Charged Higgs & W' bosons with top physics in ATLAS & CMS

Joakim Gradin

LPSC Grenoble & Uppsala University

May 18, 2016

Introduction

- Many BSM models predict new heavy bosons.
 - Two Higgs Doublet models (2HDMs)
 - Kaluza-Klein.
 - Little Higgs.
- A charged Higgs boson and a W' can have similar phenomenology.
- Many processes including top quarks.

Motivation

- ullet For the H^+ it's natural to look at the heavy decay products due to the mass-dependent coupling.
- With $m_{H^+} < m_{top}$ mostly exluded, the $H^+ \to tb$ channel is the best probe for heavy H^+ .

ATLAS collaboration, JHEP03 (2015) 088

A.Djoadi et.al, arXiv:0901.2030

Motivation

- The W' has in some models an enhanced coupling to the third generation quarks.
- ullet For right-handed W' leptonic decay modes are impossible if the right handed neutrino is heavy.

W' searches with ATLAS and CMS

- Both ATLAS & CMS have published $W' \to t \bar b \to l \nu b \bar b$ searches for the 8 TeV datasets.
- ATLAS have also published a result for an 8 TeV search in the allhadronic final state.
- The CMS collaboration have a Physics Analysis Summary (PAS) with 13 TeV results with 2015 data.

$W' \rightarrow tb$ in the lepton + jets

Signal	ATLAS	CMS
Mass range	0.5-3.0 TeV	0.8-3.0 TeV
Generator	MadGraph5+Pythia8	SINGLETOP+PYTHIA
PDF	CTEQ6L1	CTEQ6M

- Normalized to NLO with k-factors.
- Fermionic coupling strength assumed equal to SM W boson.
- \bullet W_L^\prime samples include interferenece with SM s-channel to production.

$W' \rightarrow tb$ in the lepton + jets

Event selection	ATLAS	CMS
N leptons	== 1	== 1
N jets	2 or 3	≥ 2
N b-tags	== 2	j_1 or j_2
Lepton p_T (GeV)	> 30	> 50
Jet p_T (GeV)	> 25	> 30
		<i>j</i> ₁ > 120
		$j_2 > 40$
E_T^{miss} (GeV)	> 35	20
$m_T(W) + E_T^{miss}$ (GeV)	> 60	-

- CMS produced limits from binned likelihood of the tb invariant mass.
- \bullet ATLAS used the CL_S procedure on BDT outputs, with $m_{t\bar{b}}$ as one input.

 H^+/W' + top

$W' \rightarrow tb$ in the lepton + jets final state

ATLAS collaboration, Physics Letters B 743(2015) 235

CMS collaboration, JHEP05 (2014) 108

Exclusion 95% CL limits	ATLAS	CMS
W_{R}^{\prime}	1.92 TeV	2.05 TeV
W_L^{γ}	1.80 TeV	2.05 TeV
W_L^{\prime} with SM interference	1.70 TeV	1.84 TeV

$W' \rightarrow tb$ in the allhadronic final state

ATLAS collaboration, Eur. Phys. J.C. (2015) 75

• All-hadronic search is more sensitive in high mass region due to boosted top tagging.

$W' \rightarrow tb$ in the lepton + jets final state

- CMS has a PAS out with results from 2015 data (2.2 fb $^{-1}$).
- Higher p_T thresholds
 - lepton $p_T > 180 \text{ GeV}$
 - $j_1 p_T > 350$ (450) GeV for e+jets (mu+jets).
 - E_T^{miss} > 120 (50) GeV for e+jets (mu+jets).
- No lepton isolation required due to boosted tops.
- XS limits: W_R' excluded below 2.38 (2.17) TeV observed (expected).
- Limits improved with only 1/10 of the run 1 int. luminosity.

H^+ searches with ATLAS & CMS

- ullet ATLAS have published 8 TeV results for $H^+ o tb$
 - Top-associated production: lepton + jets.
 - s-channel production: lepton + jets & all-hadronic.
- CMS has published a search for $H^+ \to tb$ in the lepton + jets, dilepton and $\mu \tau_{had}$ final states and a combination with $\tau \nu$.
- Both experiments have performed searches for light charged Higgs bosons in the $\tau \nu$ and $c\bar{s}$ final states.

