

Top quark mass measurements at Run I

Reconstructing all the top quark decay products:

Top quark mass measurement

- total uncertainty dominated by systematic uncertainties
 - strongly correlated between decay channels, methods, and experiments
 - mostly due to b-jet energy scale, color reconnection, and ISR
- need of "alternative" measurement methods

E. Bouvier (IPNL), F. Derue (LPNHE)

Leptonic final states with b \rightarrow J/ ψ + X $\rightarrow \mu^+\mu^-$ + X

 Based on the correlation between M_t and the invariant mass of the J/ψ+ℓ combination

CERN/LHCC92-3 (1992) 90, PLB476(2000)73, ATL-PHYS-2001-016, CMS-NOTE-2006-058

 Systematic uncertainty expected to be weakly affected by jet energy scale, not affected by b-tagging, but sensitive to soft QCD modeling

- ▶ Branching ratio: $BR(t\bar{t} \to (W^+b)(W^-\bar{b}) \to (\bar{\ell} \, v_\ell \, J/\psi \, X)(qq'\bar{b})) \sim 0.55\%$ only $J/\psi \to \mu^+\mu^-$ and $\ell \in \{e,\mu\}$: $BR \sim 2.1 \cdot 10^{-4}$ $\hookrightarrow 1^{st}$ time that this method is used: 8 TeV data
 - ▶ 19.7 fb⁻¹ with CMS: CMS-PAS-TOP-13-007, arXiv:1603.06535[hep-ex], CMS-PAS-TOP-15-014
 - ▶ 20.3 fb⁻¹ with ATLAS: ATLAS-CONF-2015-040

< □ > < □ > < ○ < ○

Selection criteria

Semileptonic $t\bar{t}$ events with a J/ψ

- ▶ exactly 1 isolated ℓ[±]
- ightharpoonup > 4 jets with $p_T > 25$ GeV (ATLAS) or \geq 2 jets with $p_T >$ 40 GeV (CMS)
 - exactly 1 J/ $\psi \rightarrow \mu^{+}\mu^{-}$ candidate

for ATLAS

- $ho_{\rm T}(\mu^{\pm}) > 3 \ {\rm GeV}, \ |\eta| < 2.5$
- ▶ IP_{\perp} , IP_{\parallel} < 3 mm
- M(J/ψ) ∈ [2.9; 3.3] GeV

Dileptonic tt events with a J/ψ

- ▶ exactly 2 isolated ℓ[±] of opposite sign
- ightharpoonup > 1 jets with $p_T > 25$ GeV (ATLAS) or \geq 2 jets with $p_T >$ 40 GeV (CMS)

for CMS

- $ho_{\rm T}(\mu^{\pm}) > 4 \ {\rm GeV}, \ |\eta| < 2.4,$ in the same jet
- vertex fit with a Kalman filter: χ² < 5</p>
- $ightharpoonup c au/\Delta c au > 20$
- ► $M(J/\psi) \in [3.0; 3.2]$ GeV

Event yields

- MC samples normalized at the integrated luminosity and their theoretical cross section
- $t\bar{t}$ samples produced for $M_t = 172.5 \text{ GeV}$

for ATLAS: with POWHEG (CT10)
$$+$$
 PYTHIA 6 (P2011C) $+$ EVTGEN $+$ TAUOLA for CMS: with MADGRAPH (CTEQ6L1) $+$ PYTHIA 6 (Z2*) $+$ TAUOLA

	Number of events	
Process	ATLAS	CMS
tt	520 ± 23	548±6
single top	24 ± 5	70 ± 5
Z + jets	22.7 ± 4.8	10.8 ± 1.3
W+jets	22.6 ± 4.7	$\textbf{30.4} \pm \textbf{4.2}$
Diboson	1.2 ± 1.0	2.3 ± 0.3
Total expected	609 ± 25	662±9
Data	625	666

J/ψ properties

$J/\psi + \ell$ properties

Introduction

Top quark mass measurement

Introduction

Hadronization modeling

- Charged leptons better reconstructed and less affected by pileup \hookrightarrow use of J/ $\psi \rightarrow \mu^+\mu^-$ to probe b quark hadronization modeling
- Comparison between the cluster model (HERWIG) and the Lund string model (PYTHIA)

Introduction

Fragmentation parameters

Top pair events with a J/ψ

⇒ signal isolated from combinatorial background using sPlot weights

- Bigger differences between fragmentation parameter sets than between hadronization models
- **Not enough data** at $\sqrt{s} = 8$ TeV to rule out a set
 - \hookrightarrow other charmed mesons (D $^{\pm}$, D * , D 0 ,...) could also be used

