

Search for the associated production of the Higgs boson with a top quark pair in multilepton final states with the ATLAS detector

Kun LIU (CPPM, CNRS/IN2P3, Aix-Marseille Université)

on behalf of the ATLAS collaboration

TOP-LHC-France @Clermont-Ferrand 20/05/2016

Introduction

Reminder: I am going to show ATLAS run 1 analysis.

ATLAS run 2 ttH analysis has not been published yet.

Outline of this presentation

- analysis motivation
- object and event selection
- o background compositions
- o ttV background validation
- o fake background estimation
- o pre-fit event yields
- o results
- for run 2 analysis ...
- Summary

Discovery of the SM Higgs boson

- An Higgs-like particle was observed by ATLAS and CMS experiment in 2012 → Peter W. Higgs and François Englert are awarded with Nobel Prize in 2013 !
- In July 2012

observation of an Higgs-like particle

(in combine $H \rightarrow \gamma \gamma$, $H \rightarrow WW$ and $H \rightarrow ZZ$ channels)

• In March 2013

confirmed by spin/CP & coupling constraints observation of $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, evidence of VBF

• In Nov. 2013

evidence for $H \rightarrow \tau \tau$ decay

In Dec. 2014

observation of $H \rightarrow WW$ decay

• Up to now (ATLAS+CMS run 1 combination)

observation of $H \rightarrow \tau \tau$ and VBF production

K. Liu (CPPM)

Θ

New discovered Higgs boson measured properties

ATLAS+CMS combined measurement of Higgs boson mass: 125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV $\kappa_i^2 = \sigma_i / \sigma_i^{\rm SM}$ Best-fit values of coupling modifier ATLAS and CMS Preliminary - ATLAS couplings to vector bosons ~ 10% uncer. LHC Run 1 - CMS ← ATLAS+CMS couplings to fermions > 15% uncer. —±1σ κ₇ Any deviation might be hint for new κ_W physics, by searching as much as rare decays $0.89^{+0.15}_{-0.12}$ κ_t o precise measurement on properties of the new discovered particle 0.90 κ_{τ} κ_b κ_{μ} 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1 Parameter value

K. Liu (CPPM)

Θ

New discovered Higgs boson measured properties

ATLAS+CMS combined measurement of Higgs boson mass:

 125.09 ± 0.21 (stat.) ± 0.11 (syst.) GeV $\kappa_i^2 = \sigma_i / \sigma_i^{\rm SM}$ Best-fit values of coupling modifier ATLAS and CMS Preliminary - ATLAS couplings to vector bosons ~ 10% uncer. LHC Run 1 - CMS ← ATLAS+CMS couplings to fermions > 15% uncer. —±1σ κ₇ Any deviation might be hint for new κ_W physics, by searching as much as rare decays 0.89^{+} κ_t precise measurement on properties of the new discovered particle 0.90^{+0} κ_{τ} • Top Yukawa coupling Y_t (close to κ_b unity) is one of all biggest forces we should care about ! κ_{μ} 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1 Parameter value

- Yt direct measurement from ttH production mode
 - → any deviation might be hint for new physics

- Yt direct measurement from ttH production mode 0
 - → any deviation might be hint for new physics
- ttH cross section @8TeV: 129fb (1/200 of total Higgs production cross section)
- Searches for the ttH production include many decay modes (branch ratio ~88%) s BR + Total Uncert 0. 1.
 - *H* → *bb* 57.5±1.9%
 - *H* → *WW* 21.6±0.9%
 - $H \rightarrow \tau\tau$ 6.30±0.36%
 - *H* → *ZZ* 2.67±0.11%
 - $H \rightarrow \gamma\gamma$ 0.23±0.01%

Zγ

140

160

180

m_н [GeV]

200

g oooo

t

sbind Bild

10⁻³

10⁻⁴∟

μμ

100

120

- Yt direct measurement from ttH production mode
 - → any deviation might be hint for new physics
- ttH cross section @8TeV: 129fb (1/200 of total Higgs production cross section)

