

French Alternative Energies and Atomic Energy Commission

www.cea.fr

Overview of the activities of the Institute of Research into the Fundamental lows of the Universe (IRFU) with emphasis to HEP and Accelerator physics

Nicolas Alamanos

French Alternative Energies and Atomic Energy Commission

www.cea.fr

- The Institute inside the CEA
- The French financial system
- The IRFU organization the Divisions
- Few Highlights in HEP and in the domain of sterile neutrinos
- Magnet and Accelerator constructions

Seoul

05/2016

- last six months highlights

Nicolas Alamanos

CEA: Alternative Energies & Atomic Energy Commission

16 000 Employees, 3 900 M€

Nicolas Alamanos

CEA: Alternative Energies & Atomic Energy Commission

16 000 Employees, 3 900 M€

DEN (Nuclear Energy), DRT (Technological Research),

DAM (Military Applications)

DSM (Physical Sciences), DSV (Life Sciences) => DRF (Fundamental Research)

Nicolas Alamanos

IRFU WITHIN DRF

Nicolas Alamanos

French Alternative Energies and Atomic Energy Commission

www.cea.fr

The Institute inside the CEA

- The French financial system
- The IRFU organization the Divisions
- Few Highlights in HEP and in the
 - domain of sterile neutrinos
- Magnet and Accelerator constructions

Seoul

05/2016

- last six months highlights

Nicolas Alamanos

cea

More tomorrow during the Directorate meeting

Nicolas Alamanos

France Korea (7KPPL) and France Japan (TYL/FJPPL) meetings

Seoul

05/2016

French Alternative Energies and Atomic Energy Commission

www.cea.fr

- The Institute inside the CEA
- The French financial system
- The IRFU organization the Divisions
- Few Highlights in HEP and in the domain of sterile neutrinos
- Magnet and Accelerator constructions

Seoul

05/2016

- last six months highlights

Nicolas Alamanos

IRFU RECENT INTERNAL EVOLUTIONS

Seoul

05/2016

Head of Institute Assistant: Josiane Parnas Larsim Research on sciences matter lab **Deputies: Nicolas Alamanos Etienne Klein Marie-Cécile Aubert** Assistants **Delegates** QSE* Erick Blanchard **Computing & Simulation** Allan-Sacha Brun Project **Emmanuelle Bougamont Evaluation** Pascal Debu Sophie Kerhoas-Cavata Communication Safety Erick Blanchard Nathalie Judas **Budget Computing ressources** Shebli Anvar **Europe Programs** Sylvie Leray PhD Students Jérôme Rodriguez **Christine Porcheray Industrial Parterships Christine Tiquet** Human Ressources SACM SAp Astrophysics and Accelerators, Cryogenics Space Technologies and Magnetism **Anne Decourchelle Pierre Védrine** Dep. Head: Pascale Delbourgo Dep. Head: Ph. Brédy / O. Napoly Sedi **SPhN Detectors**, Electronics **Nuclear Physics** and Computing Héloïse Goutte **Eric Delagnes** Dep.Head: Jacques Ball Dep. Head: Philippe Bourgeois SIS SPP Mechanical Design **Particle Physics** and System Engineering **Gautier Hamel De Monchenault** Christian Veyssière Dep. Head: Georges Vasseur Dep. Head: Frédéric Molinié

Nicolas Alamanos

Irfu: A CEA INSTITUTE CREATED IN 1993 RESEARCH AND TECHNOLOGY

Nicolas Alamanos

DE LA RECHERCHE À L'INDUSTRIE

Irfu: LARGE CEA INSTITUTE CREATED IN 1993 RESEARCH AND TECHNOLOGY

814 FTE 632/615 CDI/CDI-CEA

- Physicists 165 FTE
- Engineers 274 FTE
- Technicians 152 FTE
- Adm. Staff 72 FTE
- PhD & Post Docs 150 FTE