Fit procedure

- Summing all events:
 - distributions for $J/\psi + e$ or $J/\psi + \mu$ final states reasonably well described by the MC, no significative differences between the channels
 - "wrong" pairings less sensitive to M_1 , but still maintaining a correlation to M_1

- ► Six $M_{\text{J/}\Psi+\ell}$ distributions, for $M_{\text{t}} \in \{166.5; 169.5; 171.5; 173.5; 175.5; 178.5\}$ GeV : all processes are summed up after normalization at their respective cross-section
 - \hookrightarrow background processes: same $M_{\mathsf{J/\psi}+\ell}$ distribution $\forall M_{\mathsf{t}}$
 - \hookrightarrow signal processes (= $t\bar{t}$ + single-top): different $M_{J/\psi+\ell}$ distribution for each M_t
- **Simultaneous fit** of the six $M_{J/\psi+\ell}$ distributions between 0 and 250 GeV with the following PDF:

$$\begin{split} P_{\text{sig+bg}}(\textit{M}_{\text{J/}\psi+\ell}) = & \alpha \frac{1}{\sigma_g \sqrt{2\pi}} \exp\left(-\frac{(\textit{M}_{\text{J/}\psi+\ell} - \mu_g)^2}{2\sigma_g^2}\right) \\ & + (1-\alpha) \frac{\beta \gamma^{-\gamma_\gamma}}{\Gamma(\gamma_\gamma)} (\textit{M}_{\text{J/}\psi+\ell} - \mu_\gamma)^{\gamma_\gamma - 1} \exp\left(-\frac{\textit{M}_{\text{J/}\psi+\ell} - \mu_\gamma}{\beta \gamma}\right) \end{split}$$

 \hookrightarrow each of the 6 parameters is a 1st order polynomial function of M_1

PDF parameterization

Parameters showing the strongest dependence on M_t

Change of fragmentation baseline

Top pair events with a J/ψ

- Z2* not optimized for fragmentation modeling:
 - Z2* rbLEP family: a tune (±1σ) of Z2* including the measurment of x_B at LEP by varying only the b quark fragmentation description
 - Perugia12 family: alternative tunes by varying the fragmentation description for all flavors
- Measuring M_t for each tune
- Difference between P12FT and P12FL \sim difference between Z2* rbLEP soft and hard
 - ► -0.71 GeV to the M_t value obtained to use 72* rbl FP as baseline
 - ±0.30 GeV as systematic uncertainty stemming from fragmentation modeling

Statistical uncertainty and Monte Carlo statistics

- 3000 pseudo-experiments of N_{evt} = Poisson(N_{data}) generated from P_{sig+bg}|_{M_t} then fitted with P_{sig+bg} for several M_t^{gen} values
- Width and mean of the residual distributions represented as a function M_t^{gen}

- Expected statistical uncertainty:2.9 GeV
- Uncertainty stemming from MC statistics: 0.22 GeV

- ▶ Monte Carlo statistics ✓
- Muon momentum scale
- ► Electron momentum scale
- Modeling of the J/ψ candidate mass distribution
- Jet energy scale
- Jet energy resolution
- Trigger efficiencies
- Background normalization
- Pileup

Theoretical uncertainties

Modeling of perturbative QCD

- Matrix-element generator
- top-quark p_T modeling
- Renormalization and factorization scale
- ME-PS matching threshold
- Parton density function

Simulation of a proton-proton collision, including the modeling of:

- the initial partons.
- the hard process.
- the underlying event,
- radiations.
- the hadronization

Modeling of non-perturbative QCD

- b fragmentation
- Underlying event
- Color reconnection

Summary

Introduction

Source	Value (GeV)	
Experimental uncertainties		
Monte Carlo statistics	±0.22	
Muon momentum scale	± 0.09	
Electron momentum scale	± 0.11	
Modeling of the ${\rm J}/\psi$ candidate mass distribution	+0.09	
Jet energy scale	< 0.01	
Jet energy resolution	< 0.01	
Trigger efficiencies	± 0.02	
Background normalization	± 0.01	
Pileup	±0.08	
Theoretical uncertainties		
ME generator	-0.37	
Renormalization scale	$^{+0.12}_{-0.46}$	
ME-PS matching threshold	{+0.12 -0.58	
top quark transverse momentum	+0.64	
b fragmentation	± 0.30	
Underlying event	± 0.13	
Color reconnection modeling	+0.12	
Parton density functions	$^{+0.39}_{-0.11}$	
Total	{+0.89 -0.94	