Searches for the ttH production include many decay modes (branch ratio ~88%)

⊖ H →	bb	57.5±1.9%	ttH(bb)
<i>● H →</i>	WW	21.6±0.9%	
● H →	ττ	6.30±0.36%	
● H →	ZZ	2.67±0.11%	
<i>■ H →</i>	γγ	0.23±0.01%	

 ATLAS searches for ttH production in multi-leptons with full 8 TeV data set will be shown in next..

ttH(multi-leptons) signal topologic

- Multi-leptons analysis targets on Higgs decays into WW/ZZ/TT
- Five categories are considered

	Leptons			Jets	B-Tags	Hadronic Taus	
Common		$p_T > 1$	$N_i \ge 2$	$N_h \ge 1$	$p_T^{\tau} > 25 \text{ GeV}$		
		\geq 1 trigger m	atched lepton	, –		PT	
		$\Sigma Q_{lep} = \pm 2$					
		$\eta_{electron}$					
		$p_T^{lead} > 25 \text{ GeV}$					
		$p_T^{sub} > 20 \text{ GeV}$					
		2lee4j	2 e [±]		$N_b \ge 1$	$N_{\tau} = 0$	
21	$N_l = 2$	2lem4j	$1 e^{\pm}, 1 \mu^{\pm}$	$N_j = 4$			
		2lmm4j	2 µ±				
		2lee5j	2 e [±]				
		2lem5j	$1 e^{\pm}, 1 \mu^{\pm}$	$N_i \geq 5$			
		2lmm5j	$2 \mu^{\pm}$,			
		prame sign lept	ons > 20 GeV	$N_i \ge 4 \& N_h \ge 1$			
31	$N_{i} = 3$	$\Sigma O_{lon} = \pm 1$		or		_	
		$M_{\mu}^{OS SF} - M$	$ I_Z > 10 \text{ GeV}$	$N_i = 3 \delta$	$N_b \geq 2$		
	$\Sigma Q_{lep} = \pm 2$					37 1	
		$p_T^{lead} > 25 \text{ GeV}$ $p_T^{sub} > 15 \text{ GeV}$			$N_b \ge 1$	$N_{\tau} = 1$	
2ltau	<i>N</i> _{<i>l</i>} = 2			$N_j \ge 4$			
		$ M_{ll} - M_Z $	$\mathbf{Q}_{\tau} = -\mathbf{Q}_{lep}$				
						$N_{\tau} = 2$	
1l2tau	$N_l = 1$	$p_T^{lepton} >$	25 GeV	$N_j \ge 3$	$N_b \ge 1$	$\Sigma Q_{\tau} = 0$	
		-				$60 < M_{\tau\tau}^{vis}$ (GeV) < 120	
		$\Sigma Q_{lep} = 0$					
	<i>N</i> _l = 4	$p_T^{lead} >$					
		$p_T^{sub} >$	15 GeV				
41		$M_{II}^{OS SF} \ge 10 \text{ GeV}$		$N_j \ge 2$	$N_b \ge 1$		
41		$100 \text{ GeV} < M_{4l} < 500 \text{ GeV}$				-	
		$ M_{\mu}^{OS \ SF} - M_{Z} > 10 \text{ GeV}$					
			0 OS SF	1			
		Z-depleted	lepton pairs				
			≥1 OS SF	1			
		Z-enriched	lepton pairs				

Background compositions

Irreducible backgrounds 0

- have prompt lepton final states as signal
 - 31: ttZ, ttW, VV
 - 21SS+tau: ttZ, ttW, VV
 - 21SS: ttW, ttZ, VV
 - 41: ttZ, VV, ttW
 - 11+2tau: VV, ttZ, ttW
- rely on MC estimates and theoretical uncertainties

Reducible backgrounds

- have at least one lepton to be fake or electron charge flip
 - electron charge flip only in 21SS channel
 - fakes: ttbar, single-top, tW
- based on data-driven estimates
- Other rare backgrounds: ttWW, tH, tZ, 4-tops

In relay on MC estimates and theoretical uncertainties K. Liu (CPPM) 14

Validation of irreducible backgrounds

ttV validation regions -> close to signal regions

- o ttZ: 31 selection but events within Z mass window
- ttW: 21SS selection but [2,3] jets and >= 2 b-jets \rightarrow ~30% purity

• Data and MC are in good agreement within uncertainties !

