

Precision Muon Physics at J-PARC

2016 Joint Workshop of FKPPL and TYL/FJPPL May 18 2016, KIAS, Seoul, Korea Soohyung Lee (CAPP/IBS)

on behalf of FKPPL muonists[†]

Toward the New Physics

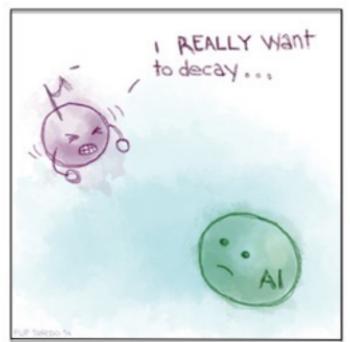
- Higgs boson was a missing piece of puzzle named SM
 - However, it was not the end of the story (..and our mission)
- Dark matter, matter-dominated universe, gravity, neutrino masses → demands for NP
- Precision muon physics can be a breakthrough to NP
 - Discrepancy between experiments and SM prediction → muon g-2
 - Suspicions to elementary particles → muon electric dipole moment
 - Forbidden/rare processes in SM → charged lepton flavor violation (cLFV)

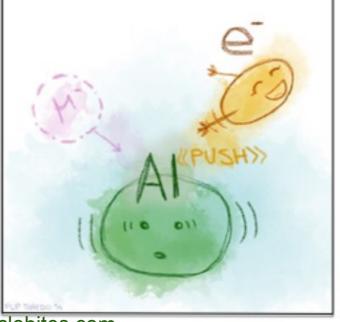
"DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models

★★★ signals large effects, ★★ visible but small effects and ★ implies that the given model does not predict
sizable effects in that observable.

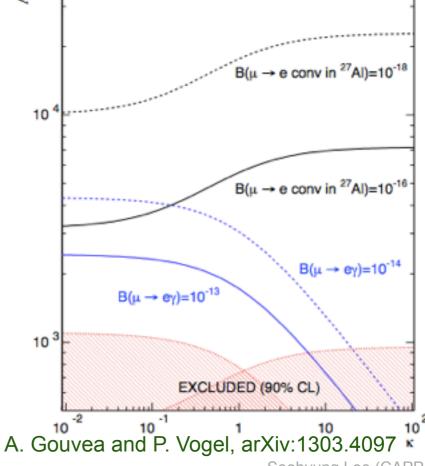
	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^{0} - \bar{D}^{0}$	***	*	*	*	*	***	?
¢K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}(B \to X_s \gamma)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \rightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \rightarrow K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \rightarrow \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \rightarrow \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

µ→e Conversion


- Flavor changing in charged lepton has never been observed
 - ► Br($\mu \rightarrow e\gamma$) < O(10⁻⁵⁴) in SM (only possibility for a "free" muon)
 - Interaction with nuclei (µN→eN) gives more possibilities


μN→eN is more sensitive to some models, so if we observe it, it will

allow us to discriminate the models

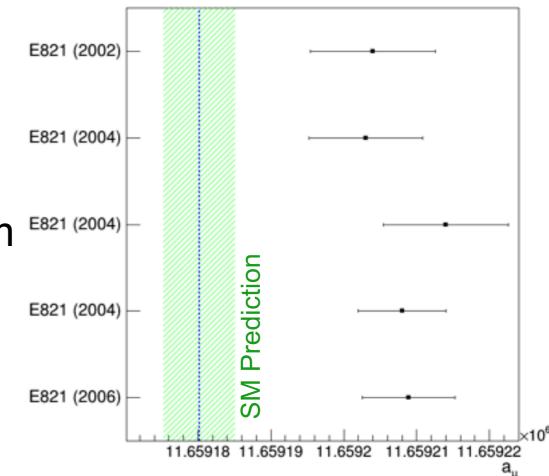

Energy scale probed is PeV level!

- Complimentary with LHC-like searches

http://www.particlebites.com

Muon g-2/EDM

SM predicts muon anomalous magnetic moment:


$$a_{\mu}^{SM} = (116\ 591\ 802 \pm 49) \times 10^{-11}$$

Latest result from E821 at BNL:

$$a_{\mu}^{E821} = (116\ 592\ 089 \pm 63) \times 10^{-11}$$

- Experimental result is ~3.5σ away from SM
- Muon electric dipole moment:
 - SM: ~2×10⁻³⁸ e⋅cm
 - ► E821 (2009): (-0.1±0.9)×10⁻¹⁹ e·cm
 - No clue of existence yet

 Precision measurement will be a new breakthrough to NP!

