

Single top cross section measurements

Annick Lleres (LPSC Grenoble)

Top LHC-France meeting 19/05/2016

Single top production processes

 $\begin{array}{rl} {\rm s-channel} \\ \sigma_s(8\,TeV) &= 5.2\,pb\,\pm\,4.2\% \\ \sigma_s(13\,TeV) &= 10.3\,pb\,\pm\,3.9\% \\ R_{13/8} &= 1.9 \end{array}$

Rare process in pp collisions σ grows much slower with \sqrt{s} than the other top production modes

t-channel $\sigma_t(8 \, TeV) = 85 \, pb \pm 4.4\%$ $\sigma_t(13 \, TeV) = 217 \, pb \pm 4.1\%$ $R_{13/8} = 2.6$

Dominant process

NLO predictions arXiv:1406.4403 NLO+NNLL predictions arXiv:1311.0283 Associated Wt production $\sigma_{Wt}(8 TeV) = 22.4 pb \pm 6.8\%$ $\sigma_{Wt}(13 TeV) = 71.7 pb \pm 5.3\%$ $R_{13/8} = 3.2$

Process not observed in $p\bar{p}$ collisions

2

Inclusive cross sections - Summary of ATLAS+CMS measurements

Motivation for inclusive/fiducial cross section measurements in single top production

- Testing the EW couplings
- Precision measurements to check the SM predictions
- Direct test of the PDFs
- Direct determination of the CKM matrix element V_{tb}

All measurements are in agreement with the SM predictions Only the t-channel process probed at the three energies

ATLAS-CONF-2015-079

t-channel at 13 TeV - Inclusive cross sections

- t-channel exchange leads to a light (spectator) jet scattered into the forward region
- Event selection: 1 isolated muon, 1 b-tagged jet + 1 non-tagged jet with $|\eta| < 3.5$, both with a high $p_T, m_T(W) > 50$ GeV; selection dominated by $t\bar{t}$ and W+jets backgrounds
- Signal discrimination with a multivariate analysis (NN): $m_t, m_{jb}, m_T(W), \eta(j)$ are the most relevant
- Fit of the multivariate discriminator to get the signal strength $\beta = \sigma/\sigma_{th}$, the background normalization is constrained

$\sigma_t(t) = 133 \pm \sigma_t = 229$	$ \begin{array}{c} \pm 25 \ pb \sigma_t(\bar{t}) \\ \pm 48 \ pb \Delta\sigma_t \end{array} $	$\sigma_t = 24 \ pb/\sigma_t = 20\%$	$\begin{array}{c} \textbf{ATLAS Preliminary} \\ \textbf{ATLAS Preliminary} \\ \textbf{SR } \mu^+ \\ \textbf{Data} \\ \textbf{tt, Wt, tb} \\ \textbf{W+jets} \\ \textbf{W+jets} \\ \textbf{W+jets} \end{array}$	
Source	$\Delta\sigma\left(t ight)/\sigma$	$\Delta\sigma\left(ar{t} ight)/\sigma$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array} \\ \begin{array}{c} \\ \end{array}\end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	3 TeV, 3.2 fb ⁻¹ 1 <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>
Statistics	5%	5%		ets /ts,diboson iiet
Luminosity	5%	5%		fit uncertainty
MC statistics	6%	6%		
Jet/MET	8%	6%	B 0 0.2 0.4 0.6 0.8 1 NN output	
b-tagging	7%	8%		•
Theory model	13%	18%		0.8 NN outpu

t-channel at 13 TeV - Inclusive cross sections and ratio

- Similar event selection (jet with $|\eta| < 4.7$) and signal discrimination procedure
- Simultaneous fit of the multivariate discriminators in the signal and 2 control regions

Cross section ratio in agreement with the SM prediction

Potential to discriminate between the different PDF sets when better precision achieved

$$\begin{split} \sigma_t(t) &= 141.5^{+22.8}_{-23.0} \, pb \\ \sigma_t(\bar{t}) &= 81.0^{+22.8}_{-23.0} \, pb \\ R_t &= \sigma_t(t)/\sigma_t(\bar{t}) = 1.75 \pm 0.16(stat) \pm 0.21(syst) \\ \Delta R_t/R_t &= 15\% \end{split}$$

CMS-PAS-TOP-15-003

Associated Wt production at 8 TeV - Inclusive cross section

JHEP 01 (2016) 064 (ATLAS) PRL 112 (2014) 231802 (CMS)

