GALACTIC TRANSIENTS WITH SVOM

J. Rodriguez, W. Yu & S.N. Zhang

GALACTIC SOURCES

A large number of different types

- X-ray Binaries the obvious candidates
 - + Swift and INTEGRAL: CV (IP) are > 20 keV emitters!
 - + What about γ-ray binaries (bulk of emission at VHE, high mass companion)?
- Isolated sources: WD/novae, neutron stars (incl. SGR and AXPs giant flares and bursts)
 - + Swift and INTEGRAL: magnetically active stars also > 20 keV emitters

THE PHYSICS

Different families/sources => large number of key scientific questions (multi- λ and multi-instr. obs.)

- XRBs & CVs: physics of accretion (DIM, outburst mechanisms, state transitions,...) and links with jets/winds (energetic budget, particle acceleration, ISM feedback)
- γRBs & VHE emitters: Leptonic vs. hadronic model (synergy with CTA), interaction with secondary
- NS & WD: B topology, reconnection mechanisms and NS-quake, thermonuclear burning/explosions, crustal cooling, EOS (together with timing studies)
- Stars: Flare mechanisms, B in solar types stars, particle acceleration and impact on ISM

GALACTIC SOURCES BY SVOM OBSERVATIONS

- X-ray Monitoring (roughly comparable to Swift/BAT) need extra attention to Galactic Bulge and Plane if GRBs will be detected at a rate of 60+/yr
- Sufficient ToO time (more non-GRB ToOs are expected) a substantial amount of ToOs would be on Galactic sources
- Will be benefited from ground wide field-of-view surveys e.g., SKA in radio, zPTF and PanSStars in optical, CTA at VHE, LIGO, etc.

Thermal emission black body: soft X-rays ~I keV emission: radio to IR/ Optical GFT/GWAC/VT (External) disc/companion: IR -

ECLAIRS

Hard X-ray (10-200 keV): « Corona »

GRM

γ-ray emission 0.2-10 MeV: Origin?

SOFT X-RAYTRANSIENT OUTBURSTS LABORATORY FOR ACCRETION PHYSICS

RXTE/ASM: 16 years all sky monitoring of the X-ray sky

SOFT X-RAYTRANSIENT OUTBURSTS LABORATORY FOR ACCRETION PHYSICS

RXTE/ASM: 16 years all sky monitoring of the X-ray sky

SOFT X-RAY TRANSIENT OUTBURSTS LABORATORY FOR ACCRETION PHYSICS

RXTE/ASM: 16 years all sky monitoring of the X-ray sky

IMAGING: DISCOVERING SOURCES / DETECTING CHANGES

IMAGING: DISCOVERING SOURCES / DETECTING CHANGES

OUTBURSTS AND PROFILES

ACCRETION SCIENCE 1: PLASMA PHYSICS & DISK INSTABILITY

understanding viscosity parameter in accretion flows

ACCRETION SCIENCE 2: PHYSICS OF STATETRANSITIONS

THE SITUATION IS NOTTHAT BAD

Real bimodal behaviour

Easy to separate

> time resolved spectroscopy

SPECTRAL ANALYSIS OF SOFT VS HARD STATES

SPECTRAL ANALYSIS OF SOFT VS HARD STATES

SPECTRAL ANALYSIS OF SOFT VS HARD STATES

=> Accretion geometry

=>Origin of spectral components

=>(fast) Variability

=>Disk-jet coupling (multi-1)

=>Spin and parameters of CO

=>B of NS

ACCRETION 3: XRBS AT LOW LEVEL

Wijnands et al. 2015

- NS and BH XRBs behave differently in terms of X-ray spectra and their relation to the X-ray luminosity:
- Discriminate between BH and NS transients through X-ray observations
- Origin of the spectral shape vs. X-ray luminosity relation:

hot accretion flow vs. NS surface emission

- What is the nature of radio vs X-ray emission at these low levels?
- => SKA (and precursors) + SVOM

FEASIBILITY (I): CVS

Nice enough to lie at high b!

=> no constraints due to BI law

e.g.TW Pic, J17303-0601, and J19552+004 at resp. b~+13°o, b~+15°o and b~-13°

- Bright enough to be seen/followed by all instruments onboard from the R band to 50-100 keV
- Large ECLAIRs/GRM fov to detect serendipitous activity: new outbursts or Nova type activity => in synergy with other obs. (e.g.VHE as some have recently been detected with Fermi)

FEASIBILITY (2): XRBS AND ISOLATED NS

Pre requisite: Be (in the 10% time) outside the B1 law!

THE « EASY » CASES BRIGHT HARD STATES

Detection of specific spectral features

Bright source =>
Possibility to follow on rather short time scale (?)

STILL « EASY »: MODERATELY BRIGHT STATES

Appearance of disk during spectral transitions

SPECIFIC SPECTRAL COMPONENTS

SPECIFIC SPECTRAL COMPONENTS

Clear detection of iron line

=> Simple (broad) gaussian fits the data well

LOW FLUX

Early stages => basic parameters: Nh & Gamma (E-cut not detected)

SUMMARY OF ACCRETION PHYSICS

Fine spectral analysis: line/reflection/ link with jet-external disk

Disk @ LSO: line, inner radius => spin of BH?

Approach of disl / reflection + multi wavelength

Basic detection

SYNERGIES WITH RADIO....

ASKAP/MEERKAT FOV

... AND VHE

Physical Map of the World, June 2003