Precision Muon Physics at J-PARC

COMET

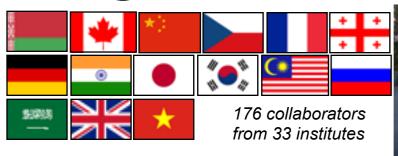
Searching for charged Lepton Flavor Violation (cLFV) from µ⁻→e⁻ conversion

Muon g-2/EDM

Precision measurements of anomalous magnetic and electric dipole moment of muon

Material & Life Science Experimental Facility

Hadron Experimental Facility



COMET

Protons
(8 GeV)

프랑스FRANCE
CORÉE 한국
2 0 1 5 2 0 1 6

@ J-PARC Hadron Experimental Facility

pion production system

plon

muon transport system

Protons Pions Muons Production Target

Pion Capture Section

A section to capture pions with a large solid angle under a high solenoidal magnetic field by superconducting maget

Stopping

Target

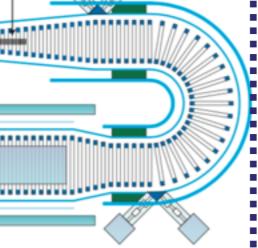
COMET-Phase-I

For BG measurement, R~10⁻¹⁵ muon conversion

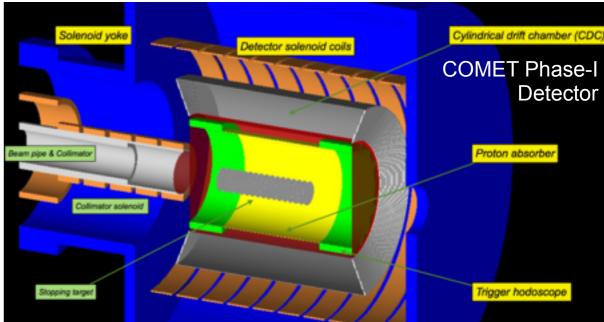
COMET Phase-II

For R~10⁻¹⁷ muon conversion

Commissioning in 2018


Commissioning in 2021

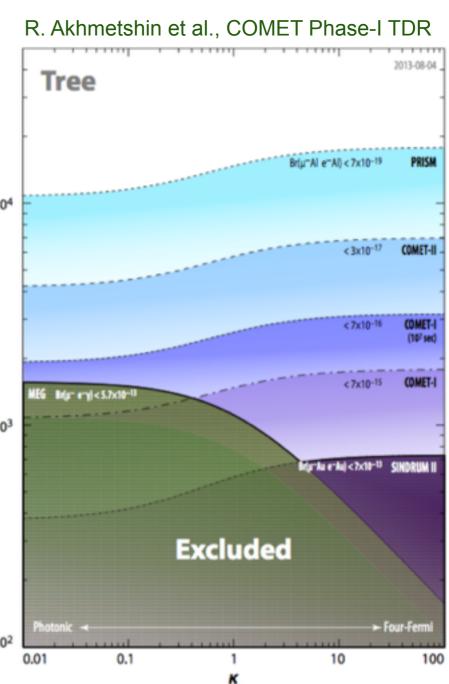
Detector Section A detector to search for muon-to-electron conversion processes.


Pion-Decay and Muon-Transport Section

A section to collect muons from decay of pions under a solenoidal magnetic field.