Validation of irreducible backgrounds

- VV backgrounds (WZ,ZZ, triboson production), total uncertainty ~ 50%
 - WZ+0jets is well modelled up to 4 jets -> validation region
 - WZ+b-jets -> 100% uncertainty being signed
 - WW+b-jets and ZZ+b-jets -> 100% uncertainty
 - o negligible impact on final results

Reducible background measurements

0

Reducible background measurements

Fake lepton background in 21SS+tau

 estimated using sideband method based on jet multiplicity and lepton isolation

Hadronic tau mis-identification

- o biggest background for 11+2tau
- estimated from fast simulation MC and being cross checked with datadriven method
- 36% uncertainty from data vs MC comparison

• This is cut-and-counting analysis

Category	q mis-id	Non-prompt	$t\bar{t}W$	$t\bar{t}Z$	Diboson	Expected bkg.	$t\bar{t}H\ (\mu=1)$	Observed
$ee + \ge 5j$	1.1 ± 0.5	2.3 ± 1.2	1.4 ± 0.4	0.98 ± 0.26	0.47 ± 0.29	6.5 ± 1.8	0.73 ± 0.14	10
$e\mu$ + $\geq 5j$	0.85 ± 0.35	6.7 ± 2.4	4.8 ± 1.2	2.1 ± 0.5	0.38 ± 0.30	15 ± 3	2.13 ± 0.41	22
$\mu\mu$ + $\geq 5j$	_	2.9 ± 1.4	3.8 ± 0.9	0.95 ± 0.25	0.69 ± 0.39	8.6 ± 2.2	1.41 ± 0.28	11
ee + 4j	1.8 ± 0.7	3.4 ± 1.7	2.0 ± 0.4	0.75 ± 0.20	0.74 ± 0.42	9.1 ± 2.1	0.44 ± 0.06	9
$e\mu$ + $4j$	1.4 ± 0.6	12 ± 4	6.2 ± 1.0	1.5 ± 0.3	1.9 ± 1.0	24 ± 5	1.16 ± 0.14	26
$\mu\mu$ + 4j	_	6.3 ± 2.6	4.7 ± 0.9	0.80 ± 0.22	0.53 ± 0.30	12.7 ± 2.9	0.74 ± 0.10	20
3ℓ	_	3.2 ± 0.7	2.3 ± 0.7	3.9 ± 0.8	0.86 ± 0.55	11.4 ± 2.3	2.34 ± 0.35	18
$2\ell 1 au_{ m had}$	-	$0.4 \stackrel{+0.6}{_{-0.4}}$	0.38 ± 0.12	0.37 ± 0.08	0.12 ± 0.11	1.4 ± 0.6	0.47 ± 0.08	1
$1\ell 2 au_{ m had}$	-	15 ± 5	0.17 ± 0.06	0.37 ± 0.09	0.41 ± 0.42	16 ± 5	0.68 ± 0.13	10
4ℓ Z-enr.	-	$\lesssim 10^{-3}$	$\lesssim 3 \times 10^{-3}$	0.43 ± 0.12	0.05 ± 0.02	0.55 ± 0.15	0.17 ± 0.02	1
$4\ell Z$ -dep.	-	$\lesssim 10^{-4}$	$\lesssim 10^{-3}$	0.002 ± 0.002	$\lesssim 2 \times 10^{-5}$	0.007 ± 0.005	0.025 ± 0.003	0

- Reducible backgrounds are from data-driven estimates
- Irreducible backgrounds are estimated from simulation, and validated in each dedicated validation region.

Results

• At 95% C.L., observed (expected) limit on ttH signal strength is 4.7(2.4) $@m_{\rm H} = 125$ GeV, corresponding to significance 1.8 σ .

