b-tagging in the ATLAS experiment

Eloi Le Quilleuc, on behalf of the Heavy Flavour Performance Group

CEA Saclay

May 19, 2016

$b\mbox{-tagging}$ identification of jets containing a $b\mbox{-hadron}$

Motivation

An important information for high energy physics, especially for SM (top, $H \rightarrow b\bar{b}$), SuSy (stop) and Exotics (VLQ) analysis

b-tagging inputs

- ▶ calorimeter jet
- associated tracks

b-tagging is based on

- ▶ impact parameters (IP) of associated tracks
- ▶ properties of reconstructed secondary vertices (SV)

Outline

Expected Performance in Run 2

Basic Algorithms Final Discriminant Comparison Run 1/Run 2

Commissioning in Early Run 2 Data

Jet Selection Data/Prediction Comparison

References

Performance
Commissioning

Outline

Expected Performance in Run 2

Basic Algorithms Final Discriminant Comparison Run 1/Run 2

Commissioning in Early Run 2 Data

Jet Selection Data/Prediction Comparison

Overview of Algorithms in Run 2

Algorithms

- ▶ 3 basics taggers IP3D, JetFitter, SV1
- MV2 BDT combines basic taggers information

Impact Parameter based Algorithm : IP3D

Discriminant

based on transerve/longitudinal IP significances of tracks associated to the jet

Main feature of IPs : high tails

due to tracks from V0s decays, b/c-hadrons, hadronic interactions, $\gamma \rightarrow e^+e^-$

Run 2 improvement : better handling of the track quality information (*i.e* track hits in the silicon layers)

Secondary Vertex Finding Algorithm : SV1

Reconstruct a single SV within the jet

Algorithm

- ▶ remove tracks from V0s, hadronic interactions, $\gamma \rightarrow e^+e^-$ vertices
- reconstruct a SV with remaining tracks, with outlier tracks iteratively removed

SV properties

8 BDT input variables : mass, decay length, number of tracks, energy fraction, *ect*

Decay Chain Multi-Vertex Algorithm : JetFitter

Aim to reconstruct the full $PV \rightarrow b \rightarrow c$ -hadron decay chain

Vertex finding strategy

- constrain all tracks to intersect the same b-flight axis
- compatible vertices are merged, high significance SV are kept

Possible 1-track SV(s) in the jet

SV properties

8 BDT input variables : mass, decay length, number of tracks, energy fraction, ect

Multivariate Algorithm : MV2

Final discriminant

MV1 (Run 1) evaluations of basic taggers were combined into a NN

MV2 (Run 2) output variables of basic taggers combined into a BDT

- simplified combination
- better handling of correlations between the basic taggers

training background : 80% (100%) of light-jet, 20% (0%) of *c*-jet for MV2c20 (MV2c00)

Comparison between Run 1 and Run 2

Run 2 conditions

- addition of the IBL
- algorithm updates

70%~b-jet efficiency in Run 2

- ► light-jet rejection ~ 600, factor 4 increase
- ► c-jet rejection ~ 10, factor 1.7 increase

Expected Performance in Run 2

Basic Algorithms Final Discriminant Comparison Run 1/Run 2

Commissioning in Early Run 2 Data Jet Selection Data/Prediction Comparison

Motivation

Study the b-tagging modelling at high b-jet purity

Event selection 1 e, 1 μ with opposite charge, ≥ 2 jets Data sample, early Run 2

$$\sqrt{s_{pp}} = 13 \text{ TeV}, \int L dt = 85 \text{ pb}^{-1},$$

50 ns bunch-spacing

	Fraction of Jets [%]				
Flavour	Leading Two Jets	Jets with a Secondary Vertex	<i>b</i> -tagged Jets		
b	69.0 ± 6.0	96.2 ± 0.9	98.8 ± 0.3		
Light	28.9 ± 6.2	2.5 ± 0.8	0.5 ± 0.2		
c	2.0 ± 0.5	1.2 ± 0.3	0.8 ± 0.2		

Display¹ of a $t\bar{t}$ Event Candidate, $\sqrt{s} = 13$ TeV

¹muon path (red line), electron path (blue line), jets (yellow cones), calorimeter energy desposits (green and yellow bars)

Data/MC Comparison in $t\bar{t}$ dilepton Final State

Distributions

m(SV) secondary vertex mass MV2c20 final discriminant

 $\begin{array}{ll} \mbox{Main systematic uncertainty} \\ t \bar{t} \mbox{ modelling affect the predicted} \\ \mbox{ flavour composition} \end{array}$