5m

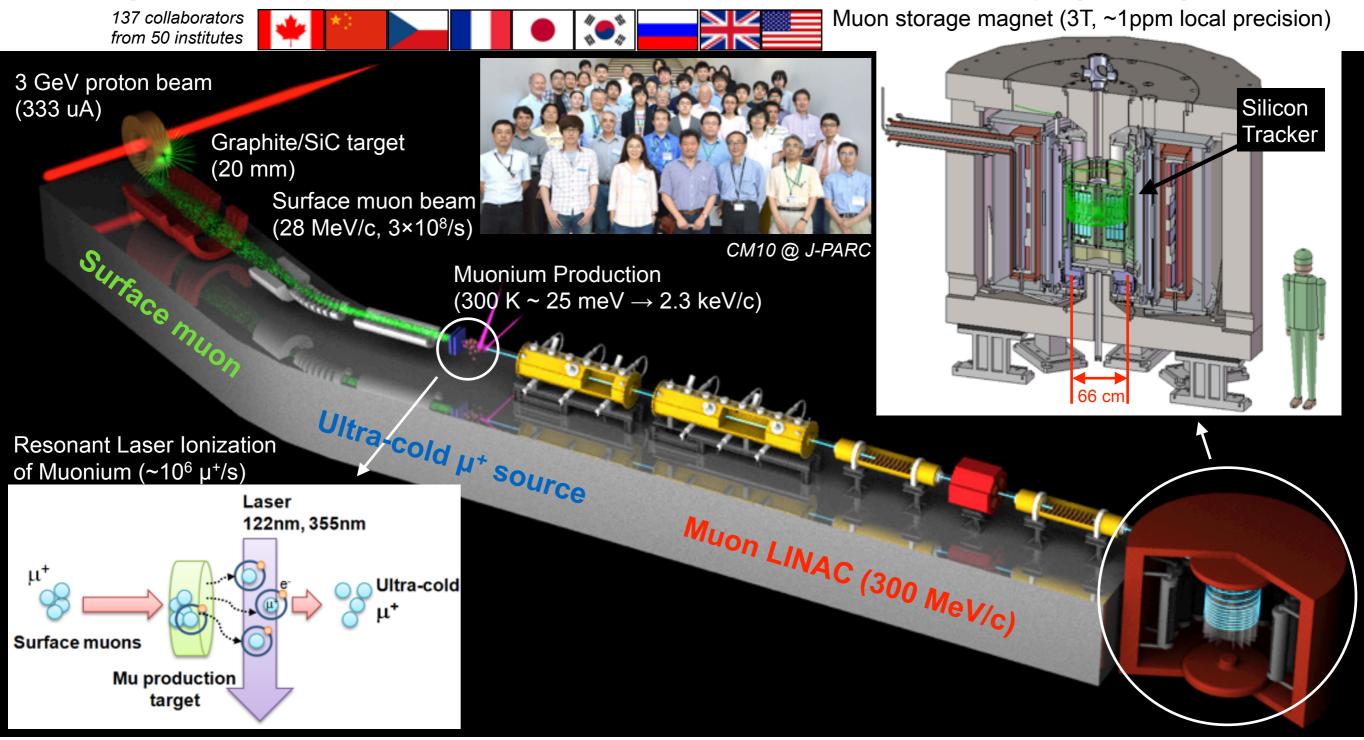
measurement



COMET

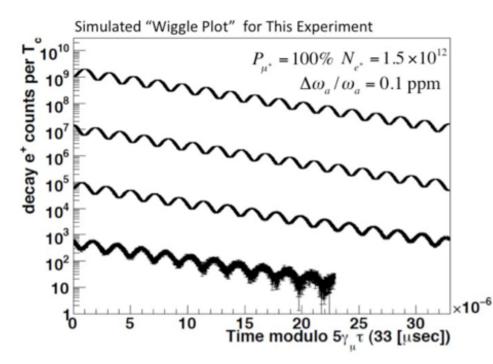
- COMET Phase-I (Data taking is planned to be 2018)
 - Target single event sensitivity: B(µ⁻N→e⁻N) < 3.5×10⁻¹⁵</p>
 - Main goals are:
 - Backgrounds studies for Phase-II
 - Achieve the sensitivity O(10⁻¹⁵) (100 times better than SINDRUM II)
- COMET Phase-II (Data taking is planned to be 2021)
 - Target single event sensitivity: B(μ·N→e·N) < 3×10-17</p>

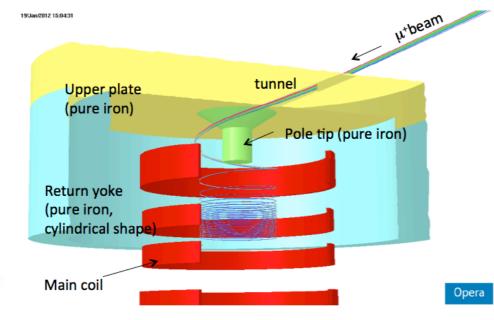
Finding a needle in a trillion (10¹²) haystacks!

