Synopsis

Context

- V-A theory
- Weak interaction universality
- $a_{\beta\nu}$ kinematics
- Shake-Off (SO) effect
- 2 Experiment : LPCTrap
 - Beam preparation
 - Trapping & Detection
 - Results

*New simulation

- Trapped ion dynamic : CLOUDA
- β decay generator
- Tracking : Bayeux

Conclusions & Perspectives

Overview : simulation package

Overview : simulation package

Boltzmann initial state

Simulation : initial event

Buffer gas injected in the trap $\sim 10^{-5}$ mbar (He or H_2)

₩

Thermalization process kills all prior information

₩

No need to simulate before trap

₩

Any "reasonable" initial state will do Maxwell-Boltz. Distribution $T = 1000 \text{ K}, \vec{r}_{\text{init.}} = (0, 0, 0)$

Overview : simulation package

*Trapped ion dynamic : CLOUDA

Simulation : initial event

Trapped ions are subject to :

- Collisions with buffer gas
- Electromagnetic trapping field
- Coulomb N-body repulsion ($\mathcal{O}(N^2)$)

CLOUDA was thus developped :

- Steppers : 4th order Runge-Kutta, Leapfrog, Euler (tracking in parallel)
- Timestep Δt = 1 ns
- Generic : usable for other trap experiments (Paul or Penning)

Objective

Provide a realistic trapped cloud profile \Rightarrow Set β decay in lab. frame.

*CLOUDA – Buffer gas : overview

Simulation : initial event

Issue : simulate buffer gas cooling microscopically \Rightarrow ion-atom collision

Realistic models : collaboration with CELIA (Bordeaux) & Madrid, ion-atom potentials effect

Four models :

- Classical : Hard Spheres (HS), Classical
- Quantum : Cold gas, Full

Global logic applied for any model :

• Check if collision happens \Rightarrow Compute mean free path λ (model dependent)

$$oldsymbol{
ho}_{ ext{collision}} = \mathbf{1} - oldsymbol{exp}\left(rac{oldsymbol{
u}_{ ext{ion}}.oldsymbol{\Delta} oldsymbol{t}}{oldsymbol{\lambda}}
ight)$$

If collision happens, randomize \vec{v}_{atom} and compute scattering angle θ (model dependent) in center-of-mass frame

*CLOUDA – Buffer gas : Classical models

Simulation : initial event

Hard Spheres

 $b < b_{max} = numerical cut$

*CLOUDA – Buffer gas : Classical models

Simulation : initial event

Mean free path $\lambda = \mathbf{v}_{\rm ion} / \nu$ (ν : collision frequency) :

$$\nu(\mathbf{v}_{\text{ion}}) = \rho_{\text{gas}} \pi \mathbf{b}_{\text{max}}^2 \mathbf{v}_{mp} \left[\left(\frac{\mathbf{v}_{\text{ion}}}{\mathbf{v}_{mp}} + \frac{\mathbf{v}_{mp}}{2\mathbf{v}_{\text{ion}}} \right) \operatorname{erf} \left(\frac{\mathbf{v}_{\text{ion}}}{\mathbf{v}_{mp}} \right) + \frac{1}{\sqrt{\pi}} \exp \left(- \left(\frac{\mathbf{v}_{\text{ion}}}{\mathbf{v}_{mp}} \right)^2 \right) \right]$$

 $(\pi \ b_{\max}^2)$: constant cross section

*CLOUDA – Buffer gas : Classical models

Simulation : initial event

Hard Spheres

Classical

*CLOUDA – Buffer gas : Quantum models

Simulation : initial event

Mean free path $\lambda = v_{ion}/\nu$ (ν : collision frequency)

• Cold gas : $\nu(\mathbf{v}_{ion}) = \rho_{gas} \sigma(\mathbf{v}_{ion}) \mathbf{v}_{ion}$

*CLOUDA – Buffer gas : Quantum models

Simulation : initial event

Mean free path $\lambda = v_{ion}/\nu$ (ν : collision frequency)

• Cold gas : $\nu(\mathbf{v}_{ion}) = \rho_{gas} \sigma(\mathbf{v}_{ion}) \mathbf{v}_{ion}$

