An Overview of Recent Results from ALICE at the LHC

- Introduction
- ALICE Experiment
- Pb–Pb collisions
- Bulk properties
- Hard probes
 - Open HF and jet
- Small systems
 - pp and p–Pb

Xiaoming Zhang, CERN Seminar at IPHC, Feb 5, 2016, Strasbourg, France

- Few µs after the big bang
 - Extremely high energy density and temperature
 - Deconfined quarks and gluons Quark-Gluon Plasma (QGP)

Particle Data Group, LBNL © 2014

Supported by DOE

HISTORY OF THE UNIVERSE

Dark energy accelerated expansion

• Few µs after the big bang

- Extremely high energy density and temperature
- Deconfined quarks and gluons Quark-Gluon Plasma (QGP)

Particle Data Group, LBNL © 2014

Supported by DOE

QCD Phase Diagram

Heavy-ion Collisions

ALICE Experiment

ALICE Performance

- Efficient low-momentum tracking down to ~150 MeV/c
- Excellent particle identification (hadrons, leptons and photons) and jets
- Excellent vertex capability (HF, V⁰, cascades, conversions)

Mass Difference of (Anti-)nuclei

Test of CPT invariance of residual nuclear force by measuring mass difference in the nuclei sector (³He and deuterons)

- Improved by one to two orders of magnitude compared to earlier measurements
- First measurement of bindingenergy for (anti-)³He
- **Confirms CPT invariance for** $\Delta \mu_{\mathrm{d}\overline{\mathrm{d}}}$ $= [0.9 \pm 0.5(\text{stat.}) \pm 1.4(\text{syst.})] \times 10^{-4}$ light nuclei $\mu_{\rm d}$

Mass difference

$$\begin{split} \Delta \varepsilon_{\mathrm{A}\overline{\mathrm{A}}} &= Z \Delta m_{\mathrm{p}\overline{\mathrm{p}}} + (A - Z) \Delta m_{\mathrm{n}\overline{\mathrm{n}}} - \Delta m_{\mathrm{A}\overline{\mathrm{A}}} \\ \frac{\Delta \varepsilon_{\mathrm{d}\overline{\mathrm{d}}}}{\varepsilon_{\mathrm{d}}} &= -0.04 \pm 0.05(\mathrm{stat.}) \pm 0.12(\mathrm{syst.}) \\ \frac{\Delta \varepsilon_{^{3}\mathrm{He}^{^{3}\mathrm{He}}}}{\varepsilon_{^{3}\mathrm{He}}} &= 0.24 \pm 0.16(\mathrm{stat.}) \pm 0.18(\mathrm{syst.}) \end{split}$$

9

Direct Photons in Pb–Pb Collisions

- Low- p_T : 2.6 σ excess w. r. t. models in 0–20% central thermal contribution
- $T_{\text{eff}} = 304 \pm 11(\text{stat.}) \pm 40$ (syst.) MeV in central collisions
 - 30% higher than at RHIC (Au–Au at $\sqrt{s_{NN}}$ =200 GeV)

Azimuthal Anisotropy

- Quantify anisotropy: Fourier decomposition of particle azimuthal distribution relative to the reaction plane (Ψ_{RP}) coefficients v_2 , v_3 , v_4 ... v_n
- Elliptic flow (v₂): spatial anisotropy to momentum anisotropy large pressure gradients and more particles emitted in plane — hydrodynamics
- Higher order flow: bring additional constraints on the initial conditions, η/s, EoS, freeze-out conditions...

Azimuthal Anisotropy

- Quantify anisotropy: Fourier decomposition of particle azimuthal distribution relative to the reaction plane (Ψ_{RP}) coefficients v_2 , v_3 , v_4 ... v_n
- Elliptic flow (v₂): spatial anisotropy to momentum anisotropy large pressure gradients and more particles emitted in plane — hydrodynamics
- Higher order flow: bring additional constraints on the initial conditions, η/s, EoS, freeze-out conditions...
 ALICE, Phys. Rev. Lett. 107 (2011) 0323
- ALICE has measured chargedparticle anisotropic flow up to *v*₅
 - Constraints on $\eta/s = 0.2$
- It is necessary to look at more than v_n to extract η/s(T)

Flow Harmonics Correlations

- It is necessary to look at more than v_n to extract $\eta/s(T)$
- Standard flow measurements are not very sensitive to $\eta/s(T)$
 - At least for central and semi-central collisions

Flow Harmonics Correlations

- New observable: Symmetric Cumulants (SC)
 - Insensitive to non-flow effects due to multi-particle correlations
 - SC(3,2): sensitive to initial conditions
 - SC(4,2): sensitive to both initial conditions and η/s
 - Higher sensitivity to η /s and initial conditions than v_n alone

Identified Particle v_n : KE_T/ n_q Scaling¹⁵

- In very central collisions: $v_3 > v_4 > v_2$, geometry is not a dominated mechanism
- Scaling seems to hold better for higher order harmonics
- Additional constraint on medium expansion radial flow, baryon/meson difference...