Research & Technology

- Physics: Infinitely large & small
- Technology: Radiations

Nicolas Alamanos

DE LA RECHERCHE À L'INDUSTRIE

Irfu: LARGE CEA INSTITUTE CREATED IN 1993 RESEARCH AND TECHNOLOGY

Seoul

05/2016

Nicolas Alamanos

CCA SCIENTIFIC ROADMAP

portants milestones										
7 Tech. Scientif	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
Decision 🔶 Closing										
Iltimate constituent	s of the ur	iverse								
	Higgs		Ingrados M	1st TDR Pha	ase 2	Up	date Futurs ac	celerators	 	
Standard model			Upgrades m		Publication rul		Strategy		ase 1 operational	
Me	easurement of				Stereo Θ_{13}					
Neutrino physics	Mixing angle DC		DC near Det.	In: Stereo CeSo	stallation CP viola	tion Sterile Neut	rinos Long		Basolino	
Neurino physics					Autorisation	End of DC	End of Ceso		Daseinie	End of T2K
	1	1			CESUX		-			-
nergy content of th	e universe	ə —		eBoss Pi	ublication Deliver	y :	Start			1
Space project	Planck results CMB	el Pl	DR Euclid Instrumen	t <mark>s</mark>	1st DESI spec	trograph	DESI	1	Euclid launch	1
Dark energy	Pla	<u>nck</u>	\rightarrow			- End	Euc	<u>clid</u>		,
	Uļ	date MN detectio	on: Strategy		Publication LHC Dark matter	Edelw	veiss CTA 1	st light		
Dark matter	Edelweiss	\sim	7	Hess		нс	🕨 СТА 🔽			
		1	1		cloud GB	ar at CERN	antigravity	1	1	1
Antimatter			G Bar			\bigvee				
tructures of the uni	verse -	1		det web lie e	l.	1	1			1
Space project	1	1st light / APEX	E-ELT funding	ArTén	Mis		JWST launch	1	E-ELT 1s	light \rightarrow 2024
Stars and galaxies	ArTe	MiS 🗸	PILOT 🔶	IRAM /	NIKA2 <u>JV</u>	<u>VST - MIRI</u>		E-ELT - ME	TIS	
• • • • •					Sol	ar Orbiter launch	1			1
Sun and planetary systems	<u>Solar Orbiter</u>							<u>PL/</u>		
							CTA 1 st lig	jht	i	1
$HE \gamma$ astronomy	nes sz	CTA-PP								
Univers vielent		n'frozen	SVOM restarted by		PDR SVOM	SVOM	i	Athonau	elivery SVOM / ECI	_AIRs + MXT 7
Univers violent				ASTRO-H		<u>3V0M</u>		Amenat		/
	 	1	 			1	1			
luclear matter 🛛 —	1	1	1		-	1		1	1	1
		Spectroscopy o	of exotic nuclei @Rik	en S	PII – Phase 1 1st be	am	SPIRAL	2 Phase 2		
Exotic nuclei	M	IINOS@Rike	en 🛆 🛛 Agata	@GANIL	SI	piral2 Phase1	1 NFS 🔇 S ³		Spiral2 Pha	se 2
	 	i I	 	MOL	J Detectors Upgrad	es		1	Upgrades op	érationnels
Quarks Gluons Plasma	Alice				<u>A</u>	ice Upgrade			\sim	7
		i F	Firsts physics run wi	th Compass	CLAS12 physics r	un Coi	mpas II End of GPI	Dmeasurements	1	i I
				\land		1 A C 40 C - V		Elo	stron-lon	
Quark Gluon Structure	Compass I			<u> </u>		LAS IZGEV		Elec		