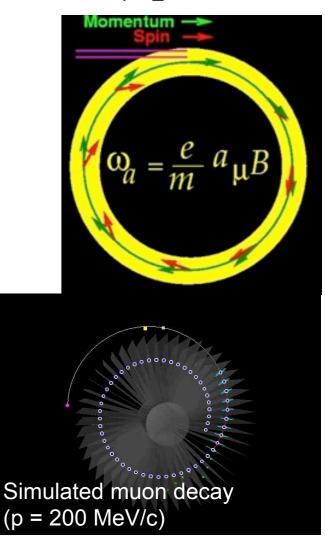


1 Muon g-2/EDM Experiment

@ J-PARC Material and Life Science Facility (MLF)


Muon g-2/EDM Experiment




- T-BMT equation governs the spin precession of muons
 - ▶ In the experiment, we put E=0, and it gets much simpler

$$\vec{\omega}_a = -\frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{B}}{c} \right) \right]$$

- Spin will precess as the polarized muon orbits
- The spin precession makes changes of detected positrons which comes from the muon decay (µ⁺→e⁺v_e)

1 S Muon g-2/EDM Experiment

- Goals of statistical sensitivity:
 - \rightarrow a_µ: 0.47 ppm (50% polarization) / 0.14 ppm (100% polarization)
 - ► EDM: O(10⁻²¹) e·cm
 - Approach is very different from FNAL, but the same sensitivity goal

Table 1.1: Comparison of the previous experiment BNL-E821, FNAL-E989, and this experiment.

	BNL-E821	FNAL-E989	This Experiment	
Muon momentum	3.09 Ge	$0.3~{ m GeV}/c$		
γ	29.3	3		
Polarization	100%	$50\%{\rightarrow}\ 100\%$		
Storage field	B = 1.48	$B=3.0 \mathrm{T}$		
Focusing field	Electric C	very-weak magnetic		
Cyclotron period	149 n	S	7.4 ns	
Spin precession period	$4.37~\mu$	$2.11~\mu\mathrm{s}$		
# of detected e^+	5.0×10^9	1.8×10^{11}	$8.7 \times 10^{11} \rightarrow 1.5 \times 10^{12}$	
$\#$ of detected e^-	3.6×10^{9}	_	_	
Statistical precision (a_{μ})	0.46 ppm	$0.14 \mathrm{ppm}$	$0.37~\mathrm{ppm} \rightarrow 0.14~\mathrm{ppm}$	
Statistical precision (EDM)	$0.9 \times 10^{-19} e \cdot \text{cm}$	$10^{-21} e \cdot \mathrm{cm}$	$10^{-21}~e\cdot\mathrm{cm}$	

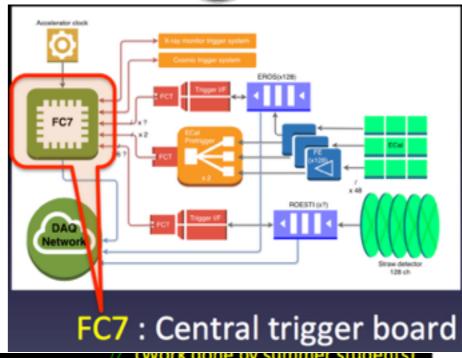
Korean Group Contributions

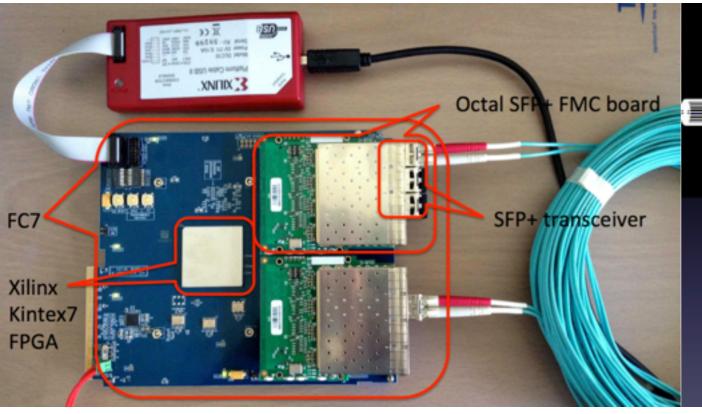
COMET

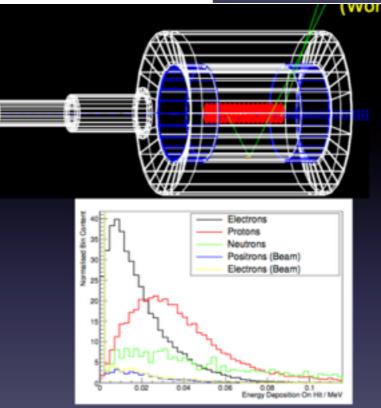
- Center for Axion and Precision Physics Research, Institute for Basic Science (CAPP/IBS)
 - Trigger R&D (Myeongjae Lee)
- Muon g-2/EDM
 - Korea University (KU)
 - DC-DC converter, High-energy beam profile monitor R&D (Eunil Won, Woodo Lee)
 - Seoul National University (SNU)
 - Low-energy beam profile monitor (Seonho Choi, Bongho Kim)
 - Korea Advanced Institute of Science and Technology (KAIST)
 - Electric field monitor R&D (Jhinhwan Lee)

