WITCH setup

 $T_{1/2}^{(35}Ar) = 1.775(4) s$ Recoil endpoint = 452 eV

- Located at CERN-ISOLDE
- Cool and bunch in REXtrap \rightarrow 30 keV
- Transport through Horizontal Beam Line
- Pulsed Drift Tube reduce total energy ~0
- Vertical Beam Line decelerates ions
- Cooler Trap (buffer gas) cool/center ions
- Decay Trap to store scattering free source
- Retardation Spectrometer for energy analysis
- MCP detector as ion counter
- High-statistics beam time Nov. 2012, new DAQ (FASTER) also provided high resolution

WITCH Spectrometer

Typical cycle

Dedicated half-life runs

- Only implantation activity can be measured in isolation
- Beta activity measured with 600V on spectrometer, implant activity constrained while ions are in cooling trap
- Ion activity measured with 50V on spectrometer, beta activity constrained by brief 600V measurement

Typical recoil ion run w/fit

- Each recoil run fit simultaneously w/ implant, beta, ion halflife runs.
- Each recoil cycle immediately followed by background cycle, do see some bkg. dependence on spec. voltage
- In my analysis ignore ejected ion portion of cycle

Remove leading channels

Run 96

Runs 76, 94 and 95 used for implant, beta, and trap half-lives

- Chop plot analysis shows some issues, particularly with first 50V region, which is omitted in the final analysis
- Combination of many signals with different half-lives in each region leads to strong correlations between all parameters

Amplitudes for $a_{\beta\nu}$

Energy-dependent MCP efficiency?

- Different charge states (1+, 2+, etc.) of ions following decay, re-accelerated with different energy
- Simulations of this effect suggestive, made measurements @LPC-Caen
- Do have an energy-dependent efficiency for MCP, but not enough to explain discrepancy

WITCH Monte Carlo Simulations

- Possible presence of unidentified/unaccounted for contaminants/backgrounds in the WITCH data?
- Check:
 - Monte Carlo recoil data based on SM value for recoil distribution (i.e. assume a=1)
 - Add background according to some model (energy spread, time dependence, etc.)
 - Fit the MC recoil data + bkg WITHOUT including background in your fit routine.
 - Compare amplitudes and quality of fits with experimental values.

Monte Carlo Data

- C++ code, define Δt via -log(r/ λ) with r a random value
- Simulated implantation activity, beta activity, and recoilion activity, as well as constant background
- Combined simulated decay curves to reproduce runs 76 (implant only), 95 (implant, betas), 94 (implant, betas, recoils) and typical recoil run.
- Half-lives for each component fixed to values from dedicated half-life runs (76,95,94)

Half-life	Simulated value (s)
Recoil ion	1.19
Beta	0.67
Implant	1.30

TABLE I: Values for the various effective half-lives of ³⁵Ar measured at WITCH.

Fits – Recoils (no bkg)

Modeling the background

Assumptions:

- Radiation-dependent.
- Time (in)dependent.
- Gaussian energy distribution in the 0-450 eV range.

Scan parameter space of background model, add to retardation spectrum generated by SM values, see if we reproduce our experimental fits if background is left unaccounted for.

Background distribution

Background distribution

Results

Reduced chisquares of fits

Goodness of fit (χ^2)

- Reduced chi-squares from the fits are consistent with what we obtain when fitting the experimental data
- Results of this study strongly suggest that recoil spectrum is contaminated by radiationinduced time-dependent background