

The ECLAIRs + GRM system: prospects for GRB spectroscopy between 4 keV and 5 MeV MARIA GRAZIA BERNARDINI FREDERIC PIRON

JEAN-LUC ATTEIA

Laboratoire Univers et Particules de Montpellier (LUPM) Institut de Recherche en Astrophysique et Planetologie (IRAP)

SVOM scientific workshop, Les Houches, 10-15 April 2016

Fermi/GBM showed deviation from the Band spectrum: different combinations of Band, Comptonised, Blackbody and power-law models

Band function:

Band+93 Briggs+99 Guiriec+15

ECLAIRS + GRM view of the prompt emission

GRB 090924

GRB 100724B

ECLAIRS + GRM (4-5000 keV) will allow us to detect the most interesting features of GRB prompt emission

GRB.090902B

Guiriec+11 Guiriec+13 Tierney+13

GRB 120323A

З

GRB 120323A: a short GRB with BB component

 $\mathsf{P}(\mathsf{P}(\mathsf{P}(\mathsf{P}(\mathsf{P})))) = \mathsf{P}(\mathsf{P}(\mathsf{P}(\mathsf{P})))$

model	gamma	Ecut (keV)	KT (keV)	Cstat/dof
cutPL	0.45±0.01	37.8±0.6		5027/1493
cutPL+BB	1.47±0.03	288±36	11.8±0.1	1501/1492

 Short GRB detected by Fermi/ GBM

Guiriec+13

prompt emission timeintegrated spectrum: comptonised model + blackbody (~ 50% of total fluence)

best-fitting model:
comptonised + b-body

all spectral parameters well constrained and consistent with injected parameters

GRB 100724B: a long GRB with BB component

Guiriec+11

model	alpha	beta	Ep (keV)	KT (keV)	Cstat/dof
Band	0.70±0.01	2.06±0.02	276±5		3179/2518
Band+BB	0.90±0.01	2.09±0.03	490±25	38.5±0.7	2520/2513

 Long GRB detected by Fermi/ GBM

prompt emission timeintegrated spectrum: Band function + blackbody (~ 10% of total fluence)

 best-fitting model: band + bbody

 all spectral parameters well constrained and consistent with injected parameters

Band function is empirical and not a physical model: what is the emission mechanism??

- synchrotron? line of death problem
- Iow energy spectral index useful to constrain models

Table 1. Low energy limiting photon spectral index α [i.e. $N(E) \propto E^{\alpha}$] for various emission models. For clarity the indices for the energy spectrum F(E) and for its EF_E representation are also reported.

α	$\alpha + 1$	$\alpha + 2$	
N(E)	F(E)	EF_E	model/spectrum
-3/2	-1/2	1/2	Synchrotron emission with cooling
-1	0	1	Quasi-saturated Comptonization
-2/3	1/3	4/3	Instantaneous synchrotron
0	1	2	Small pitch angle/jitter
			inverse Compton by single e^-
1	2	3	Black Body
2	3	4	Wien

Katz+94 Preece+98,+02 Ghirlanda+03

Are spectral parameters different between short and long GRBs??

 short GRBs are harder because they have larger E_{pk} or harder low energy index?

Kouveliotou+93 Ghirlanda+04,+09,+15 Nava+11

Band function is an empirical model: what is the emission mechanism??

- synchrotron? line of death problem
- low energy spectral index useful to constraint models

ECLAIRs + GRM will help to determine with great precision these parameters!

Are spectral parameters different between short and long GRBs??

 short GRBs are harder because they have larger E_{pk} or harder low energy index?

 446 GRBs with comptonised model from the Fermi/GBM spectral catalogue

 76 GRBs with band model from the Fermi/GBM spectral catalogue

Peak energy

Comptonised model

Band model

Low energy spectral index

Cutoff/peak energy

Conclusions

The complete study of GRB prompt high-energy emission will require combining the data from the ECLAIRs and GRM instruments, from 4 keV to a few MeV. The excellent performance of the ECLAIRs and GRM instruments (the low energy threshold of 4 keV and its good sensitivity at MeV energies) will permit:

- to identify and characterize these multiple components in more detail
- to measure with precision the low energy spectral parameters of GRB prompt emission spectra, providing direct insights on the emission mechanisms responsible for the prompt emission

Backup slides

Methodology

- XSPEC Fakeit to simulate GRB spectrum
- ECLAIRs: ancillary response file, redistribution matrix and background files from Geant4 simulations with the updated mask for on-axis sources without the Earth in the field-of-view
- GRM: 3 GRD detectors, response file and background for 30 degree off-axis sources without the Earth in the field-of-view
- fit of the simulated spectrum with comptonised and Band models in XSPEC to check if we can retrieve the simulated spectrum with the injected parameters

Methodology

- Aim: test performances of ECLAIRs + GRM compared to GBM (NaI+BGO detectors)
- initial spectra: best fit models (446 comptonised and 76 band) from Fermi/GBM spectral catalogue (Grueber et al. 2014)
- simulated as they would be observed by ECLAIRs + GRM (4-5500 keV) and by GBM (4 NaI + 1 BGO detectors, 8-40000 keV)
- fitted in XSPEC with comptonised (CUTOFFPL) and Band (GRBM) models

GRD effective area (on-axis sources)

GRD background

Background for 1 GRD with the Earth outside the f.o.v.:

+ CXB

- Earth's albedo
- CR induced radiation from Earth's atmosphere
- activation after passage through SAA

Moretti+09 Churazov+06 Sazonov+07