

Laboratoire de Physique Subatomique et de Cosmologie

Search for exotic production of top quarks with same-sign leptons

Simon Berlendis

Introduction

- Search for exotic **top** quark production is theoretically motivated
 - Top mass, radiative Higgs correction, Higgs stability ...
- Same-sign leptons can be the signature of many exotic top production:
 - Same-sign tops tt or $\bar{t}\bar{t}$, $\geq 3t$, $t\bar{t}$ +extra bosons
 - Leading to $l^{\pm}l^{\pm}(l) + bjets + jets + Et_{miss}$
 - Low background from the standard model
- Today, I will present **4 analyses** from **ATLAS** and **CMS**:
 - Search for top quark partners with charge 5/3 at 13TeV (CMS T5/3): Link
 - Search for new physics in same-sign dilepton events at 13TeV (CMS Susy): link
 - Search for supersymmetry at 13TeV with jets and two same-sign leptons or three leptons (ATLAS Susy) : <u>link</u>
 - Analysis of events with b-jets and a pair of leptons of the same charge at 8TeV (ATLAS VLQ): <u>link</u>
 - Will soon be published with 13TeV data

BSM Models (1): VLQ and SUSY

- Vector Like Quark (VLQ) signatures: $t\bar{t} + X$
 - Double production: TT, BB or $T_{5/3}T_{5/3}$
 - Limit in m_Q and Br($Q \rightarrow qV$)
 - *T*→*Z*t, *H*t or *W*b
 - $B \rightarrow Zb$, Hb or Wt
 - $T_{5/3} \rightarrow Wt$
 - Single production:
 - Limit in m_Q and coupling C
 - Large jet activities (H_T)
- Supersymmetric signature: $t\bar{t} + X + E_{miss}^T$
 - Light gluino and 3rd generation squark motivated by naturalness
 - Large production of $\tilde{g}\tilde{g}$, $\tilde{t}\tilde{t}$ and $\tilde{b}\tilde{b}$
 - And large $Br(\tilde{g} \rightarrow \tilde{t}t)$
 - Two signals producing top quarks:
 - Large MET from neutralino

BSM Models (2): RPV and 4tops

- Baryonic number violation search: *same-sign tops*
 - Low energy constraint (proton stability) implies
 ΔB=2 processes involving top quarks
 - Possible realization with R-parity violation SUSY:
 - No neutralino (low MET) but high jet activities
- Four tops signature: $t\bar{t}t\bar{t}$
 - Effective theory:
 - $\mathcal{L}_{4t} = \frac{C_{4t}}{\Lambda^2} \left(\bar{t_R} \gamma^{\mu} t_R \right) \left(\bar{t_R} \gamma_{\mu} t_R \right)$

Extra-dimension

 Universal Extra Dimension

 \widetilde{g}

g

g

Selections:

- All analyses require same-sign leptons or 3 leptons
 - + additional cuts on jet activities, Number of jets/b-jets, MET...
- General feature:
 - CMS T5/3 and ATLAS VLQ cuts optimized for the search of energetic tops
 - High jet activities cut and high lepton Pt (25-30GeV)
 - CMS Susy and ATLAS Susy cuts optimized for massive neutralinos (compressed scenario):
 - High MET cut and low lepton Pt (10GeV)
 - Additional cuts are also required on N_{bjets} , N_{jets} , M_T^{min} , M_{eff} , $N_{constuents}$...
- Signal region:
 - CMS T5/3 and ATLAS Susy analysis use inclusive signal regions
 - CMS Susy and ATLAS VLQ analysis use several signal regions split in different kinematic cut requirements

ATLAS Susy

CMS T5/3

Table 1: Summary of the event selection criteria for the signal regions (see text for details).

