Development of an optical cavity system for the advanced photon source based on Compton backscattering

TYL workshop Seoul 2016.5.19 **Yosuke Honda** (KEK) Aurelien Martens (LAL)

- Collaboration between LAL and KEK
- Both labs have similar projects of Compton photon source.
- Purpose of this collaboration is to exchange experiences in development works of optical cavity systems.

Compton scattering

• A promising scheme to produce an energetic photon beam.

- Features
 - Energy scales γ^2 ; low energy electron beam can produce hard X-ray.
 - 2-body scattering; correlation between angle and energy.
 - Non-destructive; small source and high brightness X-ray.
 - Polarization; easy to control by polarization of laser.
- Difficulties
 - Flux; laser power, beam power
 - \rightarrow laser power enhancement by optical cavity

$$F_{total} = \frac{16}{3} N_e N_L f \frac{r_0^2}{w_0^2},$$
electron

laser

rep-rate

Collaboration

- LAL and KEK have similar projects
 - Both group need high power optical cavity
 - Communication helps for common R&D items
- THOMX in LAL
 - Compact Storage Ring
 - Under construction (completion 2017)

- Compact Energy Recovery Linac
- Technology development
- Demonstration of X-ray imaging at existing cERL

Optical Cavity

- Storage laser power for realizing a high power photon target •
- Targets of present development work •
 - High averaged power; ~1 MW (so far: 10kW) •
 - High enhancement factor; >10000 (so far: 1000) •
 - Small spot size; ~10 μ m (so far: 30 μ m) ٠
 - Short pulse; ~100 fs (so far: 5 ps)

- Difficulties
 - High averaged power; mirror deformation, loss ٠
 - High enhancement factor; cavity resonance control, mirror loss •
 - Small spot size; alignment tolerance, cavity design ٠
 - Short pulse; high bandwidth ٠

Optical cavity

- Experience in KEK (tested at cERL in 2015)
- Rigid structure for fast installation and reliable operation in an existing accelerator.
- It was good to have experiences so far.
- Finding out problems in the design.
 - Thermal load
 - Mirror deformation
 - Limited tunability

Repetition rate	162.5 MHz
Finesse	5600
Collision angle	18 degree
Spot size at IP (σ_x/σ_y)	$20/30\mu\mathrm{m}$
Specification of mirrors	
Substrate material	Fused silica
Diameter	25.4 mm
Reflectivity	
M1	99.9%
M2	99.99%

Electron gun

Optical cavity

- Design of LAL for THOMX under construction
- Special design combined with beam duct in arc section.
- Complicated but wide-range multi-directional mirror adjustment system.

Optical cavity resonance

- Resonance peaks
 - High reflectance mirror -> high enhancement factor
 - High enhancement factor -> narrow resonance
- Controlling cavity resonance
 - Precise feedback control to keep the resonance
 - It limits achievable power enhancement
- Technical issue
 - Noise reduction
 - Feedback scheme, bandwidth

Cavity control

- An unique scheme to produce a feedback signal.
 - Utilizing a polarization property of a multi-layer mirror used in a finite incident angle.
 - LAL group has published a paper recently.
 - This scheme is used in KEK's system also.

Laser frequency stabilization using folded cavity and mirror reflectivity tuning: X.Liu et al., Optics Communications 369 (2016) 84-88

Cavity resonance control

- Phase noise in the laser oscillator can be a problem when resonating a high finesse cavity.
- Characteristics of phase noise is difficult to know from information in laser's specifications.
- Exchanging information helps for both group.
 - Tested results of some commercial product
 - Experiences about modifications needed to a commercial product.

Phase noise measurements

Cavity resonance control

- Fast and complicated feedback system is needed, for cavity lock and for beam synchronization.
- There are commercial FPGA boards, but not perfectly match our application and expensive.
- A dedicated digital feedback board has been developed in LAL.

Cavity geometry

- Eigen mode depends on cavity geometry
- New ideas for realizing
 - small and round spot size
 - less sensitive to alignment errors and mirror deformations.

Carstens et al. Opt Expr 21(2013)11606

Recent simulations on this topic with parabolic mirrors: Dupraz et al., Optics Communications 353 (2015) 178-183

Mirror deformation

- High stored power deforms the cavity mirror
 - Change eigen mode of the cavity
 - Change matching condition of the injected beam.
 - Stored power variation in ~sub-sec time scale.
- Experienced in both groups
- Idea to solve the problem
 - Lower the absorption loss
 - Use mirrors with low-expansion substrate
 - Active control of mirror shape or injection beam

Mirror cleaning

Self resonance system

- High enhancement cavity is difficult to handle
- KEK has invented a new scheme, feedback-free system
 - We can easily resonate Finesse=650,000 cavity
- This is useful to test high power load on mirror.

Application of the optical cavity

- KEK has been developing a Burst mode cavity
 - Amplify the input laser in a pulsed mode
 - High peak, but low averaged power.

•

Potential extraction scheme of burst mode cavity for a high energy gamma gamma collider: Breitkopf et al., Light: Science and applications (2014) 3

Application in FEL

Mode-locked

Laser source

- Optical cavity enables us to realize high repetition rate, high intensity laser pulse.
- High repetition rate FEL (ex. ERL-FEL) needs such laser
 - Laser seeding for time coherent radiation
 - Laser heater for controlling instability

Summary

- LAL and KEK have similar project of laser-Compton X-ray source.
- Development of an optical cavity is the key.
 - High power load on the cavity mirrors
 - Precise resonance control
- Communication between groups helps the R&D
 - New ideas; cavity design, feedback scheme, ...
 - Test setup and experiences; mirror handling, noise survey,...
- Optical cavity has other applications
 - High intensity pulse extraction
 - Advanced FEL

- Plan of 2016
 - We plan to have a collaboration meeting in KEK
 - Request support of travel budget for LAL members to visit KEK
 - (no request for sending KEK member to LAL this year)