Event Shape Engineering

16

- Event eccentricity quantified by $q_2: \langle (q_2)^2 \rangle \approx 1 + \langle M-1 \rangle \langle (v_2)^2 \rangle$
- Spectra are harder (softer) in events with larger (smaller) eccentricity
- Blast-wave study implies the correlations between elliptic flow and radial flow
- Increasing η/s decreases (increases) elliptic (radial) flow further constraint on η/s in hydrodynamics models

Hard Probes: Medium Tomography

- Hard probes (heavy-flavours, jets...)
 - Produced in the early stagy of heavy-ion collisions
 - Involve in the full evolution of the QCD medium and interact with particles in the medium and loss energy
 - Efficient probes for understanding the transport properties of the medium
- Nuclear modification factor, RAA, quantifies in-medium energy loss

$$R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{< T_{\rm AA} > {\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} Q{\rm CD} \text{ medium}$$

• $R_{AA} = 1$, if there is no medium modification

PbPb measurement

Heavy-Flavour in QCD Medium

- Nuclear modification factor, *R*_{AA}, quantifies in-medium energy loss
- $R_{\rm AA}(p_{\rm T}) = \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{< T_{\rm AA} > {\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} \begin{array}{c} {\rm QCD\ medium} \\ {\rm QCD\ medium} \end{array}$
 - $R_{AA} = 1$, if there is no medium modification

$$\Delta E_g > \Delta E_{q \approx c} > \Delta E_b \longrightarrow R_{AA}^h < R_{AA}^D < R_{AA}^B (?)$$

- Open heavy-flavours (HF)
 - R_{AA}: radiative energy loss vs. collisional energy loss
 - Mass and color charge dependence
 - Elliptic flow
 - Low- p_T : initial conditions and degree of thermalization of HF in QGP
 - High- p_T : path-length dependence of HF in-medium energy loss

R_{AA} of D mesons and Non-prompt J/ ψ^{19}

- $R_{AA}(D) < R_{AA}(J/\psi \leftarrow B)$: $\Delta E_c > \Delta E_b$ mass dependence of HF energy loss
- *R*_{AA}(D)≈*R*_{AA}(π): reproduced by more advanced models different parton *p*_T distributions and fragmentation functions
- Hint of $R_{AA}(D) < R_{AA}(D_{s}^{+})$ at low p_T : if true indicates charm hadronization through recombination in medium (due to strangeness enhancement)

Heavy-Flavour Decay Leptons

20

- Both *R*_{AA} and *v*₂ of heavy-flavour decay muons at forward rapidity (2.5<*y*<4) are compatible with heavy-flavour decay electrons at mid-rapidity (1*y*1<0.6 or <0.7)
- Large suppression of *R*_{AA} in central collisions final-state effect
- Observed positive v₂ (3σ effect) similar as for D mesons confirms the significant interaction of heavy quarks with the medium

21 Heavy-Flavour Decay Muons: Model Predictions

- The simultaneous description of R_{AA} and v_2 of heavy-flavour decay muons is challenging
 - Same picture for D-mesons and heavy-flavour decay electrons at midrapidity
 - R_{AA} and v_2 measurements together provide constraints for models

Jet Production in Heavy-Ion Collisions²²

- Jet: a spray of particles from hard parton fragmentation get closer access to parton energy
- Hard partons produced before the QCD medium forms
- Interact with the hot and dense medium

- Out-of-cone radiation: energy loss in jet cone $R_{AA} < 1$
 - ➡ Jet yield suppression, dijet or hadron-jet acoplanarity...
- In-cone radiation: medium modified fragmentation $R_{AA} = 1$
 - ➡ Jet shape broadening, modification of transverse energy profile...