CO2 ACCELERATORS AND CRYOTECHNOLOGY ROADMAP

Seoul

05/2016

Important millestones Expected decision	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021		
Superconducting Mac	inets –											
(1		ę	Start of commissior	Co ning at Neurospin	il delivery at Greno	ble			. 		
High Field			ISEULT		NCMI Hy	bride 🗸 43	T Gradien	s Coils	LNCMI 30+ T	T		
	Test in W7X cryos	tat	MOU CEA	HEAIR?	magnet at GSI			Delivery of Super	FRS dipoles at GSI	1		
Spectrometers	R	3B Glad		$\overline{}$	Super FF	RS dipoles						
	1	LHC U	Upgrade			FCC E	uropean strategy					
Accelerators	Eucard 2 F	P7 & CEF	\diamond	HL - LHC		HE - LHC	\diamond		FCC			
		1										
Large Supracoducting	y Magnets	Tests										
			End of CTF	construction	En	d of JT60 Coil Tests	3	1				
Tests des bobines et aimants SC		JT60 SA	Σ	$\overline{\mathbf{\nabla}}$		∇	ITER -	Activities	<u> </u>	<u> </u>		
	1											
	1	<u> </u> 	1		1	1		1	1			
Sources and Injectors	;	 	1		1	1		1	 	-		
Distant Internation			MOUC	CEA-FAIR?	Delivery	at GSI				1		
Protons injectors	LINAC4		Decision on SARAF	FAIR p-Li	nac	Décision post app	élargie		i	i		
Deutons Sources				beam atSPII Ganil	End of Saraf stud	dy 1 st beam at F	Rokkasho	Sara	f: start of installati	ons at Soreq		
& Injectors	SPIKALZ							ENS		1		
High intensity Injectors				Lin		ESS RE	-0					
								1	1	i		
	100							1				
Superconducting LIN/	ACS -	1	Decision on	SARAF				I	1			
Protons-Deutons	Valida	tion of SRF-Linac	; concept	SRF-Linac inte	egration (start)	Delivery a	it Rokkasho (start)	Delivery at Lun	d (start)			
SC Linacs	IFMIF-Evec	da /SRF-Lin		ES:	S / SARAF Cr	yomodule		Decisio	(icnan)	1		
Flectrons Cryomodules		signed S	tart of industrial pro	d <mark>uctio</mark>	End of indust	rial productio		Decisio				
Elections or yomodules										1		

Nicolas Alamanos

INSTRUMENTATION ROADMAP Cea

05/2016

V Importants milestones	1	1	1	2015	2016	2017	2018	2019	2020	2021
Decision	Space projets							1		1
Detection of radiatio	ns and instrument	ation			Dér	narrage CLAS12			restarted	at CNES
Gaseous detectors / MPGD		MINC	þs	TomoMu	u CLAS12		AS) WA105(+Long BaseLine)	→ FCC	-ILC-EIC→
		1					Start DESI			
Solid detectors	A	gata 1/3 EDV	N III	MFT(Alice)	Sirius (S3)	DESI	🔽 🗸	AS-2-Pixel-	>	
		1	и 			EUCLID Delivery	15	st MST CTA		
Camera/Spectro-imager		<u>ArTéMiS</u>	 	STIX(SolarOrb) <u>MXT(sv</u>	<u>vom) NIST (eu</u>	D CTA-	Ζ		
ASICs - Frontend elect	Nector			CryoElect			CMS-2-Eca			
		AGET DIL					CWO-2-LCa			
Num.System/real time	ECLAIRs (s	VOM)	LTDE		K(ALICE) UG	TS(svom)	A	TLAS&CMS	-2→	
		I I I	 	Spa	itialization			1		1
Cryomecanism	ļ	MIRI		EUCLID	∇			ELT MET	IS	
		1								
PSU – onboard power		1				1	1			
nstrumentation for b	beams and	magnets	i			1				
	1		Mir	nos at Riken	1st exploitat	ion at CERN/Ganil	1st tests in R	ussia		
Targets (cryo,)			MINOS		CHyMENE	Ta	rgets R3B 🗸		Hypernoyau	x à FAIR →
Diagnostics		 			Commissionning	IFMIF		ESS Delivery	ESS at LUND	
Diagnostics	 	 		1		(ESS) BLI	N(SARAF) BL	M(ESS) V	1	
MSS		1	P2P Clod			Développement M	SS numérique			T ITED 1
inco				ISEULI			agnet HTC			
		High stability developme		nt	Hybrid contactor developmen					
Power circuit	R3B (Glad		ISEULT .	JT60		Gradient C	oil	LNCMI 30+ T	T
	1	1	1	1 1	(1	j i	i .	1	i.