Full :

$$\nu(\mathbf{v}_{\text{ion}}) = \frac{\rho_{\text{gas}}}{\sqrt{\pi} \mathbf{v}_{mp} \mathbf{v}_{\text{ion}}} \int_{0}^{+\infty} d\mathbf{v}_{\text{rel}} \sigma(\mathbf{v}_{\text{rel}}) \mathbf{v}_{\text{rel}}^{2} \left\{ \exp\left[-\left(\frac{\mathbf{v}_{\text{rel}} - \mathbf{v}_{\text{ion}}}{\mathbf{v}_{mp}}\right)^{2} \right] - \exp\left[-\left(\frac{\mathbf{v}_{\text{rel}} + \mathbf{v}_{\text{ion}}}{\mathbf{v}_{mp}}\right)^{2} \right] \right\}$$

*CLOUDA – Buffer gas : Quantum models

Simulation : initial event

(If collision) Scattering angle : $\theta = f(E_{rel.}, r)$

$$\frac{\int_0^{\theta} \frac{d\sigma(\mathbf{v},\theta)}{d\omega} \sin(\theta) d\theta}{\int_0^{\pi} \frac{d\sigma(\mathbf{v},\theta)}{d\omega} \sin(\theta) d\theta} = r$$

*CLOUDA – Buffer gas : Models assessment

Simulation : initial event

• Constant, uniform, infinite \vec{E}_x

*CLOUDA – Buffer gas : Models assessment

- Constant, uniform, infinite \vec{E}_x
- 2 experimental observables for ion-atom collisions :
 - Drift velocities v_d (⁴⁰Ar⁺+⁴He & ⁷Li⁺+⁴He)

*CLOUDA – Buffer gas : Models assessment

- Constant, uniform, infinite \vec{E}_x
- 2 experimental observables for ion-atom collisions :
 - Drift velocities v_d
 (⁴⁰Ar⁺+⁴He & ⁷Li⁺+⁴He)
 - Diffusion coefficient D_L , D_T $({}^7\text{Li}^+ + {}^4\text{He only})$ $\sigma_x^2 = \frac{D_L}{2} \times t + b$ $\sigma_{y,z}^2 = \frac{D_T}{2} \times t + b$

*CLOUDA – Buffer gas : Models assessment

- Constant, uniform, infinite \vec{E}_x
- 2 experimental observables for ion-atom collisions :
 - Drift velocities v_d
 (⁴⁰Ar⁺+⁴He & ⁷Li⁺+⁴He)
 - Diffusion coefficient D_L , D_T $({}^7Li^+ + {}^4He \text{ only})$ $\sigma_x^2 = \frac{D_L}{2} \times t + b$ $\sigma_{y,z}^2 = \frac{D_T}{2} \times t + b$

*CLOUDA – Buffer gas : Models assessment

Simulation : initial event

- Constant, uniform, infinite \vec{E}_x
- 2 experimental observables for ion-atom collisions :
 - Drift velocities v_d
 (⁴⁰Ar⁺+⁴He & ⁷Li⁺+⁴He)
 - ► Diffusion coefficient D_L , D_T $(^7Li^++^4He \text{ only})$ $\sigma_x^2 = \frac{D_L}{2} \times t + b$ $\sigma_{y,z}^2 = \frac{D_T}{2} \times t + b$
- Data will be function of Townsend :

 $(\textit{Td}) \sim \frac{\text{Electric field}}{\text{Buffer gas density}}$

Ranging in :

- 5 130 Td for ⁴⁰Ar⁺+⁴He
- ▶ 2 200 Td for ⁷Li⁺+⁴He

*CLOUDA – Buffer gas : Models assessment

Simulation : initial event Drift velocitites $v_d - {}^{40}Ar^+ + {}^{4}He$

\Rightarrow Good agreement, except for Hard Spheres

*CLOUDA – Buffer gas : Models assessment

Simulation : initial event Drift velocitites $v_d - {}^7Li^+ + {}^4He$

⇒ Good agreement, except for Hard Spheres

*CLOUDA – Buffer gas : Models assessment

Simulation : initial event

Transverse diffusion coefficient $D_T - {}^7Li^+ + {}^4He$

\Rightarrow Good agreement

*CLOUDA – Buffer gas : Models assessment

Simulation : initial event Longitudinal diffusion coefficient $D_L - {}^7Li^+ + {}^4He$

 \Rightarrow Good agreement until 80 Td, then discrepancies (espc. full...)

*CLOUDA – Buffer gas : Models assessment

Simulation : initial event Longitudinal diffusion coefficient $D_L - {}^7\text{Li}^+ + {}^4\text{He}$

*CLOUDA – Buffer gas : Models assessment

Simulation : initial event Longitudinal diffusion coefficient $D_L - {}^7Li^+ + {}^4He$

*CLOUDA – Buffer gas : Models assessment

Simulation : initial event Longitudinal diffusion coefficient $D_L - {}^7Li^+ + {}^4He$

- Discrepancies source (probably) found
- Computations with wider tables on the way...