Jet R_{AA} in Heavy-Ion Collisions

Jet: a spray of particles from hard parton fragmentation — get closer access Out-of-cone radiation to parton energy R_{AA}<1

- ATLAS: calorimetric jets
- ALICE: charged-particle jets more sensitive to the low-momentum fragments

ALI-PUB-64307

Agreement between ALICE and ATLAS

- Contribution of low momentum jet fragments to jet energy is small
- $R_{\rm CP}$ of jets and single hadrons are compatible
 - Indication that the momentum is redistributed to larger angles

- g shifted to lower values in Pb–Pb data relative to PYTHIA indication of more collimated jet cores in data
- $p_T D$ dispersion of jet constituents
 - *p*_T*D* shifted to large values relative to PYTHIA indication of few jet constituents and large dispersion

Sub-jet Structure: Proposed Observable

- Smaller radius/area reduces the background fluctuations and pile-up
- Opening the degree of freedom in jets details of fragmentation with decreased dependence on hadronic DOFs, provides sensitivity to details of the parton radiation/shower
- Different multiplicity of sub-jets in the two models sub-jet production is sensitive to quenching mechanisms

Sub-jet Structure: Proposed Observable

- X. Zhang et al, arXiv:1512.09255
 The local background for the two sub-jets is (to a large extend) similar
 - use the p_T difference between the two leading sub-jets
- In the leading order (FastJet median background subtraction):

$$\Delta p_T^{sj12} = p_T^{sj1} - \rho^{BG} \times A^{sj1} \pm \delta^{BG}(A^{sj1}) - (p_T^{sj2} - \rho^{BG} \times A^{sj2} \pm \delta^{BG}(A^{sj2}))$$

Background terms cancel out for locally uniform background

Tests on a realistic LHC heavy-ion background show a promising behavior

- A jet by jet selection on Δz_{sj} carries little experimental difficulties (both in pp and AA)
- Differences for Δz_{sj} selected jets with respect to inclusive R_{AA} :
 - For large Δz_{sj} : R_{AA} suppressed in Q-PYTHIA but enhanced in JEWEL
 - The opposite behavior for small Δz_{sj}
- Small R-jet dependence only for Q-PYTHIA

Note: These are shown as examples different selections on sub-jet p_T difference possible - e.g. moments of the distributions etc

Small Systems

- Small systems
 - pp collisions: QCD vacuum, baseline for heavy-ion and p-Pb collisions
 - p–Pb collisions: quantify Cold Nuclear Matter (CNM) effects nuclear modified PDF, k_T-broadening coherent energy loss of partons in nuclear medium...

*R*_{pPb} consistent with unity — strong suppression observed in central Pb—Pb collisions at mid-rapidity and forward rapidity is due to the hot medium

N/K⁰ **Ratio: Inclusive V⁰s**

- Increase of the ratio from low multiplicity (peripheral) to high multiplicity (central) collisions seen in pp, p–Pb, and Pb–Pb systems
- In Pb–Pb the enhancement at intermediate p_{T} can be explained by collective flow and/or quark recombination from QGP
- Same qualitative behavior seen in pp and p–Pb, but with smaller magnitude

N/K_S⁰ Ratio in Jets

- The enhanced ratio of Λ/K_{S^0} at inter-median p_T of inclusive V⁰s in p–Pb and Pb–Pb collisions relative to pp collisions is not present within the jet region
 - Baryon enhancement does not origin from modified jet fragmentation
 - Results independent on jet radii and disfavor the hard-soft recombination

³¹ Forward Muon Flow in p–Pb Collisions

- Double ridge extends up to $\Delta \eta \sim 5$
- Inclusive muon v₂ on Pb-side is larger (~16%) than on p-side, qualitatively consistent with expectations from hydrodynamics (AMPT)

Forward Muon Flow in p–Pb Collisions

-1.89 -88.1 q⁻¹) -88.1 (Lag-1)

ALI-PUB-9490

-2

-3

1 (rad)

- Inclusive muon v₂ on Pb-side is larger (~16%) than on p-side, qualitatively consistent with expectations from hydrodynamics (AMPT)
 - $p_T > 2 \text{ GeV}/c$, dominated by (>60%) Hr decay muons
 - Non-zero v₂ of HF muons as in Pb–Pb collisions (?)

- $J/\psi \rightarrow \mu^+\mu^-$ measured at forward/backward rapidities
- Pb-going direction: different trends for J/ ψ and $\psi(2S) \psi(2S)$ suppressed
- p-going direction: Indication of smaller Q_{pPb} for $\psi(2S)$ relative to J/ψ

- $J/\psi \rightarrow \mu^+\mu^-$ measured at forward/backward rapidities
- Pb-going direction: different trends for J/ψ and $\psi(2S) \psi(2S)$ suppressed
- p-going direction: Indication of smaller Q_{pPb} for $\psi(2S)$ relative to J/ψ
- Models with only CNM effects (shadowing, *E* loss) do not describe $\psi(2S)$