French Alternative Energies and Atomic Energy Commission

www.cea.fr

- The Institute inside the CEA
- The French financial system
- The IRFU organization the Divisions
- Few Highlights in HEP and in the domain of sterile neutrinos
- Magnet and Accelerator constructions

Seoul

05/2016

- last six months highlights

Nicolas Alamanos

IN HEP WE ARE LEAVING EXTRAORDINARY TIMES

Nicolas Alamanos

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

Seoul 05/2016

05/2016

Seoul

LHC

Nicolas Alamanos

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

Ceaatlas-NSW UPGRADE PHASE I / COURTESY BY E.D

New Muon detectors in the forward region to deal with the increased luminosity:

- High flux operation
- Better Track reconstruction
- Improved fake trigger rejection
- 2 technologies (Stgc + resistive Micromegas)

Micromegas wheels

- 4 types of Module build by 4 sites = complex assembly Stack of 4 Micromegas chambers=> 5 PCBs
 Few 10 µm precision required
 More than 1000 assembly operations
- IRFU's commitment :

Design & production of (32 +2) LM1 modules

- ~ 400m² detection surface
- Require special tools & Infrastructure

Seoul

05/2016

Ce ATLAS-NSW UPGRADE PHASE I / COURTESY BY E.D

2014-2015

- Design of modules and definition of process operations
- Design of tools, including metrology
- Definition of facilities (DATCHA + clean room):
- MLO = First prototype built: Allowed to detect and solve a large number of problems for the module0

2016 => Pre-Production

- A lot of manpower is now involved on the project
- Module 0 construction in the DATCHA facility has started Expected to be finished for fall 2016
- 130 m² clean room for production will be ready in Summer 2016
- End of 2106 :Start of the first production module in the clean room
- Preparation of the test infrastructure in progress (cosmic & Xray bench..)

2017-2018 => Production

- Very tight schedule
- Challenge: build one module every 2 weeks.

Nicolas Alamanos

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

Seoul 05/2016

Nicolas Alamanos

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

DIGITAL TRIGGER TOWER BUILDER BOARD FOR ATLAS CALORIMETER (UPGRADE PHASE 1)

Increased luminosity => better granularity to build trigger:

- Compatibility with existing (TBB) trigger system
- Analog => Analog-Digital mixed mode system
- ~300 ADC channels/ board => 200 Gbit/s throughput

Demonstrator board designed and tested in 2014-2015:

- French (digital mezzanines) vs US design (analog mezzanines)
- Both proven & taking data @LHC

2016 : design of the final board

- Joint design Saclay/Brookhaven
- Rad-hard
- Irfu's comitments :

Test bench

Production of ~150 boards (2017-2018)

Seoul

05/2016

UPGRADE ALICE (PHASE 1) (SEE TALK G. BATIGNE)

MFT : Silicon tracker (MAPS) upstream the ALICE DiMuon arm

2014-2015:succesful R&D on PIXAM chip
 => decision to move to a solution common with ITS
2015-2016 : Contribution to the design of the final ALPIDE chip
2016-2018: Responsibilities :

Production & postprocess of chips

Chips soldering on ladders (@ CERN)

Dimuon Arm Electronics

- Totally new « SAMPA » electronics
- IRFU/Sédi involvement:

Rad Hard concentrator boards « SOLAR » with high speed digital GBT links

- 2016 : prototype design
- 2017 : Manufacture & test of 600 boards

Firmware of the Back-end electronics receiving the data from

SOLAR

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

Seoul

05/2016

BEGINNING OF THE R&D FOR LHC-UPGRADE PHASE2

CMS ECAL:Barrel (historical involvement)

■ VERY FRONT-END ELECTRONICS : HOW TO KEEP A GOOD ENERGY RESOLUTION WITH AGED CRYSTALS, LEAKY APDS, AND INCREASED PILEUP

Design of a chip prototype in progress => Collaboration meeting in Saclay last week

CMS HGCAL:

CLOCK DISTRIBUTION (10 PS PRECISION) :

TIMING WILL BE A KEY MEASUREMENT PARAMETER FOR THE UPGRADED DETECTORS

- JET TRIGGER
- TIMING MEASUREMENT IN THE VFE CHIP ?