Signal region	N ^{signal} lept	N_{b-jets}^{20}	$N_{\rm jets}^{50}$	$E_{\rm T}^{\rm miss}$ [GeV]	m _{eff} [GeV]
SR1b	≥2	≥1	≥4	>150	>550
SR3b	≥2	≥3	-	>125	>650

N _{lep}	HT	MeT	$N_{lep+jet}$
≥2	>900 GeV	> 0 GeV	≥5

• More detailed signal region description in <u>backup</u>

Background composition

1) True same-sign/three leptons

- From Standard Model
- Dominant: $t\bar{t} + V$ and VV
- Simulated by Monte-Carlo method

2) Fake/non-prompt lepton

- Light jet reconstructed as lepton
- Lepton coming from heavy-flavor jet
- Estimated by *data-driven* method

3) Charge mis-identification

- Detector effect
- Negligible for muon
- Two sources:
 - Tracker charge reconstruction efficiency
 - Electron from photon conversion
- Estimated by data-driven method

Photon conversion:

Fake/non-prompt lepton estimation method

• Lepton definition:

- The fake estimation methods rely on the definition of lepton criteria:
 loose and tight criteria
 - For electrons, the identification and isolation are used
 - For muons, the isolation criteria is used
- Matrix method:

$$\begin{pmatrix} N_t \\ N_{\bar{t}} \end{pmatrix} = M \begin{pmatrix} N_{real} \\ N_{fake} \end{pmatrix} \quad M = \begin{pmatrix} \epsilon_r & \epsilon_f \\ (1 - \epsilon_r) & (1 - \epsilon_f) \end{pmatrix} \quad \begin{array}{c} t = \text{tight} \\ \bar{t} = \text{loose but not tight} \end{array}$$

- N_{fake} is estimated by weighting N_t and $N_{\bar{t}}$ with the elements of M^{-1}
- Generalized for 2 and 3 leptons

Tight-to-loose method:

- ϵ_{TL} : probability that a **fake** loose lepton is tagged as **tight** ($\sim \epsilon_f$)
- N_{fake} estimated by
 - selecting events with ≥ 1 loose but not tight lepton
 - Weight them by $\epsilon_{TL}/(1-\epsilon_{TL})$
- Equivalent to Matrix Method by considering that $\epsilon_r \approx 1$

Real and fake efficiency measurement and systematic

• Efficiency estimation:

- ϵ_r estimated on enriched **real** lepton region
 - *Single lepton* region: High MET and MT (W+jets)
 - Dilepton region: Z mass window (Z->II)
- ϵ_f estimated on enriched **fake** lepton region
 - Single lepton region: Low MET and MT (multijet background)
 - SS Dilepton region: Tight muon + 1 loose lepton (V+jets and ttbar)
 - Real lepton contribution are subtracted from fake region
- Usually parameterized in **Pt** and $|\eta|$ of the leptons
 - And sometimes other parameters like triggers, N_{bjets} ... etc
- Systematic uncertainties: around **35-60%**
 - Fake composition (light jet, c-jets, b-jets) can be different in other regions
 - Alternative control region or truth matching studies
 - Other kinematic dependences
 - Statistical uncertainty from fake/real lepton control regions
 - Real lepton bkg removal in fake region
 - Closure tests or comparison with other methods

Charge mis-identification background

- Based on the charge flip rates ϵ
 - Defined as the probability of one electron to have its charge mis-identified
 - **Parameterized** on Pt and $|\eta|$
- Charge mis-identification bkg estimated by weighting **opposite-sign** dielectron events by:

 $w = \frac{\epsilon_1(1 - \epsilon_2) + \epsilon_2(1 - \epsilon_1)}{(1 - \epsilon_1)(1 - \epsilon_2) + \epsilon_1\epsilon_2} = \frac{\epsilon_1 \text{ charge flip rate of } 1^{\text{st}} \text{ electron}}{\epsilon_2 \text{ charge flip rate of } 2^{\text{nd}} \text{ electron}}$

- Charge flip rate estimation on enriched $pp \rightarrow Z \rightarrow ee$ data events:
 - $-m_{ee} \in [m_z X, m_z + X]$
 - Count the number of e^+e^- and same-sign $e^\pm e^\pm$
 - Charge flip rates estimated by Likelihood minimization $\mathcal{L}(\epsilon|N, N_{ss})$
- Systematic uncertainties: around **20-30%**
 - Statistical uncertainty from likelihood minimization
 - **Kinematic dependences** —
 - Closure tests on MC V+jets samples
 - Invariant mass cuts variations

Validation plots

• Validation plots at pre-selection level:

• Control regions ATLAS Susy :

