DE LA RECHERCHE À L'INDUSTRIE

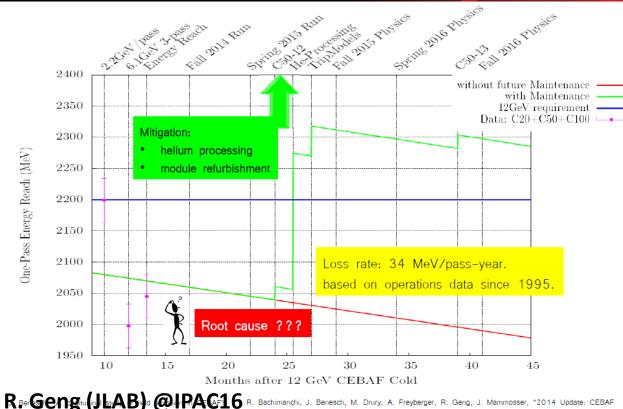
A-RD-12

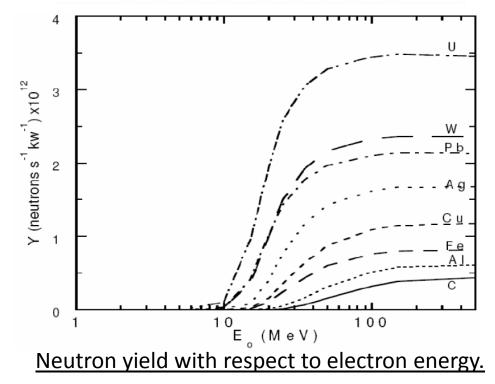
Scintillating fibers detection system for superconducting RF cavities

K. Umemori on behalf of the collaboration

		3		
<u>Enrico Cenni</u>	IRFU/CEA	<u>Yasuchika Yamamoto</u>	KEK	
Juliette Plouin	IRFU/CEA	Kensei Umemori	KEK	
		Hiroshi Sakai	KEK	

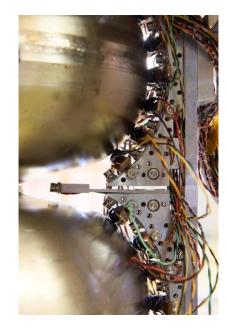
<u>Outline</u>

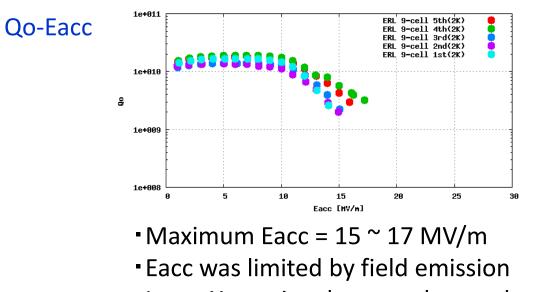

- Motivation
- Experimental set up
- Proposed tests
- Summary

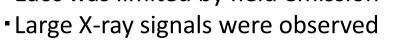

Motivation

Field emission issues:

- 1. Field emission is one of the main issues for superconducting cavities <u>quality factor</u> <u>degradation</u> at <u>high gradient operation</u>.
- 2. Field emission electrons can induce <u>material activation</u> and <u>damage</u> accelerator components.

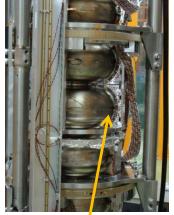


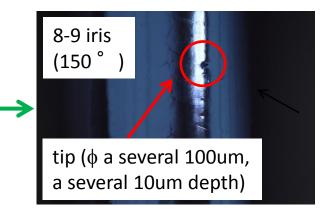




Cossairt, J. Donald. "Induced radioactivity at accelerators." FERMILAB-PUB-07-201-ESH. 2007.

