of magnitude

Possible candidates

Isotope	Yield SPIRAL (pps)	D _{FSI}
²¹ Na	>1e8pps	6.7 10 ⁻⁵
²³ Mg	>1e8 pps	-1.3 10 ⁻⁴
³⁷ K	>1 ^e 8 pps	-1.9 10 ⁻⁴
³⁹ Ca	5.7e5pps (estimated!)	4.7 10 ⁻⁵

Can be laser polarized as ions!

Precision measurements of the triple correlation D

- A non-zero D can arise from CP violation
 - CP violation observed in the K and B meson decays is not enough to account for the large matter – antimatter assymetry
 - T-odd correlations in beta decay (D and R) and n-EDM searches are sensitives to larger CP violations by 5 to 10 orders of magnitude
- D correlation measurements
 - Best values
 - neutron decay, Dn= (-0.94 ±1.89±0.97) 10-4, emiT collaboration, PRL 107, 102301 (2011), Phys. Rev. C 86 (2012) 035505
 - ¹⁹Ne decay, D=0.0001 ±0.0006 Calaprice et al, Hyp. Int. 22 (1985) 83, limited by statistics
- Aim of the experiments: $\sigma_D \le 10^{-4}$

Making use of intense RIBs at SPIRAL, polarized by LUMIERE, and of a specific arrangement of LPCtrap

Proof of principle in ISOLDE

COLLAPS + adapted trapping setup!

Conclusions

- New perspectives with polarized beams using LPCTrap
 - Proof of principle could be done at ISOLDE
 - COLLAPS Laser setup
 - LA1/2 beam line
 - Using ISCOOL
 - Adapted trapping setup
- D correlation measurement with unprecedented accuracy is within reach
 - 2 weeks of beam time: at least same order of magnitude as for the neutron with existing techniques
 - Can go down to the 10⁻⁴ level with some beam, laser and trapping R&D
 - First attempt at ISOLDE (Contamination of ²³Na?)
 - Final experiment at DESIR
 - First approach /probe of D_{FSI} for ²³Mg
 - Great physics with great challenges!
- Ongoing application to the french ANR

Questions

- D_{FSI} calculation
- How can we control the polarization degree
 - A_{β} and B_{ν} measurements

Thanks a lot for your attention

- E. Lienard
- X. Flechard
- X. Fabian (PhD Thesis)
- G. Ban
- D. Durand
- G. Quemener

- P. Delahaye
- J. C. Thomas
- F. De Oliveira
- N. Lecesne
- R. Leroy

CITS

M. Kowalska

. .

The University of Manchester

M. Bissel

- N. Severijns
- G. Neyens
- P. Velten
- V. Gins

M. Gonzales-Alonso

And the COLLAPS collaboration