Results

Measured ttH signal strength is

dominated by statistical uncertainty!
main systematical error from
fake background estimates:

Source	$\Delta \mu$		
$2\ell 0 au_{had}$ non-prompt muon transfer factor	+0.38	-0.35	
$t\bar{t}W$ acceptance	+0.26	-0.21	
$t\bar{t}H$ inclusive cross section	+0.28	-0.15	
Jet energy scale	+0.24	-0.18	
$2\ell 0 \tau_{\rm had}$ non-prompt electron transfer factor	+0.26	-0.16	
$t\bar{t}H$ acceptance	+0.22	-0.15	
$t\bar{t}Z$ inclusive cross section	+0.19	-0.17	
$t\bar{t}W$ inclusive cross section	+0.18	-0.15	
Muon isolation efficiency	+0.19	-0.14	
Luminosity	+0.18	-0.14	

The result is sensitive to ttV production cross section

$$\mu(t\bar{t}H) = 2.1 - 1.4 \left(\frac{\sigma(t\bar{t}W)}{232 \text{ fb}} - 1\right) - 1.3 \left(\frac{\sigma(t\bar{t}Z)}{206 \text{ fb}} - 1\right)$$

Run 2 analysis - promising improvements

Increase of center-of-mass energy improves significance.

Cross section ratios 13 TeV / 8 TeV

- reduce fake estimate uncertainty
- data can be used to constrain irreducible backgrounds

Further event categorisation

- 0 21SS: sum of lepton charge to be ++ and --
- 21SS: in 1b-jet and 2b-jets -> do further optimisation
- Multi-variate techniques
 - improve signal reconstruction and separation from background
 - move to shape analysis

Summary

- Search for ttH production in multilepton final states has been performed in ATLAS with 8 TeV data set.
- At 95% C.L., observed (expected) limit on signal strength is 4.7(2.4) @m_H = 125 GeV.
- Measured ttH signal strength is 2.1 (+1.4) (-1.2). Its uncertainty is dominated by statistical one.
- Run 2 analysis of this channel looks promising !

Backup

MC event generator configurations

Process	ME Generator	Parton Shower	PDF	Tune
tīH	HELAC-Oneloop [41, 42]	Рутніа 8 [43]	CT10 [44]/CTEQ6L1 [45, 46]	AU2 [47]
	+ Powheg-BOX [48–50]			
tHqb	MadGraph [33]	Рутніа 8	CT10	AU2
tHW	MG5_AMC@NLO [29]	Herwig++ $[51]$	CT10/MRST LO** [52]	UE-EE-4 [53]
$t\bar{t}W + \leq 2$ partons	MadGraph	Рутніа 6 [54]	CTEQ6L1	AUET2B [55]
$t\bar{t}(Z/\gamma^*) + \leq 1$ parton	MadGraph	Рутніа б	CTEQ6L1	AUET2B
$t(Z/\gamma^*)$	MadGraph	Рутніа б	CTEQ6L1	AUET2B
$q\bar{q}, qg \rightarrow WW, WZ$	Sherpa [56]	Sherpa	CT10	SHERPA default
$qq \rightarrow qqWW, qqWZ, qqZZ$	Sherpa	Sherpa	CT10	SHERPA default
$q\bar{q}, qg \rightarrow ZZ$	POWHEG-BOX [57]	Рутніа 8	CT10	AU2
$gg \rightarrow ZZ$	GG2ZZ [58]	Herwig [59]	CT10	AUET2 [60]
tī	POWHEG-BOX [61]	Рутніа б	CT10/CTEQ6L1	Perugia2011C [62]
s-, t-channel, Wt single top	Powheg-BOX [63, 64]	Рутніа б	CT10/CTEQ6L1	Perugia2011C
$Z \rightarrow \ell^+ \ell^- + \leq 5$ partons	Alpgen [65]	Рутніа б	CTEQ6L1	Perugia2011C
$W \rightarrow \ell \nu + \leq 5$ partons	Alpgen	Рутніа б	CTEQ6L1	Perugia2011C