FJPPL : NU_05

T2K

Precision neutrino cross-section measurements and modeling for long-baseline oscillation experiments

Joint Workshop of the France Korea (FKPPL) and France Japan (TYL/FJPPL) International Associated Particle Physics Laboratories

2016/05/18 @KIAS

Contents

Cross section measurements in the T2K experiment

- Overview of the T2K experiment
- T2K near-detectors
- T2K systematic errors
- CCOpi measurements

<u>New experiment for measuring H₂O / CH cross sections</u>

- Overview of the experiment
- Detector geometry and components
- MC study
- Detector construction status and schedule

<u>Summary</u>

Cross section measurements in the T2K experiment

Overview of the T2K experiment

Long-baseline neutrino oscillation measurement

T2K Near-detectors

T2K systematic errors Large nuclear-model uncertainties...

- Target difference between Near-detector (CH) and Far-detector (H₂O)
 - Some measurements on carbon & on water are described later
- 2p2h interaction can look like CCQE signal event in the final state at SK - Due to nuclear effects, 2p2h contributes to the signal

Systematic error source	Error $(\nu_{\mu} \rightarrow \nu_{\mu})$	Error $(\nu_{\mu} \rightarrow \nu_{e})$	Error $(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$	Error ($\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$)	CCQE
u flux & cross section	3.1%	2.7%	3.4%	3.0%	n p
u cross section (Non-cancelled)	4.7%	5.0%	10.0%	9.8%	v µ
SK FSI & SI	3.0%	2.4%	2.1%	2.2%	2p2h n ^w p
Total	6.8%	7.7%	11.6%	11.0%	p p

- As a function of measured variables (muon kinematics)
 - No dependence on model to translate to neutrino energy
- Charged current process w/o pions in the final state (CCOpi)
 - Less dependence on FSI model

arxiv:1602.03652, under publication on PRD

8 Results indicate the presence of 2p2h interactions, Analysis but it is difficult to make a conclusion ...more data desired ! Muon cos θ 0.80 - 0.85 Muon cos θ 0.70 - 0.80 Muon cos θ 0.85 - 0.90 [q] 0.12 0.24 CC0π) / 100 MeV [fb] € 0.12 Martini et al. 0.22 100 MeV 0.2 **RPA** 0.18 0.16 Martini et al. 0.08 0.08 3(CC011) CCOm) RPA+2p2h 0.12 0.06 0.06 0.08 0.04 0.04 0.06 0.04 0.02 0.02 0.3 0.4 0.5 0.6 Muon momentum [GeV] Muon momentum [GeV] 0.2 Muon momentum [GeV] 0.8 $[\times 10_{-38} \text{ cm}^2 \text{ nucleon}^{-1}]$ 0.7 Results are in agreement 0.6 with both NEUT and GENIE predictions 0.5 T2K data NEUT (nominal) flux avg **Integrated cross sections** [×10⁻³⁸ cm² nucleon⁻¹] NEUT (nominal) prediction 0.3 Ь $I : 0.417 \pm 0.047$ (syst.) ± 0.005 (stat.) GENIE flux avg 0.2 (NEUT prediction : 0.444) GENIE prediction 0.1 $II : 0.202 \pm 0.0359$ (syst.) ± 0.0026 (stat.) T2K flux (arb units) 00 (NEUT prediction : 0.232) 2 З Neutrino energy [GeV]

arxiv:1602.03652,

under publication on PRD

CCOpi on carbon @Proton Module Combination of measurements at on/off-axis would give a model-independent estimation of the energy dependence of the cross section INGRID MC study is now on-going ! Proton Module Through-going muons No B-field at Proton Module... 44% -> Use INGRID penetration distance for p_{μ} determination (~100 MeV/c resolution) Stopping muons PID is based on dE/dx 5% Side-escaping muons [.e.] Ш 0.08 confidence level π 0.06 Not D 0.05 0.04 μ tracks 0.03 Probability 0.02 tracks π *u* -like 0.01 tracks n proton-like 40 60 80 100 120 140 160 180 Charge corrected per hit [p.e.] Selection cut for PID C.L. > -2.5 : μ -like, C.L. < -3.5 : proton-like 10^{-3} π track looks μ -like -> Only 1 μ -like track is required 10--18 -12 -16 $\ln(\mu_{CI})$