- $J/\psi \rightarrow \mu^+\mu^-$ measured at forward/backward rapidities
- Pb-going direction: different trends for J/ψ and $\psi(2S) \psi(2S)$ suppressed
- p-going direction: Indication of smaller Q_{pPb} for $\psi(2S)$ relative to J/ψ
- Models with only CNM effects (shadowing, *E* loss) do not describe $\psi(2S)$
- Break-up due to interactions with hadronic resonance gas ("comovers") is a possible explanation for $\psi(2S)$ suppression

- $J/\psi \rightarrow \mu^+\mu^-$ measured at forward/backward rapidities
- Pb-going direction: different trends for J/ψ and $\psi(2S) \psi(2S)$ suppressed
- p-going direction: Indication of smaller Q_{pPb} for $\psi(2S)$ relative to J/ψ
- Models with only CNM effects (shadowing, *E* loss) do not describe $\psi(2S)$
- Break-up due to interactions with hadronic resonance gas ("comovers") is a possible explanation for $\psi(2S)$ suppression
- Models with QGP and Hadron Resonance Gas in fair agreement with data

Conclusion

- Pb–Pb Collisions
- Confirm CTP invariance in light nuclei
- Excess of low- $p_T \gamma$: $T_{eff} \approx 304 \text{ MeV} 30\%$ higher than at RHIC
- $v_m v_n$ correlations, identified particle v_n and ESE new constraints for bulk property
- Open heavy flavours: mass dependence of parton in-medium energy loss, collective motion of heavy quarks at both mid- and forward rapidity
- Jet shapes: jets are more collimated and more p_T dispersion in Pb–Pb collisions
- New observable: sub-jet structure sensitive to quenching details and robust against heavy-ion background
- Small systems
- Strong suppression observed in central Pb–Pb collisions is due to the QCD medium
- Λ/K_{S^0} ratio in jets: disfavor the soft-hard recombination mechanism
- Non-zero *v*₂ of heavy-flavour decay muons as in Pb–Pb collisions (?)
- Initial-state effects not sufficient to describe $\psi(2S)$ production

In Progress...

come soon

v(2S) production

38

In Progress...

- Pb–Pb Collisions
- Confirm CTP invariance in light nuclei
- Excess of low- $p_T \gamma$: $T_{eff} \approx 304 \text{ MeV} 30\%$ higher than at RHIC
- $v_m v_n$ correlations, identified particle v_n and ESE new constraints for bulk property

Thanks for your attention!

- Strong suppression observed in central Pb–Pb collisions is due to the QCD medium
- Λ/K_{S^0} ratio in jets: disfavor the soft-hard recombination mechanism
- Non-zero *v*₂ of heavy-flavour decay muons as in Pb–Pb collisions (?)
- Initial-state effects not sufficient to describe $\psi(2S)$ production

Backup

QCD Phase Diagram

QCD Phase Transition

QCD Phase Transition

 Sharp increase of energy density around T_c = 170 MeV indicates a phase transition from hadronic matter to decomfined Quark Gluon Plasma (QGP)

Azimuthal Anisotropy

- Quantify anisotropy: Fourier decomposition of particle azimuthal distribution relative to reaction plane (Ψ_{RP}) coefficients v_2 , v_3 , v_4 ... v_n
- Elliptic flow (v₂): spatial anisotropy to momentum anisotropy large pressure gradients more particle emitted in plane — Hydrodynamic

 $\phi_{lab} - \Psi_{plane}$

• Higher order flow: with additional constraints on the initial conditions, η /s, EoS, freeze-out conditions... $v_n = < \cos(\varphi - \Psi_{\rm RP}) >$

- ALICE has measured charged particle anisotropic flow up to v5
 - Constraints on $\eta/s = 0.2$

Reaction

Elliptic Flow of (Anti-)Deuterons

- Blast-Wave model: based on hydrodynamics
- Predicts deuteron v₂ with parameters obtained by fitting measured π, K, p v₂ and p_T-spectra

45

- Simple coalescence model:
 compute the expected deuteron v₂
 by using measured v₂ of protons
- Reverse the *n*_q scaling:

 $V_{2,d} = 2V_{2,p}(2p_T)$

ALI-PREL-97051

- Low-p_T (p_T<2 GeV/c): deuteron flow follows mass ordering indicates a more pronounced radial flow in most central collisions
- Well described by Blast-Wave model, ~20% deviation from the simple coalescence estimation was observed

Excess of Low-*p*_T J/ψ

- Strong excess of very low p_T (0-0.3 GeV/*c*) J/ ψ in peripheral collisions
 - *R*_{AA} ~ 7 (2) in 70-90% (50-70%) centrality class
- Hypothesis: coherent photo-production of J/ψ in Pb–Pb collisions
- STARLIGHT calculation in ultra-peripheral collisions in good qualitative agreement