

Tests of phoswich detectors for e- detection

E. Liénard

Why a new e⁻ detector? 1. to replace the present telescope

- Slow, fragile, complex
- High backscattering effect

- 60 x 60 mm x 300 μm
- 1mm spatial resolution
- ~10 keV ΔE resolution
- ΔE ~ 110 keV

Why a new e⁻ detector? 2. to move to LPCTrap2

In the current chamber

- Detectors number X 2
- FASTER DAQ system

Gain in stat: Factor of ~ 4

Why a phoswich detector?

- Backscattering limitation → light element
- Deadtime reduction → plastic scintillator
- β/γ discrimination \rightarrow phoswich

Principle: 2 scintillators (thin & thick) with ≠ risetime, read by a single PM

PM	
E : slow plastic	
ΔE : fast plastic	Ø = 6 cm

Rôle	type	thickness	ΔΕ
Е	slow	3cm	> 5.5 MeV
	τ = 285 ns		
ΔE	fast	1mm	~ 200 keV
	τ = 1.8 ns		

- Tests 1: checking the operation with FASTER
- Problem: loss of position information

How retrieve the position?

Tests 2: With scintillating fibers

- Square section of 0.5 cm side
- Direct light
- Fast/slow switch

Position E: Fast Δ E: Slow sensitive PM fibers plastic $(\tau = 3.2 \text{ ns}) (\tau = 285 \text{ ns})$

PM Hamamatsu R2486-02

(M1 internship)

- Characterization of a phoswich based on 2 plastic scintillators using FASTER
 - → 2 elements mechanically coupled
 - → PS PM & simple PM

(M1 internship)

■ Source: ²⁰⁷Bi

			IC e		γ	
$\frac{207}{83}$ Bi	31.8 y	EC	$0.481 e^{-}$	2%	0.569	98%
			$0.975 e^-$	7%	1.063	75%
			$1.047 e^{-}$	2%	1.770	7%
					Pb K x rays 78%	

Different conditions: optical grease

integration windows / threshold

amplifier ...

Position Sensitive PM

(M1 internship)

Typical two-dimensional spectrum

$$Qtot = Q1 + Q2 + Q3 + Q4 (4 signals)$$

(M1 internship)

Correction and energy calibration

Qfast always contains a Qslow component

(M1 internship)

Correction and energy calibration

$$E_{tot} = \alpha \times Q_{slow} + \beta \times Q_{fast}$$

 $R = FWHM/E \sim 25 \%$ Threshold ~ 120 keV

(M1 internship)

PS PM → simple PM (R329-02 Hamamatsu 51mm < 60 mm)</p>

R: 25% Th: 120 keV 18% 88 keV & no "afterpulse"

(M1 internship)

Phoswich with fibers and PS PM (tricky mounting)

Fast/slow switch

without mask ...

Many distortions and "dead" zones, high energy threshold

→ Appears more complicated than the present telescope ...

(M1 internship)

- Good β/γ discrimination
- Bad E resolution with PS PM, better with simple PM
- Fibers system seems not easy to manage, not suited for precision measurements

Conclusion:

- Principle adopted
- Position sensitivity: multi-phoswich detector 2x2
- Further tests to be performed

- Matching between areas (Plastics PM)
 - 9814SB ET enterprises
- Slow/fast or fast/slow? EJ-212, EJ-240 Scionix
- ΔE thickness ? 0.5 & 1 mm
- Material funded with LPC money remaining

© Y. Merrer first draft

KUL money→ final design

Final design?

Two projects

LPCTrap2 (a in mirrors)

© Y. Merrer

4 detectors in the present chamber

- LPCTrap2 funded, Winningmotions ??
- β detector: ~ the same function

Same basic design

Constraints: existing chamber in LPCTrap2, maximal solid angle in the 2 configurations

Winningmotions (*D* or *a*)

8 detectors in a new big chamber

Final design?

© Y. Merrer

Two projects, an adapted basic design

LPCTrap2 (a in mirrors)

Winningmotions (*D* or *a*)