	VR-WW	VR-WZ	VR-ttV	VR-ttZ
Observed events	4	82	19	14
Total background events	3.4 ± 0.8	98 ± 15	12.1 ± 2.7	9.7 ± 2.5
Fake/non-prompt leptons	0.6 ± 0.5	8 ± 6	2.1 ± 1.4	0.6 ± 1.0
Charge-flip	0.26 ± 0.05	-	1.14 ± 0.15	-
tīW	0.05 ± 0.03	0.25 ± 0.09	2.4 ± 0.8	0.10 ± 0.03
tīZ	0.02 ± 0.01	0.72 ± 0.26	3.9 ± 1.3	6.3 ± 2.1
WZ	1.0 ± 0.4	78 ± 13	0.19 ± 0.10	1.2 ± 0.4
W [±] W [±] j j	1.3 ± 0.5	-	0.02 ± 0.03	-
ZZ	0.02 ± 0.01	8.2 ± 2.8	0.12 ± 0.15	0.30 ± 0.19
Rare	0.10 ± 0.05	2.8 ± 1.4	2.3 ± 1.2	1.1 ± 0.6

Simon Berlendis - Same-sign leptons

Results: SUSY

ATLAS Susy

	SR1b	SR3b
Observed events	7	1
Total background events $p(s = 0)$	4.5 ± 1.0 0.15	0.80 ± 0.25 0.36
Fake/non-prompt leptons	0.8 ± 0.8	0.13 ± 0.17
Charge-flip	0.60 ± 0.12	0.19 ± 0.06
tĪW	1.1 ± 0.4	0.10 ± 0.05
tīZ	0.92 ± 0.31	0.14 ± 0.06
WZ	0.18 ± 0.11	< 0.02
W [±] W [±] j j	0.03 ± 0.02	< 0.01
ZZ	< 0.03	< 0.03
Rare	0.8 ± 0.4	0.24 ± 0.14

• CMS Susy

arxiv:1605.03171v1

Better sensitivity for CMS because of the exclusives SRs

Results: T5/3

• CMS T5/3

CMS PAS B2G-15-006

Channel	PSS MC	NonPrompt	ChargeMisID	Total Background	800 GeV X _{5/3}	Observed
Di-electron	2.41 ± 0.29	2.16 ± 1.91	1.90 ± 0.60	6.47 ± 2.02	4.38	7
Electron-Muon	2.98 ± 0.36	5.20 ± 3.21	0.54 ± 0.18	8.72 ± 3.24	9.14	3
Di-muon	0.70 ± 0.12	2.09 ± 1.69	0.00 ± 0.00	2.80 ± 1.70	3.55	1
All	6.09 ± 0.67	9.45 ± 5.49	2.44 ± 0.76	17.98 ± 5.58	17.06	11

- 100-200GeV of improvement compared to 8TeV
- Results combined with 1 lepton analysis

Conclusion

- Same-sign lepton is a **well-motivated** signature for the search of new physics involving top quarks
 - Supersymmetry, vector-like quarks ...
- **Different** selection strategy for each analysis
- Imply to use sophisticated data-driven technique to estimate fake and charge mis-identification background
 - Handled in a different way for each analysis
- No deviation found at 13TeV
 - Exclusion limits set for supersymmetric and T5/3 models
- New results will be published soon:
 - ATLAS VLQ search on going
 - And future 2016 data !
- I hope we will find surprising excess ☺

Backup

Selection: Susy

Signal region	N ^{signal} lept	N_{b-jets}^{20}	$N_{\rm jets}^{50}$	$E_{\rm T}^{\rm miss}$ [GeV]	<i>m</i> eff [GeV]
SR0b3j	≥3	=0	≥3	>200	>550
SR0b5j	≥2	=0	≥5	>125	>650
SR1b	≥2	≥1	≥4	>150	>550
SR3b	≥2	≥3	-	>125	>650

Table 1: Summary of the event selection criteria for the signal regions (see text for details).

