Estimation des bruits de fond avec fake lepton dans ttH multilepton

A.Chomont

LPC Clermont-Ferrand TopLHC France

May 20th 2016

Multileptons signatures

- Decays of Higgs to WW, ZZ and $\tau\tau$ targeted
- Large number of different channels can be considered
 - Light leptons channels: 2ISS, 3I, 4I
 - ► Light+tau channels: 2τ +1l, 2ISS+ τ , 2IOS+ τ , $(I+\tau)SS$, 2τ +jets
- Other characteristics of those channels: 1 b-tagged jets, at least 4 jets
 - Main backgrounds: tt
 V, events with fakes leptons, with misidentification of lepton charge (2 leptons SS channels)

Source	Δμ	
$2\ell 0\tau_{had}$ non-prompt muon transfer factor	+0.38	-0.35
tTW acceptance	+0.26	-0.21
$t\bar{t}H$ inclusive cross section	+0.28	-0.15
Jet energy scale	+0.24	-0.18
$2\ell 0\tau_{had}$ non-prompt electron transfer factor	+0.26	-0.16
tTH acceptance	+0.22	-0.15
$t\bar{t}Z$ inclusive cross section	+0.19	-0.17
$t\bar{t}W$ inclusive cross section	+0.18	-0.15
Muon isolation efficiency	+0.19	-0.14
Luminosity	+0.18	-0.14

Fake leptons

- Leptons fakes are objects reconstructed as prompt leptons, leptons coming from a W boson, a Z boson or a τ (decay results of top or Higgs)
 - Jets
 - ► Non prompts leptons due to decays of b-hadrons for example → majority of the cases (checked at truth level simulation)
 - Trident process with an electron radiating a photon converting to a pair of electrons
- Focus on fake light leptons (regions 2I/3I/4I)

• Process originating fakes for $t\bar{t}H$ multileptons analysis: $t\bar{t}$ (by far the main one), single top, dibosons . . .

Methods to extract Fakes yields

- Estimation of this background done using Data-Driven technics
- Three methods to extract the fakes yields in the *tTH* multileptons analysis are used
 - Fake factor method \rightarrow used for Run 1 and Run 2 (Clermont-Fd)
 - Matrix method \rightarrow used for Run 2 (Marseille)
 - MC reweighting using DD factors \rightarrow used for Run 2 (Marseille)

Fake factor method

Anti-Tight lepton

- Obtained by inverting some selection on the tight electrons: for example electron not isolated or reversal of p_T cut used for tight muons ...
- Definition of Anti-Tight lepton will depend on the choice made for signal region object definition
- Fake factor θ is defined as (for electrons):

$$\theta_{e} = \frac{TT}{Tf}(low_jets) = \frac{TT(N_{ee}^{data} - N_{ee}^{PromptSS} - N_{ee}^{QMisld})}{Tf(N_{ef}^{data} - N_{ef}^{allPrompt})}$$

- PromptSS: $t\bar{t}V$, VV
- QMisld: prompt opposite-sign events with a charge mis-identification (data-driven in TT region)

Arthur Chomont, 20/05/16

Fake factor method

- Number of fakes in signal region obtained from $\theta_{e},\,\theta_{\mu}$ for 2I and 3I channels
 - for $e^{\pm}e^{\pm}$ region:

 $N_{ee}(high_njets) = N_{e \notin}(high_njets) imes heta_e$

• for $\mu^{\pm}\mu^{\pm}$ region:

 $N_{\mu\mu}(high_njets) = N_{\mu\mu}(high_njets) imes heta_{\mu}$

- ► for $e^{\pm}\mu^{\pm}$ region: $N_{e\mu}(high_njets) = N_{e\mu}(high_njets) \times \theta_{\mu} + N_{\mu \not e}(h_njets) \times \theta_{e}$
- ▶ for 3I region:

$$N_{estimated \ fakes,SR} = N_{IIf} imes heta_e + N_{IIf} imes heta_\mu$$

Uncertainties on the fakes yields

- Expected statistical precision on θ and on the data size of $T\mathcal{T}(\geq 5 \text{ jets})$ region: from 25 to 55%
- Validity of the extrapolation from low jets multiplicity region to high jets multiplicity region
 - Closure test performed on simulated $t\bar{t}$ events
 - \blacktriangleright Comparison of real ss fakes in signal region to number predicted by $N_{ij} \times \theta$
- Uncertainty on substracted backgrounds (QMisld, PromptSS): $\sim 25\%$
- Composition of low jets multilplicity region: 7 to 20%

 - Estimated by changing definition of low multiplicity region (Cut on MET, HT ...)