Results at $\sqrt{s} = 8 \text{ TeV}$

Results at $\sqrt{s} = 8 \text{ TeV}$

1st measurement of Mt using top quark decays in the exclusive decay channel t \rightarrow (W⁺ \rightarrow ℓ ⁺ ν) (b \rightarrow **J/\psi** + X \rightarrow μ ⁺ μ ⁻ + X): $M_1 = 173.5 \pm 3.0 \text{ (stat.)} \pm 0.9 \text{ (syst.)} \text{ GeV}$

Prospects at $\sqrt{s} = 13 \text{ TeV}$

- ▶ final state with 3 leptons: trigger and selection efficiencies expected to be less affected by pileup increase
- soft QCD modeling: contribution to fragmentation tuning?
- top quark mass measurement:
 - weakly sensitive to JES and JER
 - \hookrightarrow JES and JER uncertainties hard to reduce with pileup increase
 - expecting a decrease of some theoretical uncertainties:
 - NLO Monte Carlo generators
 - fragmentation tuning ?
 - expected to be competitive with other techniques for a statistical uncertainty \sim 1 GeV
 - increase of the $t\bar{t}$ cross section by ~ 3.3
 - ▶ $\mathcal{L} \sim 55 \text{ fb}^{-1}$ expected in 2017

Backup

Lund string model

Between 2 colored objects, there is asymptotic freedom at short distances but a linear potential at long distances:

- color field lines compressed into a tube-like region
- ▶ linear confinement with a string tension $\sim 1 \text{ GeV} \cdot \text{fm}^{-1}$
- ► Lorentz invariance, causality, left-right symmetry

Lund fragmentation function:

$$f(z) \propto \frac{1}{z} (1-z)^a \exp\left(-\frac{bm_{\perp}^2}{z}\right)$$

Bowler extension for heavy quarks:

 $f^{\text{heavy}}(z) \propto \frac{f(z)}{z^{r \cdot bm_{\perp}^2}}$

q t

 $\hookrightarrow a, b, r$ tunable parameters

4 □ > 4 酉 > 40 Q C

Cluster model

Following the color structure of the parton shower:

- color-singlet pairs (=clusters) end up close in phase space, with a mass of order of the parton shower cutt-off Q₀
- gluons can be non-perturbatively split into quark-antiquark pairs:

Color-singlet clusters are projected onto the continuum of high-mass mesonic resonances, which further decay to lighter well-known resonances and stable hadrons using a pure 2-body phase-space decay and phase space weight:

$$W \propto (2s_1+1)(2s_2+1)\frac{2p^*}{m}$$

- hadron-level properties fully determined by the parton shower
- suppression of heavier hadrons, including baryons and strange hadrons
- ► crucial role of Q₀

Tunes of the Lund-Bowler fragmentation function parameters

Comparing Z2* with two families of tunes:

- Z2* rbLEP and its hard and soft variations :
 - a tune $(\pm 1\sigma)$ of Z2* including the measurement of x_B at LEP \hookrightarrow varying, for b quarks only, the r parameter in the Bowler extension of the fragmentation function

using the shape of the B hadron p_T at generator level relative to the jet one:

Reconstructing $D^0 \to \kappa^\pm \pi^\mp$ within $t\bar t$ events

Studying jets with μ^\pm and ${\sf D}^0 o \kappa^\pm \pi^\mp$ $\hookrightarrow {\sf B}^\pm$ proxy

- ▶ using the _sPlot technique to separate signal from backgrounds NIM A555(2005)
- $\qquad \qquad \textbf{R2} \equiv \frac{\sum_{1}^{2} \rho_{\text{track, no}\,\mu}}{\sum p_{\text{track}}} \text{ alike } p_{T}(D^{0})/p_{T}(\text{jet})$

 \Rightarrow Would need to reconstruct J/ ψ and D⁰, using $\mathcal{L} \sim$ 150 fb⁻¹ at $\sqrt{s} =$ 13 TeV

Fit of the $J/\psi \rightarrow \mu^+\mu^-$ vertex with a Kalman filter

CERN-2005-002.411

Particle: reconstructed trajectory, assigned mass (μ^\pm) or reconstructed mass (J/ψ) , charge, χ^2 and number of degrees of freedom in the vertex fit

$$\hookrightarrow$$
 7 parameters $(x, y, z, p_x, p_y, p_z, M)$

Vertex: position + covariance matrix,
$$\chi^2$$

(1 degree of freedom)

$$\chi^2 = (y^{\mathrm{ref}} - y^{\mathrm{mes}}) V_{y^{\mathrm{mes}}}^{-1} (y^{\mathrm{ref}} - y^{\mathrm{mes}})^T$$
 minimization