Example of field emission study during vertical test (cERL main linac cavity)




Rotating mapping system

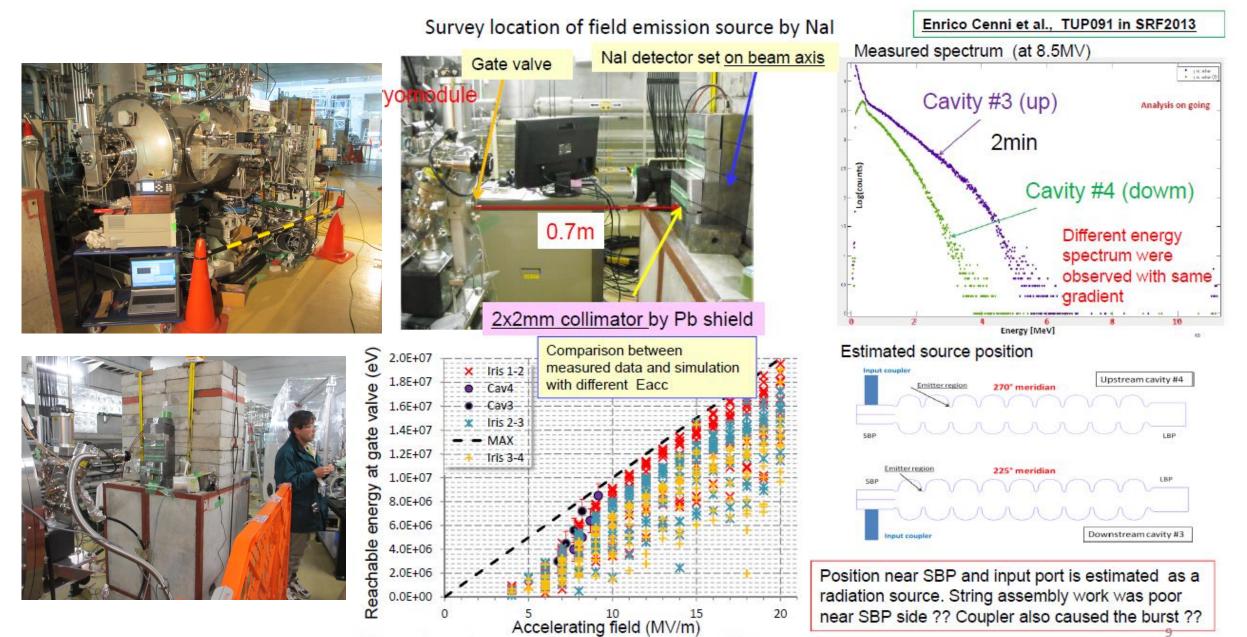
Array of Si PIN diode

Result of X-ray mapping

X-ray mapping (No.10) (2nd pi-mode 13.9MV/m ccw 145sec/turn) 80 9cell ⁸ 8-9iris 8cell⁷⁰ 77-8 iris 7cell60 6 6-7iris 6cell₅₀ ⁵ 5-6iris 5c툍ll₄₀ ⁴ 4-5iris 4c_ี ยิ์ไ ²3-4iris 3cell₂₀ 2-3iris 2cell o 1-2iris 1cell ₀ ' 50 100 150 200 250 300 350 0 Degree [Deg]

K. Umemori et al., IPAC10, WEPEC030, H. Sakai et al., IPAC10, WEPEC028

Motivation

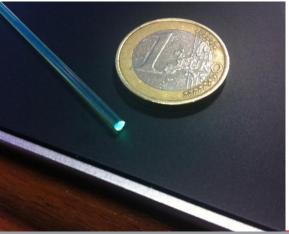

Understanding the problem:

- Different detection systems are currently used in order to measure x-ray produced by field emission electrons impacts.
- Commonly <u>PIN diodes</u> are placed on the cavity profile and/or <u>scintillator detectors</u> are placed outside the cryostat during vertical tests.
- PIN diodes provides a <u>high spatial resolution</u> while scintillator can provide dose rate and photon <u>energy spectrum</u>.

