THE POPULATION OF CLASSICAL LGRBs: CHARACTERIZATION OF THE POPULATION

PRESENTATION OF THE TOPIC

Characterize the population of LGRBs

A

- Redshift distribution
- Luminosity function
- Light-curve and spectral properties
- Emitting mechanism of the different phases

В

PRESENTATION OF THE TOPIC

Characterize the population of LGRBs

A

B

- Redshift distribution
- Luminosity function
- Light-curve and spectral properties
- Emitting mechanism of the different phases

A and B strictly related.

B treated mainly in previous talk

SCIENTIFIC ISSUES

- Redshift distribution
- Luminosity function
- Is there a luminosity evolution?
- Is there a density evolution?
- Progenitors
- Rate
- Star-formation tracers
- First stars and stellar evolution

SCIENTIFIC ISSUES

Needs

- homogeneous sample of LGRBs with multi-lambda observations: jet opening angle, medium density
- unbiased samples of LGRBs
- rapid localization and spectroscopic follow-up observations: redshift completeness

Needs

- homogeneous sample of LGRBs with multi-lambda observations: jet opening angle, medium density
- unbiased samples of LGRBs
- rapid localization and spectroscopic follow-up observations: redshift completeness

Needs

- homogeneous sample of LGRBs with multi-lambda observations: jet opening angle
- unbiased samples of LGRBs
- rapid localization and spectroscopic follow-up observations: redshift completeness

NIR follow-up

Needs

- homogeneous sample of LGRBs with multi-lambda observations: jet opening angle
- unbiased samples of LGRBs
- rapid localization and spectroscopic follow-up observations: redshift completeness

To date 30% of LGRBs have redshift: SVOM goal is to double the %

Needs

- homogeneous sample of LGRBs with multi-lambda observations: jet opening angle
- unbiased samples of LGRBs
- rapid localization and spectroscopic follow-up observations: redshift completeness

pointing strategy + VT + GFT + larger telescopes

Synergy with CTA and SKA

- CTA: further information on the physics
- SKA: environment, jet opening angle
- SKA: orphan afterglows, very high redshift afterglows

Synergy with (external) telescope

- future transient follow-up machines (NTE, SOXS,...)
- 8-m telscopes
- JWST