ATLAS pixel tracker : (New involvement)

- HVCMOS SENSOR (CONTINUATION OF MAPS R&D, BUT FASTER)
- MAJOR CONTRIBUTION TO A PROTOTYPE CHIP USING LFOUNDRY PROCESS (HYBRID HVCMOS TECHNOLOGY).
- COST EFFECTIVE & RAD-HARD

Timing detector (ATLAS forward region)

R&D ON TIMING MICROMEGAS & HVCMOS

New FE card Lead-TurgState crystals Lead-TurgState crystals Lead-TurgState crystals Appls New Multi-Gain Pre-Amplifier chip (MGPAV New ADC

New VFE card

Nicolas Alamanos

Integration @LPSC Grenoble (Apr 2016)

the detector is inside the ILL reactor building since last Tuesday (10/05/2016)

Nicolas Alamanos

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

Seoul 05/2016

French Alternative Energies and Atomic Energy Commission

www.cea.fr

- The Institute inside the CEA
- The French financial system
- The IRFU organization the Divisions
- Few Highlights in HEP and in the

domain of sterile neutrinos

Magnet and Accelerator constructions

Seoul

05/2016

- last six months highlights

Nicolas Alamanos

Some projects : Magnets and Accelerators

Last 6 months highlights

- The SPIRAL2 project (NΦ)
- SARAF accelerator (NΦ)
- IFMIF EVEDA (Fusion)
- FAIR (IRFU In-kind contribution) (ΝΦ)
- ESS (In-kind contribution of IRFU)
- XFEL (Prefiguration of the construction of the ILC)
- CERN (FCC,...)

Nicolas Alamanos

Cea

COMMISSIONING OF SPIRAL2

Seoul 05/2016

Nicolas Alamanos

DE LA RECHERCHE À L'INDUSTRI

Cea

COMMISSIONING OF SPIRAL2

Nicolas Alamanos

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

Seoul 05/2016

COMMISSIONING OF SPIRAL2 / RFQ

Seoul

05/2016

First beam in RFQ 3/12/2015

- Emittance measurements in good agreements with simulations
- Next steps Deuteron, ¹⁸O^{6+, 58}Ni¹⁹⁺ (Q/A=1/3)

COMMISSIONING OF SPIRAL2

The 3 of December 2015 a proton beam (5mA) was injected into the RFQ

...... Thus, at 9:00 –(3/12/2015) we have started a few hours later a 5 mA proton beam was injected into the RFQ. Quickly after 100% of the beam was extracted under the expected setting conditions

Nicolas Alamanos

Some projects : Magnets and Accelerators

Last 6 months highlights

The SPIRAL2 project <u>(ΝΦ)</u>

- SARAF accelerator (NΦ)
- IFMIF EVEDA (Fusion)
- FAIR (IRFU In-kind contribution) ($N\Phi$)
- ESS (In-kind contribution of IRFU)
- XFEL (Prefiguration of the construction of the ILC)
- CERN (FCC,...)

Nicolas Alamanos

SARAF TLR : beams: p, and d (5mA, 40MeV)

=> Replace the existing reactor

Nicolas Alamanos

Cez

Deutons /protons

40 MeV

200 kW

5 mA CW

Be / Li targets

Seoul

05/2016

An Israeli project of an accelerator based neutron source to replace a nuclear reactor

- Irfu responsible for the superconducting Linac
- Commissioning in 2022

Some projects : Magnets and Accelerators

Last 6 months highlights

- The SPIRAL2 project (NΦ)
- SARAF accelerator (NΦ)
- IFMIF EVEDA (Fusion)
- FAIR (IRFU In-kind contribution) (ΝΦ)
- ESS (In-kind contribution of IRFU)
- XFEL (Prefiguration of the construction of the ILC)
- CERN (FCC,...)

Nicolas Alamanos

Nicolas Alamanos

Involvement of CEA Saclay in IFMIF-EVEDA

IFMIF Accelerator

Nicolas Alamanos

Inauguration at Rokkasho 21/04/2016

Nicolas Alamanos

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

Seoul 05/2016

Some projects : Magnets and Accelerators

Last 6 months highlights

- The SPIRAL2 project (NΦ)
- SARAF accelerator (NΦ)
- IFMIF EVEDA <u>(Fusion)</u>
- FAIR (IRFU In-kind contribution) ($N\Phi$)
- ESS (In-kind contribution of IRFU)
- XFEL (Prefiguration of the construction of the ILC)
- CERN (FCC,...)

