Search for resonances decaying to photon pairs in 3.2 fb⁻¹ of pp collisions at \sqrt{s} =13 TeV with the ATLAS detector

Nicolas Berger, Marco Delmastro, **Kirill Grevtsov**, Remi Lafaye, Alexis Vallier, Isabelle Wingerter

17.12.2015

Outline

Introduction

Ingredients to search for a resonance

- Selection optimised for best significance
- Background modeling
- Signal parameterization
- Apply ingredients to get:
 - discovery p-value
 - \circ cross-section imes BR limit

Results

Introduction

ATLAS

(A Toroidal LHC ApparatuS) general-purpose detector:

- search for new physics
- test predictions of the Standard Model (including the Higgs boson)

The Nobel Prize in Physics 2013 François Englert, Peter Higgs

"for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through <u>the discovery of the predicted fundamental particle</u>, <u>by the **ATLAS** and CMS experiments at CERN's Large Hadron Collider"</u>

Search for a resonance

In 2012, THE ATLAS & CMS collaborations presented the observation of a new resonance: **particle compatible with the SM Higgs boson**

 p_0 - local significance, probability of background to generate a signal-like excess

What if there are more of them?

Additional diphoton resonances foreseen by model with an extended Higgs sector, like 2HDM

Limits were set for <u>Run 1</u> - no excess found up to 600 GeV.

Search for a resonance

Cross Section increases in Run 2, and we are searching again!

In 2015, ATLAS has collected and validated 3.2 fb⁻¹ @ 13 TeV The number of expected events N is proportional to luminosity and cross section σ

$$N_{process}^{Events} = L * \sigma_{process}$$

Search for a resonance in Run 2

ATLAS NOTE

ATLAS-CONF-2015-081

December 15, 2015

Search for resonances decaying to photon pairs in 3.2 fb⁻¹ of pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Analysis Team

34 authors

~15 active contributors

6 of them from LAPP

Critical contributions and leading role of LAPP ATLAS Team!

<u>Marco</u> - the analysis contact and main editor of the note I'm co-editor

The results are public, note can be found here

——— Search for a resonance in Run 2

In collected diphoton candidates we have combination of photon-photon , photon-jet and jet-jet events (where jet(s) faking a photon).

- 1) Select events with a pair of photon candidates, applying selection criteria to maximize a significance and obtain high photon purity
- 2) The selected events contains events from direct $\gamma\gamma$, γ j, jj production (and possibly a new resonance ?)
- 3) The background is continuous and its shape can be parametrized
- 4) The possible signal is parameterized with various natural width hypothesis
- 5) Data are fitted with the sum of the background + a possible signal ("3+4")

—— Search for a resonance in Run 2

Selections

- optimized to have largest significance (S/ \sqrt{B}) at high mass for scalar Higgs-like resonance (spin 0, narrow width)
- typical prompt photon purity >90%
- **frozen** before unblinding the data

We require

- basic preselections
 - trigger (HLT_g35_medium_g25_medium)
 - in precision detector acceptance $|\eta| < 2.37$ (excluding transition region between the barrel and the end-cap calorimeters)
 - $\circ~$ photon's E_{τ} greater than 25 GeV
- Shower shape requirements "tight" photons (after this step we select pair of photons)
- Calorimeter and track-based isolation (topoetcone40 < 0.022* E_T + 2.45 GeV && ptcone20 < 0.05* p_T)
- Relative p_T cuts: $E_T^{\gamma_i}/m_{\gamma\gamma}$ > 0.4/0.3 (leading/subleading)

- Background modeling
 - Use analytical form to describe the background shape $f_{k;d}(x; b, \{a_k\}) = (1 - x^d)^b x^{\sum_{j=0}^k a_j \log(x)^j}$ $x = \frac{m_{\gamma\gamma}}{\sqrt{s}}$
 - Choose simplest function that fits all MC samples: d=1/3, k=0
 - Bias on the fitted signal induced by function required to be smaller than 20% of expected background statistical uncertainty
 - Choice of background modeling validated on partially unblinded data with large bins, unnecessity of additional dof been verified with F-test
- Signal parameterization
 - Narrow Width Approximation, natural width negligible wrt to detector resolution
 - Large Width different widths with up to 10% of the resonance mass (up to 25% for validation purpose)

Signal parametrization

Parametrize signals with Double-Sided Crystal Ball (DSCB) function using simulation:

MC signal samples produced for several mass points in **Narrow Width Approximation** Parametrization derived on those points and provide function to continuously cover all the mass range

Signal parametrization

An unbinned fit of the $m_{\gamma\gamma}$ distribution of all the events passing the selection cuts

where $t=\Delta m_{\chi}/\sigma_{CB}$, $\Delta m_{\chi}=m_{\chi}-\mu_{CB}$, N is a normalisation parameter, μ_{CB} is the peak of the Gaussian distribution, σ_{CB} represents the width of the Gaussian part of the function, α_{Low} (α_{High}) is the point where the Gaussian becomes a power law on the low (high) mass side, n_{Low} (n_{High}) is the exponent of this power law

Kirill Grevtsov

- We aim for model independent search, thus impact of choice of production mode (ggH, VBF, ZH, WH, ttH) was tested and estimated as negligible with injection test
- Dominant contribution from resolution variations included in Signal+Background fit as nuisance parameter (NP)

When all ingredients are ready:

- Look at the data we select 3.2 fb⁻¹ for 2015 dataset, with all ATLAS subdetectors operational
- Present the search (p₀ plot)
- Publish results of the search
 - Discovery p-value and excess(es) characterisation, if any
 - \circ cross-section imes BR limit, if no significant excess is observed

Background only fit

Invariant mass distribution of the selected diphoton events.