- Selection from the cleanest final state: 2 opposite-sign leptons, 1 or 2 jets, 1 or 2 b-tagged jets, and E_T^{miss} > 40 GeV(ee, μμ), > 20 GeV (eμ)
- Background from non-resonant (WWb/WWbb) and double resonant ($t\bar{t}$) productions
- Fitted multivariate discriminators combining different variables optimised depending on numbers of N_{jets} and N_{bjets}

Source	$\Delta\sigma_{Wt}/\sigma_{Wt}$ (%)	
Statistics	5.8	
Luminosity	4.7	
Theory model	9.9	
Jet/MET	10.9	
b-tagging	3	
Lepton eff.	1	

Associated Wt production at 8 TeV - Fiducial cross section

- Cross section measurement in a fiducial region for a more robust comparison to the theory: this reduces the sensitivity to theory modelling uncertainties
- The fiducial acceptance requires 2 leptons and 1 b-jet at the particle level
- Combined $t\bar{t}$ and Wt measurement from the fit in the 1-jet 1-btag region only

 $\sigma_{t\bar{t}+Wt,fid.} = 0.85 \pm 0.01(stat)^{+0.06}_{-0.07} (syst) \pm 0.03(lumi) \ pb$ $\Delta \sigma_{t\bar{t}+Wt,fid} / \sigma_{t\bar{t}+Wt,fid} = 8\%$

Source	$\Delta \sigma_{t\bar{t}+Wt}/\sigma_{t\bar{t}+Wt}$ (%)	
Statistics	1	
Luminosity	3.1	
Theory model	4.9	
Jet/MET	5.2	
b-tagging	2.3	
Lepton eff.	2.3	

JHEP 01 (2016) 064 (ATLAS)

Search for s-channel production at 8 TeV

- Selection: 1 isolated lepton, 2 b-tagged jets and large E_T^{miss} ; the main background is $t\bar{t}$
- Signal discrimination based on the matrix element method (ATLAS) or using a multivariate discriminator (CMS)
- Fit of the discriminator to get the signal strength β with the background contrained through control regions

$$\sigma_s = 4.8 \pm 0.8(stat)^{+1.6}_{-1.3}(syst) \, pb$$

 $\Delta \sigma_s / \sigma_s = 37\%$

Search for s-channel production at 8 TeV

 2.5σ observed 1.1σ expected

 $\Delta \sigma_s / \sigma_s (\%)$

Source	ATLAS	CMS
Statistics	12	11
Luminosity	5	6
MC statistics	12	_
Jet/MET	13	19
b-tagging	8	16
Backgrounds	8	19
Theory model	13	33

arXiv:1603.02555 (CMS)

From cross sections to EW couplings

- The CKM matrix elements V_{tq} enter in the production and decay Wtb vertices
- Anomalous Wtb couplings are parameterized through the left-handed form factor f_{Lv} (in SM $f_{Lv} = 1$)
- In the approximation $|V_{td}|, |V_{ts}| \ll |V_{tb}|$ and full left-handed decay to Wb one get

 $|f_{Lv} V_{tb}| = \sqrt{\sigma/\sigma^{theo}}$

t-channel differential cross sections at 13 TeV

- Differential measurements are particularly well suited to assess the validity of the predictions
- Normalized differential cross sections measured as a function of the top p_T and |y|
- Event selected with 1 isolated muon, 2 jets ($|\eta| < 4.7$) with 1 b-tagged, and $m_T(W) > 50 \text{ GeV}$
- Signal discrimination with a multivariate analysis: $\eta(j), m_t, \Delta R(j, b), |\Delta \eta(b, \mu)|, m_T(W)$
- Discriminator fitted to extract separately the signal yields in each bin of top p_T and |y|
- Unfolding to parton level with the TUNFOLD algorithm

Summary and perspectives

- Overall good agreement with the Standard Model predictions of the inclusive, fiducial 0 and differential cross sections measured for the three single top processes
- Also good agreement for the derived values of the CKM matrix element $|V_{tb}|$ 0
- More results will come to complete the scan of all energies 0
- Combination of the three processes for BSM searches through: 0
 - Direct model comparison

5

Fermilab-Pub-13-252-E (DØ)

-0.02

-0.01

0.00

 \mathcal{T}_{L}

0.01

0.02

Determination of effective couplings

$$\sigma_t = \sigma_t^0 (1 + 4\mathcal{F}_L - 3.06\mathcal{G}_{4f})$$

$$\sigma_s = \sigma_s^0 (1 + 4\mathcal{F}_L + 19.69\mathcal{G}_{4f})$$

$$\sigma_{Wt} = \sigma W_t^0 (1 + 4\mathcal{F}_L)$$

12

DØ 9.7 fb⁻¹