Scintillating fibers offer benefit from both systems:

- They can be installed close to the cavity profile \rightarrow High spatial resolution
- They are scintillators \rightarrow <u>Energy spectrum</u>
- 1. With an x-ray map (location and energy) it is possible to determine the source position.
- 2. During the machine operation will be possible to monitor any change in x-ray pattern.

Example of energy spectrum measurement by Nal at cERL main linac cryomodule


Measured error is assumed end point of bremsstrulung effect

Experimental set-up

DE LA RECHERCHE À L'INDUSTRIE

Test in CEA will be performed with:

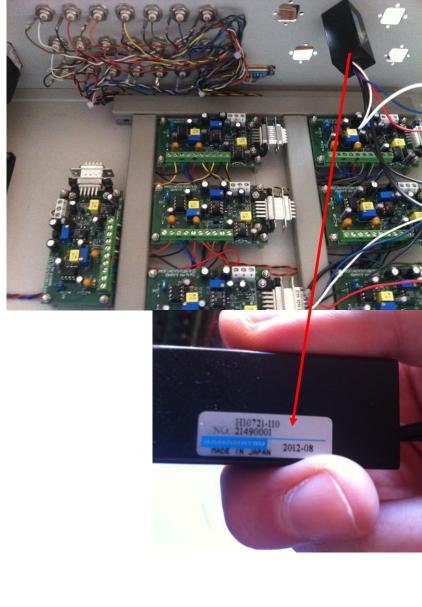
- Scintillating fibers: BCF-20 from Saint Gobain
- PM Hamamatsu H10721-110

Common Properties of Single-clad	Fibers –
Core material	. Polystyrene
Core refractive index	. 1.60
Density	1.05
Cladding material	. Acrylic
Cladding refractive index	1.49
Cladding thickness, round fibers	. 3% of fiber diamet
Cladding thickness, square fibers	. 4% of fiber size
No. of H atoms per cc (core)	. 4.82 x 10 ²²
No. of C atoms per cc (core)	.4.85 x 10 ²²
No. of electrons per cc (core)	. 3.4 x 10 ²³
Operating temperature	20°C to +50°C
Vacuum compatible	Yes

Common Properties of Multi-clad Fibers –

Second cladding material	Fluor-acrylic
Refractive index	1.42
Thickness, round fibers	1% of fiber diameter
Thickness, square fibers	2% of fiber size
Numerical aperture	0.74
Trapping efficiency, round fibers	5.6% minimum
Trapping efficiency, square fibers	7.3%

Specific	Properties of	f Standard	Formulations

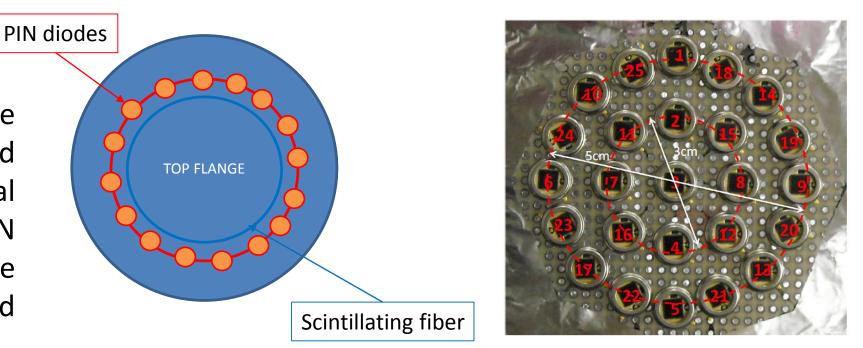

Fiber	Emission Color	Emission Peak, nm	Decay Time, ns	1/e Length m*	# of Photons per MeV**	Characteristics / Applications
BCF-10	blue	432	2.7	2.2	~8000	General purpose; optimized for
						diameters >250µm
BCF-12	blue	435	3.2	2.7	~8000	Improved transmission
						for use in long lengths
BCF-20	green	492	2.7	>3.5	~8000	Fast green scintillator
BCF-60	green	530	7	3.5	~7100	3HF formulation for increased hardness
BCF-91A	green	494	12	>3.5	n/a	Shifts blue to green
BCF-92	green	492	2.7	>3.5	n/a	Fast blue to green shifter
BCF-98	n/a	n/a	n/a	n/a	n/a	Clear waveguide
* For 1 mm diameter there measured with a bialkali cathode DMT						