Background unbinned fit for 3.2 fb⁻¹ in 2015 dataset

Background only fit

p-value for the background-only hypothesis p_0 as a function of the mass m_x of a

probed NWA resonance

Compute Look-elsewhere effect: global p-value at the 2σ level ~1.5 σ pull of the resolution NP at 750 GeV

LWA signal parametrization

- Generate large-width signal shape using
 - the PowHeg Higgs lineshape with $\alpha = \Gamma_x/m_x$ up to 25%
 - Correction terms for parton luminosity
- Convolute with DSCB to account for detector resolution
- Parameterize as a function of m_{χ} with another DSCB, as for the narrow-width case for α =3, 6, 10, 15, 20, 25%
- Interpolate linearly in α

The largest deviation from the background-only hypothesis is observed for a mass around 750 GeV and α^{2} 6%, corresponding to a width Γ of about 45 GeV

Excess region

The events in region [700,800] GeV are scrutinized:

- No detector or reconstruction effect or any indication of anomalous background contamination observed
- The kinematic properties studied wrt side bands and no significant difference is observed.

~500 plots in cross-check supporting documentation

	Significance		
Signal Model	local	global	
NWA	3.6 σ	2.0 σ	
LWA 6%	3.9 σ	2.3 σ	

The compatibility between the results in 8 TeV and 13 TeV estimated for NWA and LWA6%. Results are compatible within 2.2 and 1.4 σ for the two width hypotheses respectively.

Limit

Expected and observed upper limits on $\sigma_{fiducial} \times BR(X \rightarrow \gamma \gamma)$ expressed at 95% CL, as a function of the assumed value of the narrow-width scalar resonance mass

CMS results

Diphoton search in range 0.5-4.5 TeV, using **2.6 fb⁻¹**, targeting for:

- spin 2 graviton-like resonances, wrt scalar in ATLAS analysis
- fixed E_{T} cuts, compared to relative selections in ATLAS analysis
- split to detector-based categories, compared to inclusive ATLAS search produce p_0 scan and limit in NWA and LWA approach

CMS results

17.12.2015

Diphoton search in range 0.5-4.5 TeV, using **2.6 fb⁻¹**, targeting for:

- spin 2 graviton-like resonances, wrt scalar in ATLAS analysis
- fixed E_T cuts, compared to relative selections in ATLAS analysis
- split to detector-based categories, compared to inclusive ATLAS search

produce p_0 scan and limit in NWA and LWA approach

22

Both experiments have excess in same region.

ATLAS has another ongoing diphoton search, graviton-oriented as CMS's one

For now:

	Significance, local(global)		
Signal Model	ATLAS (3.2fb ⁻¹) @750 GeV	CMS (2.6fb ⁻¹) @760 GeV	
NWA	3.6(2.0) σ	2.6(1.2) σ	
LWA 6%	3.9(2.3) σ	1.9(-) σ	

Wait for next year data, to make situation clear First beam circulation in LHC expected end of March 2016 First stable beams scheduled to end of May - beginning of June The « nominal expected integrated luminosity » in 2016 is 30 fb⁻¹

Seminar

KEEP CALM AND COLLECT MORE DATA

Kirill Grevtsov

After publication

Resonance in social networks, in press

FEATURED

Hopes for a New Particle at the LHC Offset By Call for More Data

BY VASUDEVAN MUKUNTH ON 16/12/2015 • LEAVE A COMMENT

After publication

And in scientific world. Appeared publications on arXiv more than 20 in 2 days

	December 2015: the Gold Rush					
0	ATLAS and CMS	seminar	15 Dec 2015 15-17			
1	K. Harigaya, Y. Nomura, 7 pages	1512.04850	v1: 15 Dec 2015 16:47:58 v2: 16 Dec 2015 08:19:11			
2	Y. Mambrini, G. Arcadi, A. Djouadi, 9 pages	1512.04913	15 Dec 2015 20:05:04			
3	M. Backovic, A. Mariotti, D. Redigolo, 17 pages	1512.04917	15 Dec 2015 20:26:16			
4	A. Angelescu, A. Djouadi, G. Moreau, 15 pages	1512.04921	15 Dec 2015 20:32:58			
5	Y. Nakai, R. Sato, K. Tobioka, 6 pages	1512.04924	15 Dec 2015 20:39:32			
6	S. Knapen, T. Melia, M. Papucci, K. Zurek, 20 pages	1512.04928	15 Dec 2015 20:44:08			
7	D. Buttazzo, A. Greljo, D. Marzocca, 16 pages	1512.04929	15 Dec 2015 20:49:36			
8	A. Pilaftsis, 6 pages	1512.04931	15 Dec 2015 20:50:27			
9	R. Franceschini, G. Giudice, J.F. Kamenik, M. McCullough, A. Pomarol, R Rattazzi, M. Redi, F. Riva, A. Strumia, R. Torre, 32 pages	1512.04933	15 Dec 2015 20:53:14			
10	S. Di Chiara, L. Marzola, M. Raidal, 5 pages	1512.04939	15 Dec 2015 20:59:17			
11	T. Higaki, K.S. Jeong, N. Kitajima, F. Takahashi, 8 pages	1512.05295	16 Dec 2015, 19:36:36			
12	S.D. McDermott, P. Meade, H. Ramani, 6 pages	1512.05295	16 Dec 2015, 20:48:16			
13	J. Ellis, S.A.R. Ellis, J. Quevillon, V. Sanz, T. You, 36 pages	1512.05327	16 Dec 2015, 20:49:44			
14	M. Low, A. Tesi, L.T. Wang, 23 pages	1512.05328	16 Dec 2015, 20:50:26			
>14	4 more		16 Dec 2015			

Thank you for your attention