- ▶ Good agreement data/simulation
- Ongoing data-based calibrations of flavour tag rates

Conclusion

Significant improvements in Run 2

- ▶ addition of the IBL
- ▶ algorithm updates

Commissioning of b-tagging algorithms in early Run 2 good data/simulation agreement for basic tagger output variables and MV2c20

Perspective

- ► very high light-jet rejection makes the calibration challenging
- ► c-jet rejection uncertaintty is becoming even more important

Backup

Track Categories used by IP3D

			Rate [%]		
#	Description		c jets	light jets	
0	No hits in first two layers; exp. hit in L0 and L1		1.6	1.6	
1	No hits in first two layers; exp. hit in L0 and no exp. hit in L1		0.1	0.1	
2	No hits in first two layers; no exp. hit in L0 and exp. hit in L1	0.03	0.03	0.03	
3	No hits in first two layers; no exp. hit in L0 and L1		0.03	0.02	
4	No hit in $L0$; exp. hit in $L0$	2.4	2.3	2.1	
5	No hit in $L0$; no exp. hit in $L0$	0.9	0.9	0.9	
6	No hit in $L1$; exp. hit in $L1$	0.5	0.5	0.5	
7	No hit in $L1$; no exp. hit in $L1$	2.4	2.4	2.3	
8	Shared hit in both L0 and L1	0.01	0.01	0.04	
9	Shared pixel hits	2.1	1.6	1.8	
10	Two or more shared SCT hits	2.4	2.2	2.2	
11	Split hits in both L0 and L1	1.2	1.1	0.8	
12	Split pixel hit	2.1	1.6	1.1	
13	Good: a track not in any of the above categories	84.3	85.5	86.6	

Figure : Description of the track categories used by IP2D and IP3D along with the fraction of tracks in each category for the $t\bar{t}$ sample. The categories are constructed with respect to the track quality, which is defined by the clusters (hits), from the silicon layers of the Inner Detector, used in the track reconstruction.

MV2 Inputs Variables

Input	Variable	Description		
Kinematics	$p_T(jet)$	Jet transverse momentum		
	$\eta(jet)$	Jet pseudo-rapidity		
IP2D, IP3D	$\log(P_b/P_{\text{light}})$	Likelihood ratio between the b- and light jet hypotheses		
	$\log(P_b/P_c)$	Likelihood ratio between the b- and c-jet hypotheses		
	$\log(P_c/P_{\text{light}})$	Likelihood ratio between the c- and light jet hypotheses		
SV	m(SV)	Invariant mass of tracks at the secondary vertex assuming pion masses		
	$f_E(SV)$	Fraction of the charged jet energy in the secondary vertex		
	$N_{\text{TrkAtVtx}}(SV)$	Number of tracks used in the secondary vertex		
	$N_{2\text{TrkVtx}}(SV)$	Number of two track vertex candidates		
	$L_{xy}(SV)$	Transverse distance between the primary and secondary vertices		
	$L_{xyz}(SV)$	Distance between the primary and secondary vertices		
	$S_{xyz}(SV)$	Distance between the primary and secondary vertices divided by its uncertainty		
	$\Delta R(\text{jet}, \text{SV})$	ΔR between the jet axis and the direction of the secondary vertex relative to the primary vertex		
Jet Fitter	$N_{2TrkVtx}(JF)$	Number of 2-track vertex candidates (prior to decay chain fit)		
	m(JF)	Invariant mass of tracks from displaced vertices assuming pion masses		
	$S_{xyz}(JF)$	Significance of the average distance between the primary and displaced vertices		
	$f_{\rm E}({\rm JF})$	Fraction of the charged jet energy in the secondary vertices		
	N _{1-trk vertices} (JF)	Number of displaced vertices with one track		
	N>2-trk vertices (JF)	Number of displaced vertices with more than one track		
	$\overline{N}_{\text{TrkAtVtx}}(\text{JF})$	Number of tracks from displaced vertices with at least two tracks		
	$\Delta R(\vec{p}_{iet}, \vec{p}_{vtx})$	ΔR between the jet axis and the vectorial sum of the momenta of all tracks attached to displaced vertices		

Figure : The 24 input variables used by the MV2c00 and MV2c20 $b\text{-}\mathrm{tagging}$ algorithm