* For 1mm diameter fiber; measured with a bialkali cathode PMT
 ** For Minimum Ionizing Particle (MIP), corrected for PMT sensitivity

References:

- D. L. Chichester, S. M. Watson, and J. T. Johnson, Nucl. Sci. IEEE Trans. On 60, 4015 (2013).
- Saint Gobain datasheet.
 - S. Imai, S. Soramoto, K. Mochiki, T. Iguchi, and M. Nakazawa, Rev. Sci. Instrum. 62, 1093 (1991)

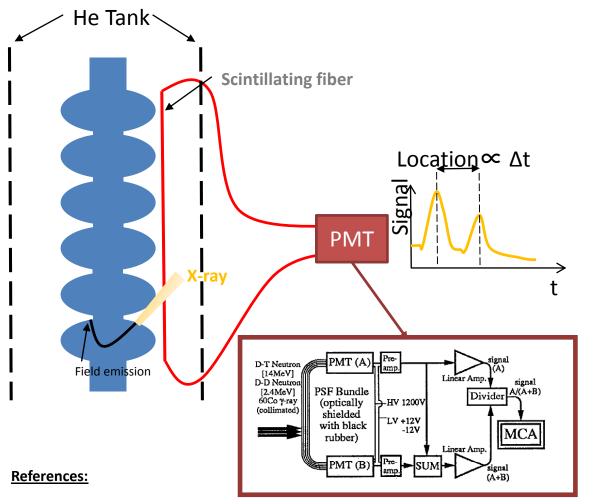
Tests proposals


- 1. Test in air with known gamma sources (@CEA)
- 2. Test with liquid nitrogen cooling (@CEA)
- 3. Test in vertical cryostat and comparison with PIN diodes system (@KEK)

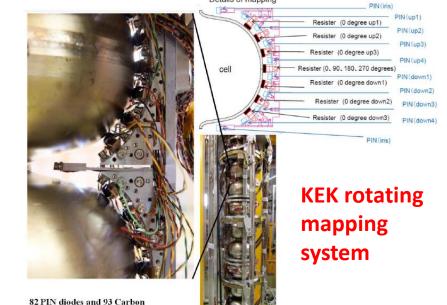
Possible configuration for the first test with PIN diodes
1. Fiber loop on top flange with PIN diodes ring.
2. Fiber along cavity profile or loop around an iris.

1st Test

With a first test it will be possible to measure and compare the signal detected by the PIN diodes and the scintillating fiber placed on cavity flange.



PIN **diodes** on G10 board adapted for the cavity beam pipe flange.



Possible configuration for the first test with PIN diodes

- 1. Fiber loop on top flange with PIN diodes ring.
- 2. Fiber along cavity profile or loop around an iris.

S. Imai, S. Soramoto, K. Mochiki, T. Iguchi, and M. Nakazawa, Rev. Sci. Instrum. **62**, 1093 (1991).

2nd Test

82 PIN diodes and 93 Carbon resistors are mounted on the mapping system along a meridian

Two options will be available:

1-Fiber loop on iris region (where signal is stronger)2-Fiber bundle along the cavity profile (on the rotating mapping system)

In both case will be possible to compare the signal from the fibers and the rotating mapping system. A multichannel analyzer (MCA) will allow a measure of energy spectrum.

<u>Summary</u>

- Field emission study have been performed using, for example, Si diode and Nal up to now.
- We propose new method using scintillating fiber to detects field emission signals.
- Our target is to take spatial distribution and energy spectrum.
- This year, we start basic experiments to check if scintillating fiber system can work.
- Consider possibility to use at vertical test and cryomodule test (both inside and outside cryomodule).

Thank you for the attention