Top associated $H^+ o tb$

Signal	ATLAS	CMS
Mass range	200-600 GeV	180-600 GeV
Generator	POWHEG-BOX+PYTHIA8	PYTHIA6+PYTHIA

- The signal cross section normalization combines four and five flavour production using the Santander matching scheme, while samples are produced with the five flavour scheme.
- The H^+ is simulated with a zero width.

Top associated $H^+ o tb$ - ATLAS

- Formed 4 CR and 1 SR from jet categories.
- $\bullet\,$ Simultaneous fit of H_T^{had} in CR and a BDT output in the SR.
- The BDT was trained to separate signal and tt+bb with H_T^{had} being one of the most discriminating input variables.
- The uncertainties with largest impact on the limits come from tt+bb cross section and shape reweighting to NLO.

Source of uncertainty	Fractional uncertainty [%]	
Source of uncertainty	$m_{H^+} = 300 \text{ GeV}$	$m_{H^+} = 500 \text{ GeV}$
$t\bar{t}$ modelling	31	33
Jets	21	9.5
Flavour tagging	19	24
Other background modelling	9.6	12
Signal modelling	8.0	3.5
Lepton	1.2	0
Luminosity	1.1	0.4
Statistics	8.9	18

ATLAS collaboration, JHEP03 (2016) 127

Top associated $H^+ o tb$ - CMS

Dilepton and $\mu \tau_{had}$:

- Limits extracted from event yields binned by the b-tagging multiplicity in dilepton and $\mu\tau_{had}$.
- SM $t\bar{t}$ normalization from simulation except for jets faking au_{had} which is data driven.
- tt + bb cross section uncorrelated bin-by-bin uncertainty of 44%.

CMS collaboration, JHEP11 (2015) 018

Top associated $H^+ o tb$ - CMS

Lepton + jets:

- Limits from simultaneous fit of H_T in CR and SR.
- ullet SM tar t normalization floating in the fit and limit setting.
- ullet No particlar tt+bb normalization treatment, tt cross section uncertainty of 5% independent of b-tag multiplicity.

CMS collaboration, JHEP11 (2015) 018

Top associated $H^+ o tb$ limits

- CMS collaboration, JHEP11 (2015) 018
- CMS has published the most stringent limits.
- ATLAS observed limits above the expected for almost the whole mass range, inconsistent with any injected signal.

Top associated $H^+ o tb$ - CMS

CMS collaboration, JHEP11 (2015) 018

 $\bullet\,$ CMS combination exlusion in the MSSM m_h^{max} scenario.

s-channel $H^+ \rightarrow tb$ limits

- ATLAS published a reinterpretation of the W' search as s-channel H^+ .
- No exclusion of any type-II 2HDM but first ATLAS probe of ${\cal H}^+$ light quark coupling.

 H^+/W' + top

Conclusion

- Both ATLAS and CMS have published many searches for H^+ and W' in association with tops.
- As evident by the CMS collaborations newest W' result we can expect improved results rather early in run-II, in part due to signal XS scaling faster with CM energy than e.g tt.
- No signs for a W' yet exlusion limits around 2 TeV.
- Large parts of the available parameter space for a H^+ are being excluded, higher mass regions, i.e m_{H^+} > 600 GeV, to be probed in run-II.

 H^+/W' + top

Backup

References

- Search for $W' \to t\bar{b}$ in the lepton plus jets final state in proton-proton collisions at a centre-of-mass energy of $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS collaboration, Physics Letters B 743(2015) 235-255.
- Search for $W' \to t\bar{b}$ decays in the lepton + jets final state in pp collisions at \sqrt{s} = 8 TeV, CMS collaboration, JHEP05 (2014) 108.
- Search for W' o qqbb decays in pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector, Eur. Phys. J.C (2015) 75.
- Search for W' boson resonances decaying into a top quark and a bottom quark in the leptonic final state at $\sqrt{s} = 13$ TeV, CMS collaboration, CMS PAS B2G-15-004.
- Search for charged Higgs bosons decaying via $H^{\pm} \to \tau^{\pm} \nu$ in fully hadronic final states using pp collision data at \sqrt{s} = 8 TeV with the ATLAS detector, JHEP03 (2015) 088.
- Search for a charged Higgs boson in pp collisions at \sqrt{s} =8 TeV, CMS collaboration, JHEP11 (2015) 018.
- Search for charged Higgs bosons in the H[±] → tb decay channel in pp collisions at √s = 8 TeV using the ATLAS detector, ATLAS collaboration, JHEP03 (2016) 127.