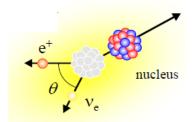
KU LEUVEN

MEASUREMENT OF THE β ASYMMETRY PARAMETER IN 35Ar DECAY WITH A LASER POLARIZED BEAM

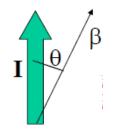
Status of the project

IKS-LPCCaen Collaboration Meeting LPCCaen, 15th December 2015



Philippe Velten

V_{ud} quark mixing matrix element from with correlation measurements of mirror \(\beta \) transitions


β-v correlation:

$$a = \frac{(1 - \frac{\rho^2}{3})}{(1 + \rho^2)} \quad \bullet \quad \bullet$$

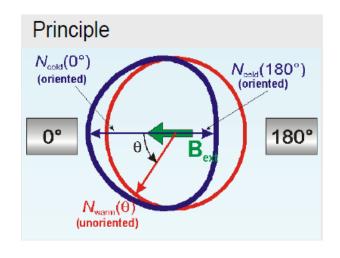
β asymmetry:

$$A = \frac{\rho^{2} - 2\rho\sqrt{J(J+1)}}{(1+\rho^{2})(J+1)} \quad I$$

 ΔV_{ud} for relative precision of 0.5% on $a_{\beta \nu}$ or A_{β}

11C 0.0 13N 0.0 15O 0.0 17F 0.0	011 0.00 025 0.00 017 0.00 020 0.00 019 0.00	010 016 017 016	2.1 4.0 1.0 2.4	ΔV _{ud} 0.0011 0.0207 0.0123 0.0023	0.0009 0.0207 0.0123	Factor Δ <i>F</i> 1 2.3 0.3 0.1
11C 0.0 13N 0.0 15O 0.0 17F 0.0	025 0.00 017 0.00 020 0.00 019 0.00)16)17)16	4.0 1.0 2.4	0.0207 0.0123	0.0207 0.0123	0.3
¹³ N 0.0 ¹⁵ O 0.0 ¹⁷ F 0.0	017 0.00 020 0.00 019 0.00)17)16	1.0 2.4	0.0123	0.0123	
¹⁵ O 0.0 ¹⁷ F 0.0	020 0.00 019 0.00	016	2.4			0.1
17 F 0.0	019 0.00			0.0023	0.0000	
_		013	2.1		0.0020	1.9
	011 - 0.00		3.1	0.0341	0.0341	0.1
¹⁹ Ne 0.0	0.00	010	1.5	0.0011	0.0011	1.5
	022 0.00	017	2.7	0.0036	0.0034	1.3
23 Mg 0.0	025 0.00	018	3.1	0.0034	0.0030	1.9
	0.00	018	1.7	0.0056	0.0056	0.5
²⁷ Si 0.0	029 0.00	018	4.1	0.0068	0.0066	1.1
	026 0.00	018	3.4	0.0024	0.0014	4.3
	0.00	018	5.9	0.0068	0.0061	1.8
	021 0.00)18	2.0	0.0013	0.0006	6.0
35 Ar 0.0	0.00	018	1.1	0.0007	0.0004	4.8
	034 0.00)17	5.8	0.0050	0.0041	2.3
39 Ca 0.0	0.00	016	3.5	0.0032	0.0027	2.2
	029 0.00)22	2.7	0.0299	0.0299	0.2
⁴³ Ti 0.0	076 0.00	018	13.2	0.0167	0.0151	1.6
^{45}V 0.0	112 0.00	020	17.7	0.0115	0.0032	11.2

N.Severijns & O. Naviliat-Cuncic, Physica Scripta T152 (2013) 014018


 $A(^{35}Ar)$ is the best candidate:

- $\Delta A/A=0.5\% \rightarrow \Delta V_{ud} = 0.0007$ with present Ft value
- $\Delta A/A = 0.5\% \rightarrow \Delta V_{ud} = 0.0004$ if Ft value is improved by factor 4.8 (requires Q_{EC} , $T_{1/2}$ and BR)

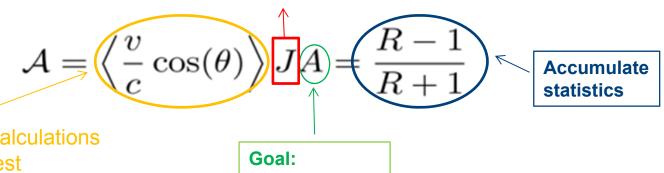
(Note: ΔV_{ud} (0+ \rightarrow 0+) = 0.00022)