*CLOUDA – EM fields description

Simulation : initial event

Implemented fields :

- Penning trap : Ideal
- Paul trap : Ideal
 - $\vec{E} = -\frac{2}{l_0^2} (\Phi_0 + \Phi_1 \cos(2\pi f_{RF} t)) (\vec{x} + \vec{y} 2\vec{z})$

- ► "Radio-Frequency Phase (RFP)" = $(2\pi f_{RF}t) \mod (2\pi)$
- Paul trap : Realistic
 - Include : real geometry, real potential applied on electrodes
 - Use a Boundary Element Method (BEM) to compute the field in all space
 - Parametrize realistic field using harmonic synthesis :

$$\Phi(r,\theta,\varphi) = \sum_{\ell=0}^{\infty} \left(\frac{r}{r_0}\right)^{\ell} \sum_{m=0}^{\ell} \sqrt{\frac{2\ell+1}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} \times P_{\ell}^{m}(\cos\theta) \left(\mathcal{A}_{\ell m} \cos(m\varphi) - \mathcal{B}_{\ell m} \sin(m\varphi)\right)$$

Typically, $\ell_{max} = 12$

*CLOUDA – N-body space charge

Issue : compute the N^2 Coulomb repulsions at each timestep

Multiple algorithms possible :

- Exact computation (O(N²)) :
 - Tile Calculation
 - Chamomile Scheme
- Faster methods (approximate long range interactions) :
 - Barnes-Hut $\Rightarrow \mathcal{O}(N \log N)$
 - ► Fast Multipole Methods (FMM), *e.g.* $ExaFMM \Rightarrow O(N)$

*Trapped ion dynamic : CLOUDA – Summary

We have :

- Buffer gas collisions :
 - Hard Spheres (HS)
 - Classical
 - Full
 - Cold gas
- EM fields :
 - Ideal Paul trap
 - Realistic Paul trap (Harmonic Synthesis)
- N-body : Tile Calculation. Either On or Off.

Cloud profile

 \Rightarrow What effect all models have on the final cloud ?

Xavier Fabia	

*CLOUDA – Buffer gas effect

*CLOUDA – Buffer gas effect

*CLOUDA – Buffer gas effect

Simulation : initial event

 \Rightarrow Chosen buffer gas model has an important impact

*CLOUDA – EM fields effect

*CLOUDA – EM fields effect

*CLOUDA – EM fields effect

*CLOUDA – EM fields effect

Simulation : initial event

⇒ Trapping EM field must be properly described

*CLOUDA – N-body effect

*CLOUDA – N-body effect

Simulation : initial event

\Rightarrow N-body has an important impact

Overview : simulation package

β decay generator

Simulation : initial event

 Distribution of Q-value between decay products

β decay generator

- Distribution of Q-value between decay products
- Take $a_{\beta\nu}$ into account

β decay generator

- Distribution of Q-value between decay products
- Take $a_{\beta\nu}$ into account
- γ de-excitation

β decay generator

- Distribution of Q-value between decay products
- Take $a_{\beta\nu}$ into account
- γ de-excitation
- Fermi function
- Other corrections to consider : radiative, recoil, ...

Overview : simulation package

Bayeux

Simulation : tracking

- *β* scattering : important systematic effect
- RI and β tracking requires :
 - Fine geometry description
 - Realistic EM fields (Paul trap, free flight tube)
 - Data filtering tools

Bayeux

Simulation : tracking

- β scattering : important systematic effect
- RI and β tracking requires :
 - Fine geometry description
 - Realistic EM fields (Paul trap, free flight tube)
 - Data filtering tools
 - \Rightarrow Done using BAYEUX :
- Geomtools to control geometry
- Wraps GEANT4 for β scattering
- Able to inject field maps in the Monte Carlo engine

Thanks to Ph. Velten !

Bayeux

Xavier Fahian

Simulation : tracking

- β scattering : important systematic effect
- RI and β tracking requires :
 - Fine geometry description
 - Realistic EM fields (Paul trap, free flight tube)
 - Data filtering tools
 - \Rightarrow Done using BAYEUX :
- Geomtools to control geometry
- Wraps GEANT4 for β scattering
- Able to inject field maps in the Monte Carlo engine