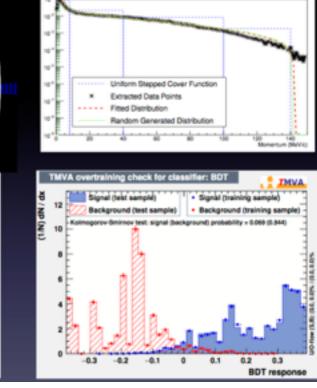
CAPP/IBS

- Non-destructive beam profile monitor R&D (Selcuk Haciomeroglu)
- Precision beam tracking and systematics study (Yannis Semertzidis, Soohyung Lee)




COMET: CAPP/IBS

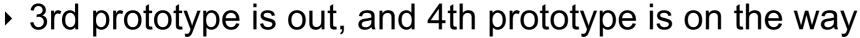



Trigger R&D

- Leading COMET trigger subproject, and responsible to central trigger system R&D
- Primitive trigger system made and tested
- More hardware R&D and simulation studies are underway

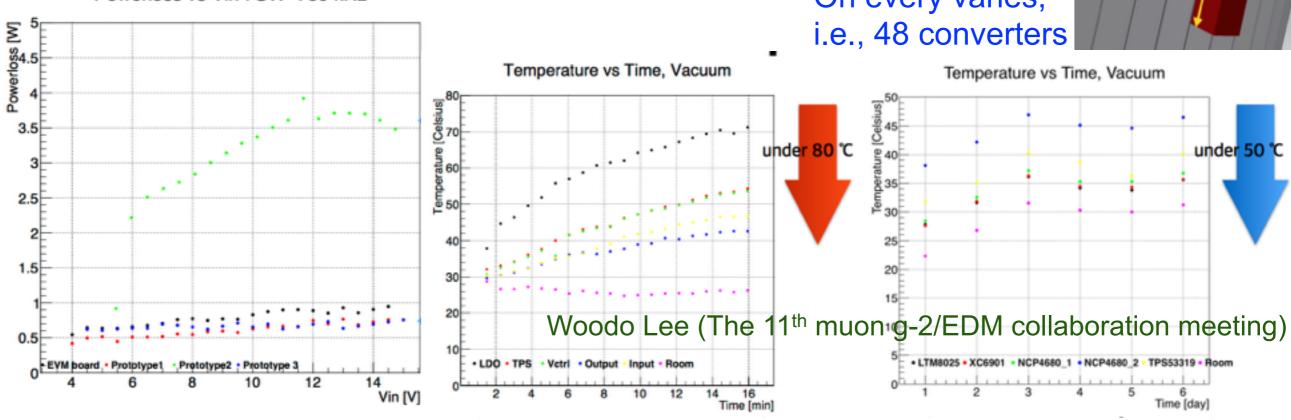
Myeongjae Lee

Muon g-2/EDM: KU



DC-DC converter

Powerloss vs Vin: SW=750 kHz

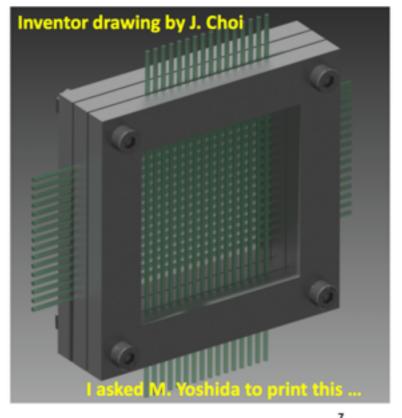

- Provides a various DC power to components in the storage magnet
- Should not produce significant electric and magnetic fields (E « 10 mV/cm, B « 0.3 μT)