Measuring the β asymmetry parameter in nuclear β decay

Transition rate of polarized nuclei:

$$W(\theta) = W_0 \left(1 + \frac{v}{c} JAcos(\theta) \right)$$

Experimental asymmetry:

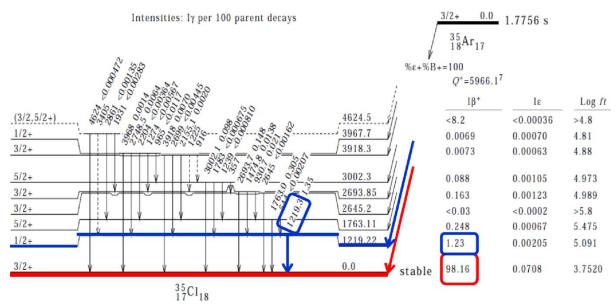

$$\mathcal{A} = \left\langle \frac{v}{c} \cos(\theta) \right\rangle JA = \frac{R-1}{R+1}$$

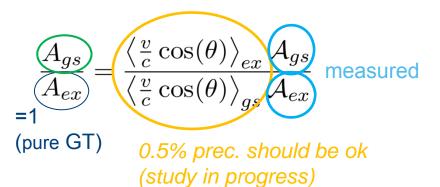
Spin-flip:

$$R = \sqrt{\frac{N(0, +J)N(\pi, -J)}{N(0, -J)N(\pi, +J)}}$$

High precision measurement:

Poorly known


requires adv. MC calculations -> 1-2% pres. at best


0.5% precision

Using the 1st excited state of 35Ar transition to reach high precision level

Measurement of both ground & first excited state of ³⁵Ar:

Pros:

- J cancels out
- Higher precision on kinematic & geometrical factor
 Con:
- requires β-γ coincident detection
- statistical precision limitedby excited state asymmetry since br = 1.23%

Requirements to reach the 0.5% precision on A(35Ar)

Highly efficient β-γ coincident detection setup

Development in progress at IKS - KU Leuven

Intense decay source of highly polarized ³⁵Ar

expected performance for the 35Ar beam:

production rate: I = ~1e6 ³⁵Ar/s

• polarization: P = 0.2 - 0.4

Which crystal is the best suitable to implant 35 Ar and maintain polarization long enough to measure the β asymmetry (λ =1.8s)?

Answering this question is the goal of the "crystal test" runs

- Preliminary estimation: 0.5% statistical precision is achievable within few days of data taking time
 - → Depends strongly on the polarization level of the decay source:

Ex: if $J=0.4 \rightarrow 0.2$, the data taking time to reach a given stat. precision is **multiplied by 5**

Polarization and crystal tests at COLLAPS

Selection of host candidates:

VITO

- o KBr:
 - Used as implant host in ³⁵Ar magnetic moment measurement with β-NMR
 - Cooled at 20K

Matsuta K, et al. Nuc. Phys. A 701 383c (2002)

- NaF & CaF:
 - NaF Used as catcher for β-NMR study of ²³Ne noble gas
 - Cooled at 15K

Ohtsubo T, et al. Hyp. Int. 180 85 (2007)

- CaF: mass closer to Ar
- NaCl & Si:
 - Good implantation hosts for several elements

Minamisono T, et al. Hyp. Int. 35 979 (1987), Borremans D, et al. Phys. Rev. C 72 044309 (2005)

Current Status of the crystal test run preparations

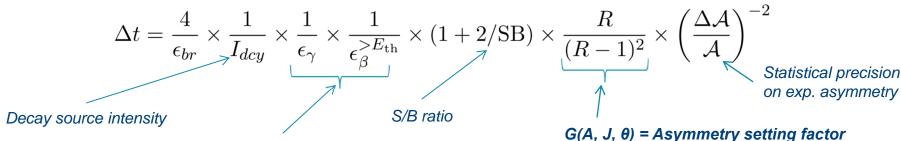
- Run of November 2015 on COLLAPS has been cancelled due to other priorities (Ca run with new ROC setup)
- ROC setup will most probably stay mounted on COLLAPS all next year
- Decision has been taken to move to VITO directly
 - Run planned late summer next year
- First organizational meeting happened at ISOLDE workshop early December
 - Local coordination has been decided and tasks have been assigned
 - Biweekly meeting have been proposed to follow advancements
- The main effort consists of building the beamline and installing the laser
 - Mainly the task of Gerda's people and CERN locals (Magda, Frank, Mark)
 - Involvement of IKS WI's group to be clarified at a later stage