 Table 2: SR definitions for the HH selection. The notation (*) indicates that, in order to avoid
 overlaps with SR31, an upper bound $E_{\rm T}^{\rm miss}$ < 300 GeV is used for regions with $H_{\rm T}$ > 300 GeV. Table 3: SR definitions for the HL selection. The notation (*) indicates that, in order to avoid

ATLAS Susy

Nb	$M_{\rm T}^{\rm min}$ (GeV)	E _T ^{miss} (GeV)	Njet	$H_{\rm T} < 300 {\rm GeV}$	$H_{\rm T} \in [300, 1125] {\rm GeV}$	$H_{\rm T} > 1125 {\rm Ge}$
	•	50 200	2-4	SR1	SR2	
< 120	< 100	50 - 200	> 5		SR4	
	< 120		2-4		SR5	
	> 200(*)	> 5		SR6		
0	0	50 200	2-4	SR3	SR7	
	> 100	50 - 200	> 5			
	> 120	> 200(*)	2-4	1	SR8	
		> 200(*)	> 5			
		50 200	2-4	SR9	SR10	
	< 120	50 - 200	> 5		SR12	
	< 120	> 200(*)	2-4		SR13	
1		> 200(*)	> 5		SR14	
> 120	50 200	2-4	SR11	SR15		
	> 120	50 - 200	> 5			SR32
	> 120	> 200 ^(*)	2-4	1	SR16	
			> 5			
	< 120	50 - 200	2-4	SR17	SR18	
		50 - 200	> 5		SR20	
	< 120	> 200(*)	2-4		SR21	
2		> 200(**	> 5		SR22	
2		50 - 200	2-4	SR19	SR23	
	> 120	50 - 200	> 5			
	> 200(*)	> 200(*)	2-4		SR24	
		> 200 > 5				
	< 120	50 - 200	> 2	SR25	SR26	
> 3	< 120	$> 200^{(*)}$	> 2	SR27	SR28	
2.5	> 120	> 50(*)	> 2	SR29	SR30	
Inclusive	Inclusive	> 300	> 2		SR31	

 \overline{eV} overlaps with SR25, an upper bound $E_T^{\text{miss}} < 300 \text{ GeV}$ is used for regions with $H_T > 300 \text{ GeV}$.

Nb	M _T ^{min} (GeV)	$E_{\rm T}^{\rm miss}$ (GeV)	Njet	$H_{\rm T} < 300 {\rm GeV}$	$H_{\rm T} \in [300, 1125] {\rm GeV}$	$H_{\rm T} > 1125 {\rm GeV}$
		E0 200	2-4	SR1	SR2	
0 < 120	50 - 200	> 5		SR4		
	> 200(*)	2-4	SR3	SR5		
		> 200. 7	> 5		SR6	
		50 - 200	2-4	SR7	SR8	
1	1 < 120	50 - 200	> 5		SR10	
1		> 200 ^(*)	2-4	SR9	SR11	
			> 5		SR12	
		< 120	2-4	SR13	SR14	SR26
2	< 120		> 5		SR16	
2	< 120		2-4	SR15	SR17	
		> 200 ()	> 5		SR18	
> 2	< 120	50 - 200	> 2	SR19	SR20	
- 3	< 120	> 200 ^(*)	> 2	SR21	SR22	
Inclusive	> 120	> 50 ^(*)	> 2	SR23	SR24	
Inclusive	Inclusive	> 300	> 2		SR25	

Table 4: SR definitions for the LL selection. All SRs in this category require $N_{\text{jet}} \ge 2$.

Nb	$M_{\rm T}^{\rm min}$ (GeV)	H _T (GeV)	$E_{\rm T}^{\rm miss} \in [50, 200] { m GeV}$	$E_{\rm T}^{\rm miss} > 200 {\rm GeV}$	
0	-		SR1	SR2	
1	< 120		SR3	SR4	
2	< 120	> 300	SR5	SR6	
≥ 3			SR7		
Inclusive	> 120	1	SR8		