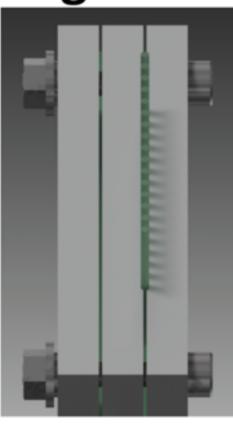
On every vanes,

Muon g-2/EDM: KU

- High-energy muon beam profile monitor
 - O(10) monitors in high energy muon beam line for beam diagnosis
 - Based on scintillating fiber
 - Design and estimation done

An estimate (summary)


- Momentum of μ^+ = 300 MeV/c
- PDG says for $p(\mu^+) = 300 \text{ MeV/c}$, stopping power =~ 2 MeV cm²/g
- Multi-cladding fiber density: 1.05 g/cm³ (Kuraray fibers)
 # energy loss per mm = 0.21 MeV/mm


Eunil Won (The 10th muon g-2/EDM collaboration meeting)

- photon yield: 8,000 photons/MeV (Saint-gobin)
- Attenuation of fibre: 3 m and we assume 0.5 m in total for our readout
- MPPC PDE = fill factor x QE x avalanche probability = 20%
 # of photo-electrons to MPPC
 - = $8,000 \times 0.2$ (MeV/mm) x 1 (mm) x exp(-0.5/3) x 0.2 = 270 photo-electrons

(wavelength mismatch btw MPPC and fibre not included)

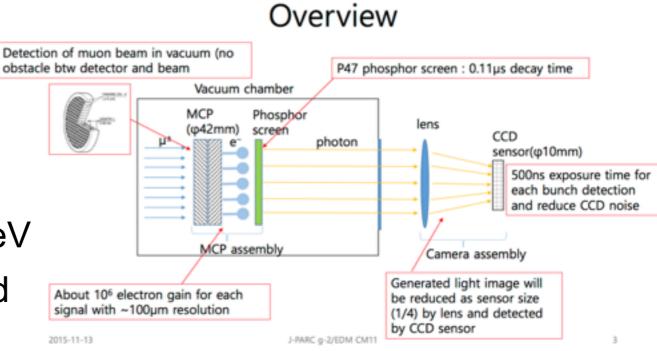
CAD drawing

CAPP/IBS and Korea Univ. Dept. of Physic

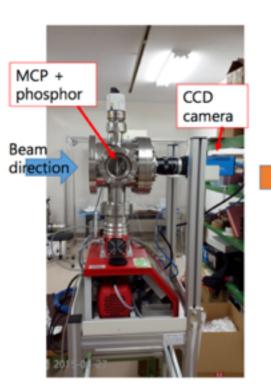
15

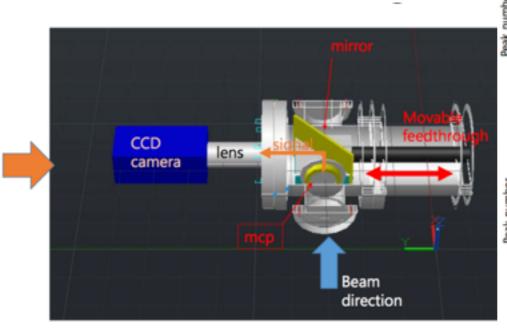
CAPP/185 and Korea Univ. Dept. of Physics, Eunil Won

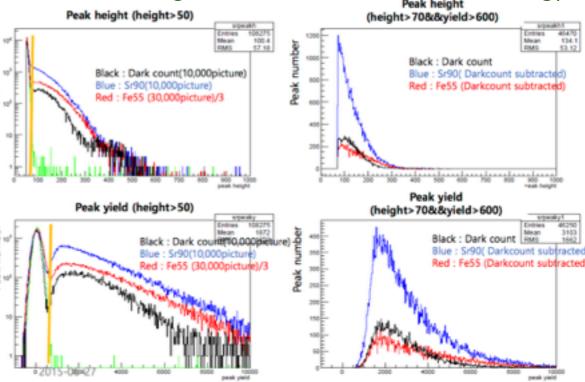
14



Muon g-2/EDM: SNU






- Low-energy muon beam profile monitor
 - Based on MCP/phosphor and CCD sensor
 - → O(10⁵) muon detection up to 1.2 MeV
 - Preliminary beam line test done and more beam line tests are underway

Bongho Kim (The 11th muon g-2/EDM collaboration meeting)

Muon g-2/EDM: KAIST

- Electric Field Monitor
 - The experiment assumes E=0 in the storage magnet, but it's hard to achieve it, so we need measure the small E field precisely
 - Based on a dipole antenna for the high sensitivity measurements
 - Preliminary design done and more details are underway

Basic concept

Here is a suggestion to use precision electrometers and a lock-in amplifier to fully electronically measure the induced charges in the dipole antenna rotating in the field, enabling the measurement of E-field-induced charges equivalent to less than 10 electrons and E-field as low as 0.1 mV/m.