Experimental resolution

"Good" vs "wrong" pairings

> statistically, when combining an isolated lepton and a J/ψ in a semileptonic $t\bar{t}$ events, a **50% chance** that they come from the **same top quark**

Weighting events using $\Delta \phi(J/\psi, \ell)$

still 47% of wrong pairings and not significant improvement of the sensitivity

$J/\psi + e vs J/\psi + \mu$

peak position different but as much correlated to Mt

peak position identical when requiring the same kinematic criteria

Use of dedicated tt samples

Problem peculiar to this measurement

- ▶ need of \sim 2000 000 tt events with a J/ $\psi \rightarrow \mu^+ \mu^-$ per M_t value
- because of the very low BR(b → J/ψ+X → µ⁺µ⁻+X), simulation of the detector response for the corresponding inclusive t̄ samples unreasonable

Solution brought by the collaboration

- hadronizing with PYTHIA 6 existing LHE events produced with MADGRAPH, using an iterative filter made of 2 steps:
 - matrix element parton shower matching
 - 2. identification of a J/ $\psi \to \mu^+ \mu^-$ among the particles produced during the hadronization
- assigning a weight per event reflecting the filter history
- simulating the detector response only for $t\bar{t}$ events with a $J/\psi \to \mu^+\mu^-$

A key variable

The electroweak fit and indirect measurement of M_{W}

170

180

160

The electroweak vacuum stability

190

150

The Higgs mechanism

$$SU(2)_W$$
 doublet : $\phi(x) \equiv \begin{pmatrix} \phi^{(+)}(x) \\ \phi^{(0)}(x) \end{pmatrix}$

$$V(\phi)=\mu^2\,\phi^\dagger\phi+\lambda\,(\phi^\dagger\phi)^2,$$
 $\lambda>0$ et $\mu^2<0$

$$\phi(x) = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ \sqrt{\frac{-\mu^2}{\lambda}} + H(x) \end{pmatrix}$$

$$\begin{split} \mathcal{L}_{Y} &= -\sum_{j,k=1}^{N_{g}} \left(\left(\bar{\mathbf{u}}_{j}, \bar{\mathbf{d}}_{j} \right)_{L} \left[c_{jk}^{(\mathsf{d})} \begin{pmatrix} \boldsymbol{\phi}^{(+)} \\ \boldsymbol{\phi}^{(0)} \end{pmatrix} \mathbf{d}_{kR} + c_{jk}^{(\mathsf{u})} \begin{pmatrix} \boldsymbol{\phi}^{(0)*} \\ -\boldsymbol{\phi}^{(-)} \end{pmatrix} \mathbf{u}_{kR} \right] \\ &+ \left(\bar{\mathbf{v}}_{j}, \bar{\ell}_{j} \right) c_{jk}^{(\ell)} \begin{pmatrix} \boldsymbol{\phi}^{(+)} \\ \boldsymbol{\phi}^{(0)} \end{pmatrix} \ell_{kR} \end{pmatrix} + \text{c. h.} \\ &\text{symmetry breaking} \end{split}$$

$$\mathcal{L}_Y = \left(1 + H\sqrt{\frac{\lambda}{-\mu^2}}\right) \left(\bar{\boldsymbol{d}}_L' \, \mathcal{M}_{d'} \, \boldsymbol{d'}_R + \bar{\boldsymbol{u}}_L' \, \mathcal{M}_{u'} \, \boldsymbol{u'}_R + \bar{\ell}_L' \, \mathcal{M}_{\ell'} \, \ell_R' + c. \ h. \right)$$

- ► mass eigenvectors $\propto v = \sqrt{-\mu^2/\lambda}$
- mixing of the flavor eigenstates: the Cabibbo-Kobayashi-Maskawa matrix

From the Lagrangien parameters to the observables

mass:

Lagrangien parameter

- 1. Field quantification
- Gauge fixing
 → Feynman rules

$$p = i p - m_q$$

3. Regularization \rightarrow loop integrals

- 4. Renormalization
 - \rightarrow series of perturbative corrections
 - ⇒ As many mass definitions as renormalization schemes

Pole mass:

real part of the propagator singularity for each order of the perturbative theory

- invariant mass of a free particle
- $ightharpoonup \Delta \sim 200 \, \text{MeV/c}^2$

MS, PS, MSR...masses:

- short-distance masses
- convenient to parameterize the Yukawa coupling to the Higgs boson

Monte Carlo generator definition:

- interpretation depends on how much MC simulations are based on QCD
- $M_t^{MC} M_t^{pole} = 0.05_{-0.62}^{+0.31} \pm 0.50 \text{ GeV}$ PoS LL2014:054 (2014)