Nicolas Alamanos

FAIR PROTON LINAC INJECTOR INSTALLED AT SACLAY

Ions source, RF chain and accelerating column installed on HV platform

H⁺ beam,

100 keV 100 mA total 70 mA after cone PULSED ONLY

First beam extraction test performed with a 3mm diameter plasma electrode

1st 500A/50V power supply for LEBT solenoids available Reception of the 2nd power supply in April/May

Ready to start the test of the injector.

Seoul

05/2016

Nicolas Alamanos

The GLAD magnet was delivered at GSI November 2015

Nicolas Alamanos

DE LA RECHERCHE À L'INDUSTR

THE GLAD MAGNET LEAVING SACLAY - ARRIVING AT GSI

(NOVEMBER 2015)

Nicolas Alamanos

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

Seoul 05/2016

DE LA RECHERCHE À L'INDUSTRI

THE GLAD MAGNET LEAVING SACLAY - ARRIVING AT GSI

(NOVEMBER 2015)

Nicolas Alamanos

France Korea (FKPPL) and France Japan (TYL/FJPPL) meetings

Seoul 05/2016

Some projects : Magnets and Accelerators

Last 6 months highlights

- The SPIRAL2 project (NΦ)
- SARAF accelerator (NΦ)
- IFMIF EVEDA (Fusion)
- FAIR (IRFU In-kind contribution) (ΝΦ)
- ESS (In-kind contribution of IRFU)
- XFEL (Prefiguration of the construction of the ILC)
- CERN (FCC,...)

Nicolas Alamanos

ESS CRYOMODULES

704 MHz high beta cavities: the two prototypes have been tested and are above the ESS specifications

704 MHz medium beta cavities

704 MHz coupler : first tests at 1.1 MW in pulsed mode are expected in june 2016

the first test at 2K of the 1st cavity has revealed a problem of "100 K" effect (Q-desease), the hydrogen degassing heat treatment at 600 ° C is expected to achieve performance

 Vacuum vessel and spaceframe: integration testing and blank assembly are underway at CEA

ESS RFQ

<u>RFQ:</u>

- RFQ Critical Design Review with ESS in December 2015:
- ESS agreement to launch the call for tender.
- Offers received, order in preparation

Test Cavity de test et pièces auxiliaires

- AO publié 27/11/15, Plis ouverts le 26/01/16
- Réunions de négociation en cours

<u>Couplers</u>

Offers received. Contract to be placed

<u>Tuners</u>

- Prototype in production Delivery
- Call for tender Finalisation CdC nécessaire pour AO à lancer mi février

RFQ support

Design ongoing

Some projects : Magnets and Accelerators

Last 6 months highlights

- The SPIRAL2 project (NΦ)
- SARAF accelerator (NΦ)
- IFMIF EVEDA (Fusion)
- FAIR (IRFU In-kind contribution) (ΝΦ)
- ESS (In-kind contribution of IRFU)
- XFEL (Prefiguration of the construction of the ILC)
- CERN (FCC,...)

Nicolas Alamanos

DE LA RECHERCHE À L'INDUSTR

Nicolas Alamanos

Integration of XFEL cryomodules (Saclay)

• Each cavity string contains 8 cavities, 8 RF couplers, one quadrupole, one BPM and two vacuum valves

Transfer of cryomodule in clean room roll-out area

Seoul

05/2016

Transfer of cryomodule in RF coupler assembly area

Nicolas Alamanos

Integration of XFEL cryomodules (Saclay)

• Each cavity string contains 8 cavities, 8 RF couplers, one quadrupole, one BPM and two vacuum valves

There are 9 422 individual components integrated and over 12 400 individual parts manipulated per cryomodule

ut area

Seoul

05/2016

Transfer of cryomodule in RF coupler assembly area

Nicolas Alamanos

Nicolas Alamanos

In May 2016: 96 cryomodules have been delivered.

An average accelerating field of 27,6 MV/m was obtained , well above (~17%) the specification.

The end of the integration is foreseeing before summer with the assembly and delivery of cryomodule XM100.

A Celebration of the end of the project will be organized

DE LA RECHERCHE À L'INDUSTRI

Thank you for your attention

