tīH(H→bb), ATLAS+CMS Results and Prospects

Royer Edson Ticse Torres

CPPM, Aix-Marseille Université - CNRS/IN2P3, Marseille, France

TOP-LHC-France May 20, 2016

Motivation

- Top quark has large Yukawa coupling to the Higgs $(\mathbf{Y}_t \sim \mathbf{1})$ in the SM
 - Indirect constrain on the top Yukawa coupling Y_t

- measurements of the Higgs boson productions via gluon fusion are consistent with SM within experimental uncertainties

Direct measurement of Y_t in ttH production

- A measurement of the rate of ttH production provides a direct test of this coupling

Precision measurements of the Higgs coupling to the top and bottom quark is a major goal for precision physics in the scalar sector.

ttH(H→bb)

- Higgs boson decay : BR(H→bb) = 0.58, dominant mode but large background.
- tt decay :
 - all jets (full hadronic) : large BR but large background
 - lepton+jets : exploit lepton for triggering/ background reduction.
 - di-lepton : small BR, relatively small background.
- Background processes to consider : tt+light, tt+cc, tt+bb, tt+V, single top, W+jets, Z+jets, Diboson, Multi-jet.
 - tt+HF dominant background, very important for this analysis.
- Need sophisticated MVA techniques to separate ttH signal

Event Classification :

ATLAS – Run 1 : ttH($H \rightarrow bb$) all hadronic

two control regions (6j,3b), (6j, \geq 4b) and four signal regions (7j, 3b), (7j, \geq 4b), (≥8j, 3b) and (≥8j, ≥4b)

Multi-jet largest background

- Using Data-driven method to estimate it.
- Defined in the exclusively 2 b-tagged jets region as the difference between data and the known simulated background.
- Then propagated to the higher b-tag multiplicity regions using TRF_{MJ}
- Signal separation : BDT method
- **Results**:
 - signal strength : $\mu = 1.6 \pm 2.6$
 - At 95% CL for $m_{H} = 125 \text{GeV}$:

observed $\sigma^*BR/(\sigma^*BR)_{SM} < 6.4$ expected $\sigma^*BR/(\sigma^*BR)_{SM} < 5.4$

CERN-EP-2016-058

 \geq

number of b-tags

number of jets

 \geq

ATLAS

20.3 fb⁻¹

s = 8 TeV

104

10-

Data / Pred

6

7

X

2

Regions used

to extract

QCD, here defined as

DATA "minus"

the Monte Carlo

based background

prediction

3

fit

region

fit

region

region

fit

fit

region

fit

region

fit

region

Run 1 : $ttH(H \rightarrow bb)$ overview

No significant excess of events above the background expectation.

ttH, H->bb, ATLAS+CMS

Run 1 : ttH(H→bb) overview

Analysis dominated by systematic uncertainties :

CMS

 Large pre-fit normalization uncertainties to the different tt+jets processes

Source	Rate uncertainty	Shape -	Process			
			tīH	tī+jets	Others	
Experimental uncertainties						
Integrated luminosity	2.6%	No	\checkmark	\checkmark	\checkmark	
Trigger and lepton identification	2-4%	No	\checkmark	\checkmark	\checkmark	
JES	4-13%	Yes	\checkmark	\checkmark	\checkmark	
JER	0.5-2%	Yes	\checkmark	\checkmark	\checkmark	
b tagging	2–17%	Yes	\checkmark	\checkmark	\checkmark	
Theo	pretical uncertaintie	s				
Top $p_{\rm T}$ modelling	3–8%	Yes		\checkmark		
$\mu_{\rm R}/\mu_{\rm F}$ variations	2–25%	Yes		\checkmark		
$tt+b\overline{b}$ normalisation	50%	No		\checkmark		
tt+b normalisation	50%	No		\checkmark		
$t\bar{t}\pm c\bar{c}$ normalisation	50%	No		\checkmark		
Signal cross section	7%	No	\checkmark			
Background cross sections	2-20%	No		\checkmark	\checkmark	
PDF	3–9%	No	\checkmark	\checkmark	\checkmark	
Statistical uncertainty (bin-by-bin)	4-30%	Yes	\checkmark	\checkmark	\checkmark	

normalisation of tt+bb/tt+cc events, tt+bb modelling, detector effects (jet energy scale,flavour tagging)

CMS – Run 2 : Event classification

- Public 2015 results : CMS-HIG-16-004
- Same general strategy as Run1
- Events are divided into categories based on the number of jets and number of b-tagged jets.
 - I+jets channel :
 =1 lepton, ≥4 jets and ≥2 b-tags
 - dilepton channel :
 =2 opposite-sign (OS) leptons,
 ≥3 jets and ≥2 b-tags
- Boosted category for the first time in l+jets
 - ♦ Require ≥4 jets and ≥2 b-tags
 - Identify hadronic top and Higgs using substructure information
 - 13 orthogonal categories

CMS – Run 2 : Signal separation

- Separate BDT is trained for each category
 - 8 BDTs in the lepton+jets and 5 in the dilepton channel
 - ttH vs tt+jets using object kinematics, event shape, the CSV b-tag discriminant
- In I+jets, inclusion of Matrix Element Method (MEM) in some regions.
- BDT better against tt+jets, MEM against tt+bb

CMS – Run 2 : Signal separation

- (I+jets) regions with 3 b-tags, MEM added to BDT as input variable
- (I+jets) regions with 4 or more btags, split high and low BDT and fit MEM discriminant

(I+jets) Boosted category

- Large-radius jets with the Cambridge-Aachen (C/A) algorithm with a conesize parameter of 1.5
- Top-tagged and Higgs candidate with p_T > 200 GeV