Jhinhwan Lee (The 11th muon g-2/EDM collaboration meeting)

$$Q_{-} = -Q_{0}\cos(\omega t)$$

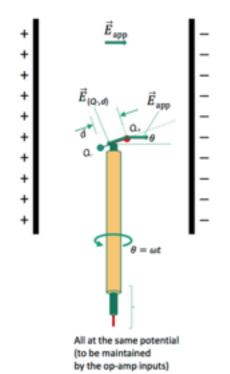
 $Q_{+} = Q_{0}\cos(\omega t)$ $Q_{0} = d^{2}E_{app}/k$

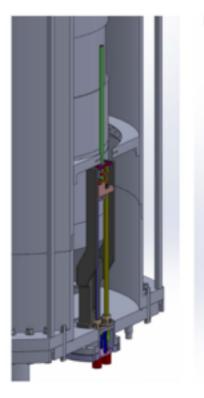
The electric field by Q_- and the applied electric field should have zero net electric field component along the dipole antenna direction at Q_+ at equilibrium. (Otherwise more charge will accumulate at Q_+ or Q_+ will be drifted toward Q_- .):

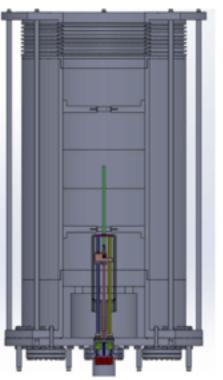
$$E_{app}\cos\theta + E(Q_-, d) = 0$$

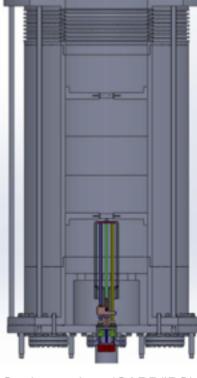
 $E_{app}\cos\theta + \frac{k\bar{Q}_-}{d^2} = 0$
 $Q_- = -k^{-1}d^2E_{app}\cos\theta = -Q_+$

At $\theta=0$, $E_{app}=1$ V/m, $d=10^{-2}$ m, $k=9\times10^9$ Nm 2 /C 2 , the induced charge is $Q_0=Q_+=-Q_-=1.1\times10^{-14}$ C. If we rotate the dipole antenna at a frequency ω ($\theta=\omega t$), the currents into the antenna poles are:

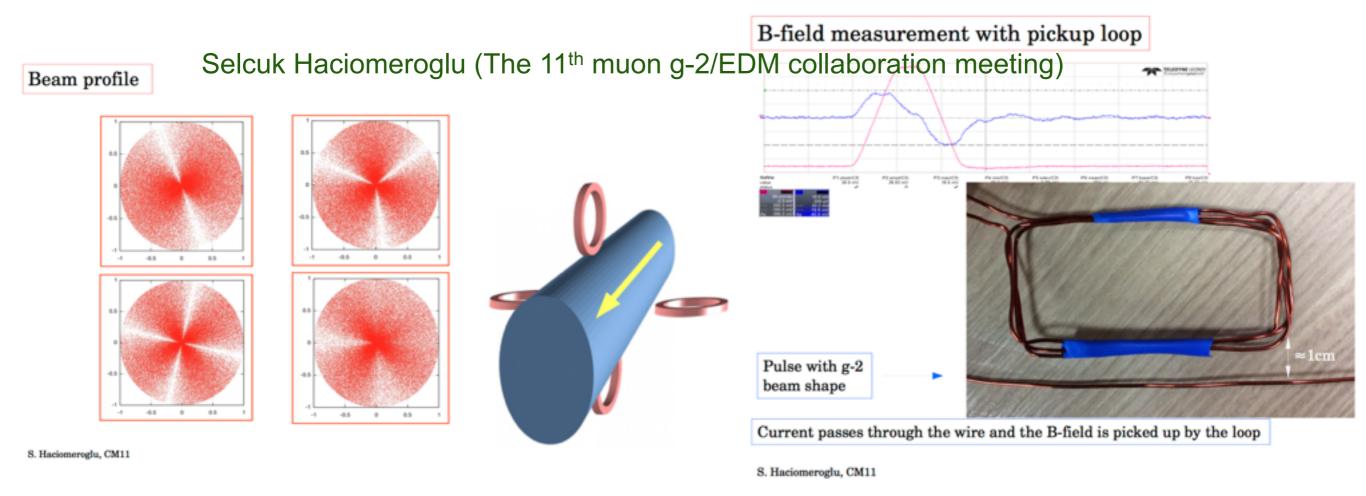

$$I_{-} = \frac{dQ_{-}}{dt} = \omega Q_{0} \sin(\omega t)$$


$$I_{+} = \frac{dQ_{+}}{dt} = -\omega Q_{0} \sin(\omega t)$$


At f=10 rev/s, the peak current for both poles is:

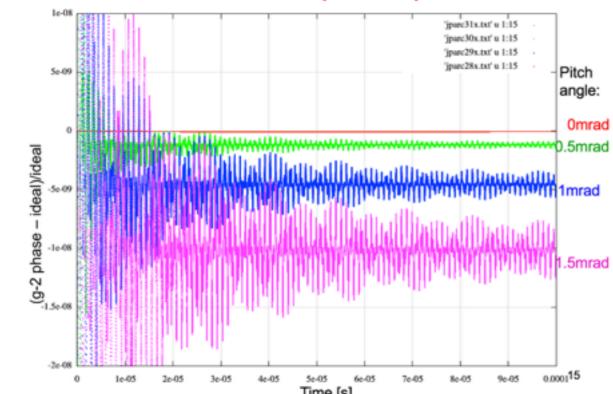

$$I_{\text{peak}} = \omega Q_0 = \frac{2\pi f d^2 E_{\text{app}}}{k} = 6.6 \times 10^{-13} \text{A} = 0.66 \text{ pA}$$

Jhinhwan Lee, IBS CAPP / KAIST Physics


The 11th g-2/EDM collaboration meeting

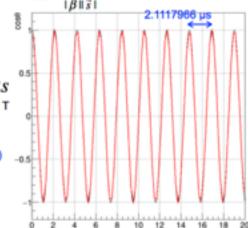
15 Muon g-2/EDM: CAPP/IBS

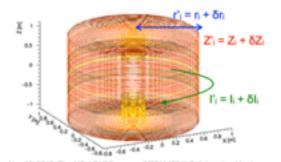
- Non-destructive muon beam profile monitor
 - Measures beam position based on induced currents by beam
 - Several options are being considered (Rogowski coil, SQUID, ...)
 - Simulation studies and prototyping are in progress


Muon g-2/EDM: CAPP/IBS

- Precision beam tracking and systematics study
 - Many new techniques in the experiment, so systematics study is crucial
 - Precision beam tracking is necessary to understand the beam behavior

 Primitive simulation in a storage region done and realistic one is in progress


Yannis K. Semertzidis (The 8th muon g-2/EDM collaboration meeting)


√S Validation: ω_a

 ω_a of the muon is checked in a storage region

$$\frac{2\pi}{\omega_a} = 2\pi / \left(\frac{g-2}{2} \frac{Qe}{m} B\right) = 2.11179652 \ \mu s$$
with B = 3 T
$$\frac{2\pi}{\omega_a} = 2.11179656 \ \mu s \quad \text{from the fit (with B = 3T)}$$
(0.02 ppm deviation from the expectation)

 Systematics may be studied by playing with coil configurations

- Radius of each coil
- · Vertical position of each coil
- Current of each coil
- Those represents the B field uncertainty

Soohyung Lee (CAPP/IBS)

Soohyung Lee

(The 11th muon g-2/EDM collaboration meeting)

FKPPL Contributions

- Our French colleagues are involved in development of a software framework for COMET (ICEDUST), and it can be extended for muon g-2/EDM as well
 - No concrete plan for the software framework for muon g-2/EDM experiment yet
 - Korean group is working on electronics and triggers, therefore, the synergy of collaboration will be great
 - The collaboration of FKPPL for muon g-2/EDM is being established - FKPPL project application submitted
 - We are expecting great efforts from this project!

Summary

- Frontier experiments in muon precision measurement is being developed in J-PARC
 - They will be breakthroughs to the New Physics
- Korean group contributes to both experiments actively
 - Covers hardware developments, simulations, and systematics studies
- French group is developing a software framework for COMET
 - FKPPL muonists[†] would like to make it for muon g-2/ EDM as well