Arthur Chomont, 20/05/16

Definition of the Matrix Method (MM)

- Extension of transfer factor method, allowing extraction of shapes by weighting events
 - As for fake factor method, DD method
- Weights applied function of Real lepton efficiency (r) and Fake lepton efficiency (f) to pass the tight requirement, with r≫ f

$$r = rac{N_R^T}{N_R^l}$$
 $f = rac{N_F^T}{N_F^l}$

- N_R^T(N_F^T) is the number of Real (Fake) leptons passing the tight selection obtained in samples enriched in real leptons
- $N_R^L(N_F^L)$ is the number of Real (Fake) leptons not passing the tight selection obtained in samples enriched in fake leptons

•
$$N_R^I = N_R^T + N_R^F$$

• To estimate r and f, regions enriched in prompt (fake) leptons used

Matrix Method for 2I channel

- Number of events with real and fake leptons to the events related with tight and loose leptons using a 4x4 matrix
- N_{TT}, N_{TL}, N_{LT}, N_{LL} numbers of events with 0,1 (leading or not),2 loose leptons
- N^{RR}_{II}, N^{RF}_{II}, N^{FR}_{II}, N^{FF}_{II} numbers of events with 2 (signal events),1 or 0 real leptons
- Those numbers are related using:

$$\begin{pmatrix} N_{TT} \\ N_{TL} \\ N_{LT} \\ N_{LL} \end{pmatrix} = \begin{pmatrix} r_1 r_2 & r_1 f_2 & f_1 r_2 & f_1 f_2 \\ r_1 (1 - r_2) & r_1 (1 - f_2) & f_1 (1 - r_2) & f_1 (1 - f_2) \\ (1 - r_1) r_2 & (1 - r_1) f_2 & (1 - f_1) r_2 & (1 - f_1) f_2 \\ (1 - r_1) (1 - r_2) & (1 - r_1) (1 - f_2) & (1 - f_1) (1 - r_2) & (1 - f_1) (1 - f_2) \end{pmatrix} \begin{pmatrix} N_{II}^{RF} \\ N_{II}^{RF} \\ N_{II}^{FF} \\ N_{IF}^{FF} \end{pmatrix}$$

- From inverting the matrix, number of fake in the TT region (signal region) can be obtained
- Fakes in 3I region can be estimated in the same way with a 9x9 matrix

Matrix Method particularities

- Advantages of Matrix Method
 - Extraction of fakes efficiencies in 2D
 - Leptons p_T , η ...
 - Shape for Fakes events in SR to be achieved
- Limitations of MM
 - \blacktriangleright Suppose that $r \gg f \rightarrow$ can be difficult in case of low statistics but corrected by:
 - Loose leptons to be far looser than tight leptons to cope with statistics
 - Reduce binning in lepton p_T , $\eta \rightarrow$ now reduce method flexibility
 - Likelihood MM \rightarrow real efficiency and fake rates constraint from fit in fake enriched region

Charge Misld estimation (Clermont)

- Mis-identification of the charge of a lepton (QMisId) is an important background originating from two processes
 - High p_T electron with straight track
 - Trident process with an electron radiating a photon converting to a pair of electrons

Negligible effect on muon

QMisid: method for rates estimation

- ${\ }$ Rate of QMisid computed from $Z \to e^+e^-$ mass peak region and used to reweight OS data
- ϵ_i rate of charge Misid for a single electron in region i (regions defined in η , p_T , E...) and we obtain for N_{tot} true opposite-sign events: $N_{ss} = N_{tot}[(1 - \epsilon_i)\epsilon_i + (1 - \epsilon_i)\epsilon_i] \simeq N_{tot}(\epsilon_i + \epsilon_i)$
- The rates, \(\elef{e}_i\) and \(\elef{e}_j\), are obtained by likelihood minimization and are highly dependent on the choice of the binning

 Closure test: good agreement between rates from LH method and truth matching

QMisid: Rates estimation for 2015 data

- Rates obtained using Likelihood method from 3.2fb⁻¹ of data
- Rates for last bin in p_T obtained by extrapolation of rates in the next to last bin in p_T (bin [90,130]GeV)

- Oncertainties included:
 - Statistical uncertainty from the likelihood method (main uncertainty)
 - Statistical uncertainty on the p_T dependent correction factor (last p_T bin, p_T >130GeV)
 - Difference between rates from truth matching and likelihood method on Z samples

Arthur Chomont, 20/05/16 Stability of rates due to definition of Z-peak region definition

Conclusion

- Considered channels for $t\bar{t}H$ studies relie on leptons presence \rightarrow Misidentification of these leptons is an important uncertainties source
- Processes leading to events with fakes or QMisld leptons events among the main backgrounds in the $t\bar{t}H$ multileptons analysis
- Two methods presented to estimated the presence of the fake leptons background in the signal regions
- Fake Factor method simplification of the matrix method
 - ▶ Rates for MM can be estimated vs p_T (or η ...) of the leptons → better for analysis based on shapes
 - Thetas factors estimated using Fake Factor method inclusive in p_T
- QMisId events also estimated using a likelihood method