CMS – Run 2 : Results

- Combined fit of all categories
- Fitted signal strength and limits
- Run 2, with 2.7 fb⁻¹, signal strength :

 $\hat{\mu}_{\rm obs} = -2.0^{+1.8}_{-1.8}$

Run 2, at 95% CL for m_H =125GeV :

observed $\sigma^{*}BR/(\sigma^{*}BR)_{SM} < 2.6$ expected $\sigma^{*}BR/(\sigma^{*}BR)_{SM} < 3.6$

- ♦ Run 1, at 95% CL for m_H = 125GeV :
 - CMS : observed $\sigma^{BR}/(\sigma^{BR})_{SM} < 4.2$ expected $\sigma^{BR}/(\sigma^{BR})_{SM} < 3.3$
 - ATLAS : observed $\sigma^*BR/(\sigma^*BR)_{SM} < 3.1$
 - expected $\sigma^*BR/(\sigma^*BR)_{SM} < 2.4$

ATLAS – Run 2 : Strategy

- Similar strategy as Run 1: categorizing events according to the number of jets and b-tagged jets :
 - I+jets :1 lepton (electron or muon) [≥4 jets, ≥2 b-tags]
 - dilepton : opposite sign lepton pair (ee, eµ, µµ) [≥2 jets, ≥2 b-tags]
- signal depleted and signal enriched regions

- Lower S/B at 13TeV than at 8 TeV at high jet multiplicity.
 Considering new categorization
- Split ≥6jets, ≥4 b-tags region to =6 jets, ≥4 btags and ≥7 jets, ≥4 btags increases purity

ATLAS – Run 2 : MVA techniques

- In Signal-rich regions :
 - Train MVA for jet assignment (Reco ttH MVA) :
 - Jet \rightarrow parton assignment
 - Reconstruct all combinations
 - Take combination with largest MVA output.

Final MVA for S/B discrimination

Variables from reco MVA :

- Higgs mass candidate, dR(b,b) from Higgs candidate, etc

- Global variables :
 - kinematic, event shape

ATLAS – Run 2 : MVA techniques

- Reco ttH MVA :
 - Up to 42% Higgs matching efficiency

 Matrix Element Method (MEM) used in Run 1 as input variable in the MVA for S/B discrimination

Final MVA for S/B discrimination

 Variables from the MVA reconstruction improve the signal-background separation.

 The improved signal-background separation achieved with help of the MVA reconstruction is the same as obtained in Run 1 with MEM

ATLAS – Run 2 prospects

- Many optimization studies ongoing in order to have a better analysis sensitivity.
- Further categorization to increase signal sensitivity.
- Exploiting MVA techniques
- Considering boosted scenario in I+jet
- 3.2 fb⁻¹ of 13 TeV data collected in 2015.
 - Understanding of background ongoing
- Better detector :
 - Additional pixel layer strongly enhance b-tagging performance

	b-eff [%]	light rej
ATLAS Run1 Run2	70 70	140 440
CMS Run 1	70	50

tt modelling

- tt+jets background is a key aspect of this analysis.
- ATLAS Run1 :
 - Powheg+Pythia6 as nominal tt sample
 - Reweighting to 7 TeV σ(tt) differential measurement:
 - tt pT \rightarrow improves nJet & nBtags
 - top pT → improves kinematic distributions:

applied to tt+light & tt+cc

- For tt+bb → reweighting to Sherpa+OpenLoop dedicated NLO
- "The tt+bb background normalization is pulled up by about 40% in the fit, resulting in an increase in the observed tt+bb yield with respect to the Powheg+Pythia prediction." Eur. Phys. J. C (2015) 75:349

Eur. Phys. J. C (2015) 75:349

tt modelling

- CMS Run2 : Powheg+Pythia8 for tt simulation
- tt+HF modelling, good agreement in HF-enriched regions

- tt + jets modeling, ATLAS and CMS have opposite trends in data/MC at high jet multiplicity (different generator)
- Testing different settings (tunes)

ATLAS-CONF-2015-065

CMS TOP-16-011

Differential cross-section of topquark pair production as a function of multiplicity of additional jets

Summary

- Run 1, at 95% CL for m_H=125 GeV :
 - CMS : observed σ*BR/(σ*BR)_{SM} < 4.2 expected σ*BR/(σ*BR)_{SM} < 3.3
 - ATLAS : observed σ*BR/(σ*BR)_{SM} < 3.1
 expected σ*BR/(σ*BR)_{SM} < 2.4
- First 13 TeV measurements with 2.7 fb⁻¹ performed by CMS :
 - similar sensitivity to Run 1 analysis, in agreement with SM
 - at 95% CL for $m_H = 125 \text{ GeV}$: observed $\sigma^*BR/(\sigma^*BR)_{SM} < 2.6$
 - expected $\sigma^*BR/(\sigma^*BR)_{SM} < 3.6$
- Prospects for ATLAS Run 2 :
 - improving analysis techniques, working on tt modeling
 - better b-tagging (additional pixel layer),
- Top-Higgs coupling should be accessible via associated ttH production in Run2
 - stay tuned

Backup

ATLAS – Run 2 : backgrounds

Reducible backgrounds :

- tt+light / tt+cc : contaminate signal regions due to mis-tagging.
- Non-tt : single top, W+jets, Z+jes and di-bosons taken from MC, QCD Multijet fully data-driven.

Irreducible background : tt+bb

- Distribution across analysis regions depend on bb kinematic
- Split in different categories depending on the number of b-jets with one B hadron or more than one B hadron not from top.

Classification proposition :

tt+b: 1 b-jet with 1 b-hadron

- tt+bb: 2 b-jets with each 1 b-hadron
- tt+B: 1 b-jet with 2 b-hadrons

ATLAS – Run 1 : ttH(H→bb) all hadronic