Simon Berlendis - Same-sign leptons

Selection VLQ

	Definition			
$e^{\pm}e^{\pm} + e^{\pm}\mu^{\pm} + \mu$	$\mu^{\pm}\mu^{\pm} + ee$	$ee + ee\mu + e\mu\mu + \mu\mu\mu, N_2$	$_j \ge 2$	
	$N_b = 1$		SRVLQ0	
$400 < H_{\rm T} < 700 {\rm ~GeV}$	$N_b = 2$	$E_{\rm T}^{\rm miss} > 40 {\rm GeV}$	SRVLQ1	SR4t0
	$N_b \ge 3$		SRVLQ2	SR4t1
	$N_b = 1$	$40 < E_{\rm T}^{\rm miss} < 100 \ {\rm GeV}$	SRVLQ3	
		$E_{\rm T}^{\rm miss} \ge 100 ~{ m GeV}$	SRVLQ4	
$H_{\rm T} \ge 700~{\rm GeV}$	$N_{2} = 2$	$40 < E_{\rm T}^{\rm miss} < 100 \ {\rm GeV}$	SRVLQ5	SR4t2
	$1 v_b - 2$	$E_{\rm T}^{\rm miss} \ge 100 ~{ m GeV}$	SRVLQ6	SR4t3
	$N_b \ge 3$	$E_{\rm T}^{\rm miss} > 40 {\rm GeV}$	SRVLQ7	SR4t4

ATLAS VLQ

- At least two isolated same-sign leptons as defined above with $p_T > 30$ GeV. Between each lepton and every top-quark jet, we require $\Delta R > 0.8$.
- Dilepton Z-boson veto: M(ee) < 76 GeV or M(ee) > 106 GeV. This selection applies only to the dielectron channel. If the muon charge is mismeasured, its momentum will also be mismeasured so a selected muon pair from a Z boson will not fall within this invariant mass range.
- Trilepton Z-boson veto: M(ll) < 76 GeV or M(ll) > 106 GeV where M(ll) is the invariant mass of either one of the selected leptons and any other same flavor opposite-sign lepton in the event with p_T > 15 GeV that satisfies the loose lepton criteria.
- $N_c \ge 7$, where N_c is the number of constituents identified in the event. For the purpose of this selection, each AK5 jet and each lepton counts as one constituent. Since a W-boson jet is assumed to correspond to a W boson, each such jet counts as two constituents, corresponding to the W-boson decay products. Likewise, each top-quark jet represents a top quark and counts as three constituents.
- *H*_T > 900 GeV, where *H*_T is the scalar sum of the *p*_T of all selected jets and leptons in the event.

CMS T5/3

Fake/non-prompt lepton: method

	ATLAS Susy	ATLAS VLQ	CMS Susy	CMS T5/3
Method	Matrix Method	Matrix Method	Tight-to-loose	Matrix Method
Fake lepton region	Dilepton: 1µ+1lepton	Single lepton: Low MT, ETmiss	Single lepton: Low MT, ETmiss	Single lepton: Low MT, ETmiss
Real lepton region	Dilepton: Z mass window	Single lepton: High MT, ETmiss		Dilepton: Z mass window
Parametrization	Pt / η	Pt / $ \eta /N_{bjet}$ /trigger	Pt / η /trigger	No param
Validation	Alternative fake estimate	Closure tests	Alternative rate measurement	Closure tests

Charge mis-identification: Method

- Based on the Charge flip rates $\boldsymbol{\epsilon}$
 - Defined as the probability of one electron to have its charge mis-identified
 - Parameterized on Pt and $|\eta|$
- Then, assuming a **true** number of **opposite-sign** dielectron events, we have:

 $N_{SS}^{reco} = N_{OS}^{true}(\epsilon_1(1-\epsilon_2) + \epsilon_2(1-\epsilon_1))$ $N_{OS}^{reco} = N_{OS}^{true}((1-\epsilon_1)(1-\epsilon_2) + \epsilon_1\epsilon_2)$

 ϵ_1 charge flip rate of 1st electron ϵ_2 charge flip rate of 2nd electron

• N_{SS}^{reco} can be estimated by weighting N_{OS}^{reco} by:

$$w = \frac{\epsilon_1(1-\epsilon_2) + \epsilon_2(1-\epsilon_1)}{(1-\epsilon_1)(1-\epsilon_2) + \epsilon_1\epsilon_2}$$

- Charge flip rate estimation on enriched $pp \rightarrow Z \rightarrow ee$ data events:
 - $m_{ee} \in [m_z X, m_z + X]$
 - ex: X=10GeV in CMS T5/3
 - Count the number of e^+e^- and same-sign $e^\pm e^\pm$
 - Charge flip rates estimated by Likelihood minimization

$$\mathcal{L}(\epsilon|N, N_{ss}) = Poisson(N_{ss}|N, \epsilon)$$