Current Status of the crystal test run preparations

- Summary of advancement concerning the detection setup:
 - Old NMR COLLAPS chamber is contaminated & damaged!
 - Need to design and build a new chamber
 - Design will be constrained by the NMR magnet that will be used:
 - COLLAPS magnet: need to measure max field -> does it reach 0.5T?
 - LEUVEN magnet: stronger magnet (B~1T) but more tricky to use
 - Need of a precise 3D field mapping to design beam guiding coils to ensure correct adiabatic rotation -> should be performed by CERN field mapping service
 - Need to check available space around VITO
 - COLLAPS cold head has been tested and is working correctly
 - 26K reached in about 1h. Warming up in vacuum requires more than 10h
 - Some upgrades are planned to enhance performance and reduce warming up
 - New cold finger (direct LHe cooling) has arrived at IKS
 - Performance needs to be tested
 - Attempt to use both systems in the new chamber:
 - Independent crystal cooling + cooling shield

Current Status of the crystal test run preparations

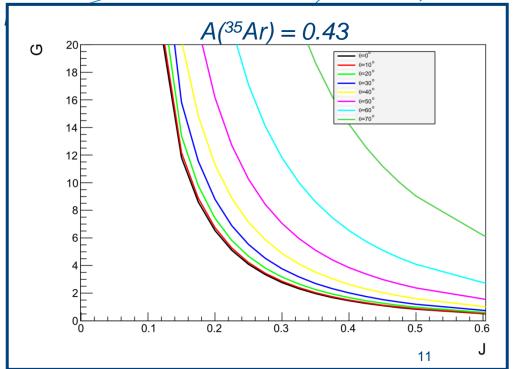
- Summary of advancement concerning the detection setup:
 - Old NMR COLLAPS chamber is contaminated & damaged!
 - Need to design and build a new chamber


b275 has been locked by RP because of the contamination issue

- Radioactivity checks are being performed since 2 months
 - Radioactive parts are being moved in special storage
- Access to building is currently very difficult:
 - for now, magnet test is not feasible
 - location and status of cold head unknown
- Some upgrades are planned to enhance performance and reduce warming up
- New cold finger (direct LHe cooling) has arrived at IKS
 - Performance needs to be tested
- Attempt to use both systems in the new chamber:
 - Independent crystal cooling + cooling shield

KU LEUVEN

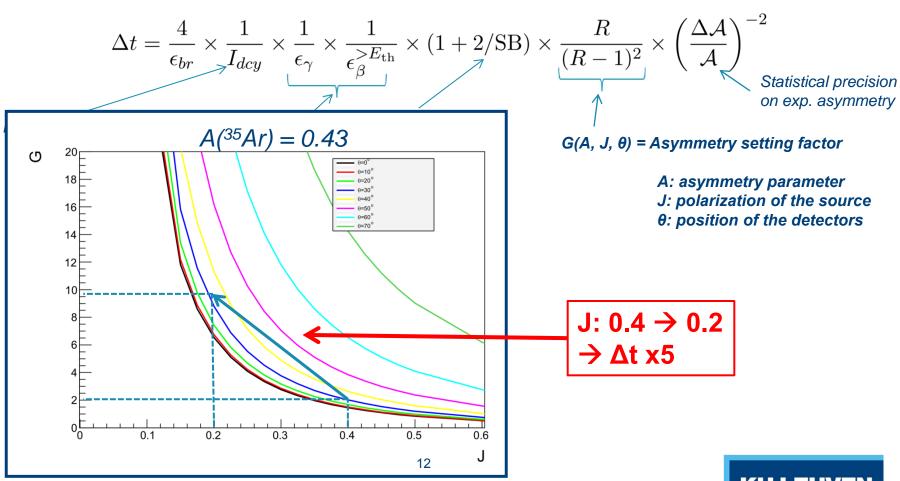
Data taking time estimation


Level of polarization impact greatly the data taking duration:

Data taking time estimation

• Level of polarization impact greatly the data taking duration:

$$\Delta t = \frac{4}{\epsilon_{br}} \times \frac{1}{I_{dcy}} \times \frac{1}{\epsilon_{\gamma}} \times \frac{1}{\epsilon_{\beta}^{>E_{\rm th}}} \times (1 + 2/{\rm SB}) \times \frac{R}{(R-1)^2} \times \left(\frac{\Delta \mathcal{A}}{\mathcal{A}}\right)^{-2}$$
 Statistical precision on exp. asymmetry


 $G(A, J, \theta)$ = Asymmetry setting factor

A: asymmetry parameter J: polarization of the source θ: position of the detectors

Polarization enhancement by reionization at VITO & CRIS

Level of polarization impact greatly the data taking duration:

Data taking time estimation

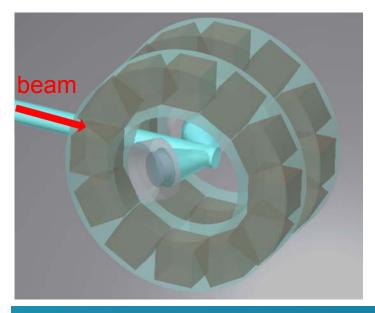
$$\Delta t = \frac{4}{\epsilon_{br}} \times \frac{1}{I_{dcy}} \times \frac{1}{\epsilon_{\gamma}} \times \frac{1}{\epsilon_{\beta}^{>E_{th}}} \times (1 + 2/SB) \times \frac{R}{(R - 1)^2} \times \left(\frac{\Delta A}{A}\right)^{-2}$$

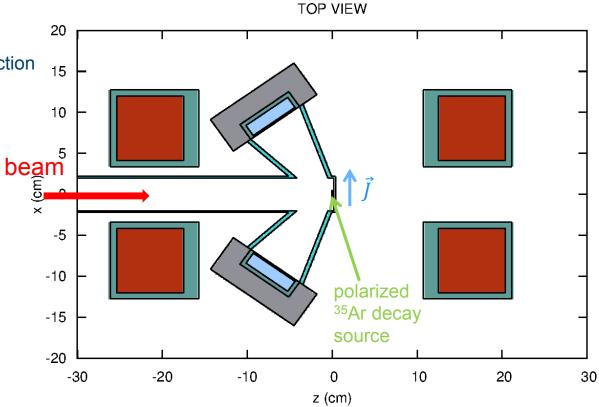
D 4	NT · 1	D : : 4:
Parameter	Nominal	Pessimistic scenario
$\frac{\Delta A}{A}$	0.5%	idem
v/c	0.96	idem
θ (degree)	35	idem
$E_{ m th}~({ m MeV})$	1.4	idem
$\epsilon_{\beta}^{>E_{\rm th}}$ (count/decay)	2×10^{-2}	idem
$\epsilon_{\gamma} \text{ (count/decay)}$	4.7×10^{-2}	idem
$\epsilon^{\rm coinc}$ (count/decay)	1.16×10^{-5}	idem
S/B	4.7	idem
Q	1.43	idem
J	0.3	0.2
\mathcal{A}_{ex}	0.24	0.16
R	1.62	1.37
G	4.24	9.86
$N_2^{ m tot}$	7.4×10^{5}	1.89×10^{6}
I (decays/s)	10^{6}	0.5×10^{6}
$\frac{dN_{\text{det}\beta}}{dt}$ (counts/s)	3.7×10^{4}	1.85×10^{5}
$<\frac{dN_{\text{CsI block}}}{dt}>(\text{counts/s})$	2.3×10^{4}	1.15×10^{4}
Δt (s)	83680	388888

Nominal -> Pessimistic:

- 50% reduction in decay source
- Polarization: J= 0.2 instead of 0.3

← 4.5 days instead of 24h

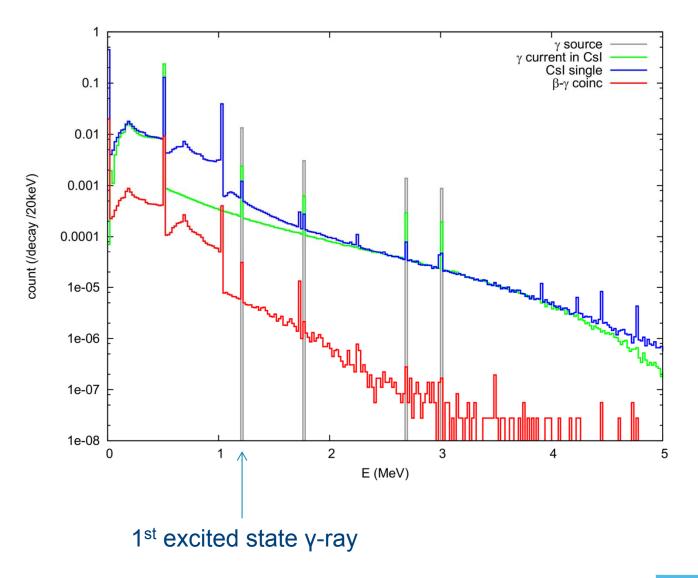



(Possible) detection setup for the A(35Ar) measurement

 $2x \Delta E$ -E telescopes for β + detection $2x CsI rings for <math>\gamma$ -ray @1.219 MeV detection

Main features:

- Left-Right symmetric layout
- Maximize detection solid angle



MC simulations has been initiated to

- Optimize detection efficiency
- Study systematic effects (β scattering, etc.)

KU LEUVEN

Gamma detection