Selection efficiency is about 80% in MC

<u>CCOpi on water @ND280 (FGD)</u>

Extract the dependence of nuclear effects on the target nucleus

- Useful since the T2K far detector is composed of water
- Scintillators : Water = 50 : 50 (volume) in FGD2
 - FGD1 contains only scintillators

• Subtraction method used to extract the cross section (σ^{water}) and ratio

10

 σ^{water}

Water = FGD2 - Scintillators

New experiment for measuring H₂O / CH cross sections - WAGASCI experiment -

Motivation of the WAGASCI experiment

Detector geometry

Central detector

H₂O module ×2 + CH module ×2
 Target (H₂O/CH) + plastic scintillators
 Each target has 1×1×1 m³ volume and 1 ton mass

Muon range detectors (MRDs) Iron plates + plastic scintillators

Iron plates + plastic scintillators
 Identify muons

and measure their momentum

Detector components

<u>3D grid-like scintillators</u>

Each space is filled with target materials
Target : scintillator = 79 : 21 (volume)

<u>Scintillator</u> 14 3 mm thickness WLS fiber is put on each groove

Connected to MPPCs

Expected performance in MC

[MC events after the selection]

	CC (Signal)	NC	Background from outside	All
Event rate / 10 ²¹ POT	29450	1060	1640	32150
Fraction	91.6%	3.3%	5.1%	100%

High statistics & Low backgrounds are expected

Detector construction

Complete module is installed into the water tank

1 water module has been constructed as a prototype detector (Oct. - Dec. 2015)

Designed by LLR group

Electronics boards have been also prepared

Schedule

Prototype detector

May 2016 : Performance test by cosmic-rays

- Event displays (3 samples) show a muon is well reconstructed

● Jun 2016 ~ Summer 2016 : Commissioning / Cosmic data taking Autumn 2016 ~ : Start neutrino beam measurement

WAGASCI detector

- Autumn 2017 ~
- Summer 2017 : Detector construction
 - : Start neutrino beam measurement

<u>Summary</u>

- Model-independent measurements in the T2K experiment
 - Measure CCOpi cross section on C at off-axis
 - Hint of 2p2h interaction
 - Measure CCOpi cross section on C at on-axis
 - Combine with measurements at off-axis
 - Measure CCOpi cross section on H_2O at off-axis
 - Extract the dependence of nuclear effects on target nucleus
- New experiment is on-going to measure H₂O/CH cross section ratio
 - Detector has 3D grid-like scintillators -> large angular acceptance
 - Prototype H_2O module has been complete, and the data taking will be started from the beginning of Jun 2016

Projects are all very fine ! Stay tuned for more results of cross section measurements...

Backups

<u>Members</u>

French group

Sara Bolognesi Sandrine Emery Marco 7ito Margherita Buizza Avanzini **Olivier Drapier** Michel Gonin James Imber Thomas Mueller Jacques Dumarchez Claudio Giganti Bris Popov

E S

Japanese group Toshihumi Tsukamoto Takashi Kobayashi Tsuyoshi Nakaya Yoshihiro Seiya Kazuhiro Yamamoto Akihiro Minamino Taichiro Koga Naruhiro Chikuma Fuminao Hosomi Tatsuya Hayashino Kenichi Kin

Matthieu Licciardi

(From FY2016)

Jun Harada

Neutrino Oscillation Probability

 $P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2}(\frac{1.27\Delta m_{31}^{2} [eV^{2}]L[km]}{E[GeV]}),$ $P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2(\frac{1.27\Delta m_{32}^2 [\text{eV}^2] L[\text{km}]}{E[\text{GeV}]}),$ **Oscillation phase** to be minimum... $\frac{1.27\Delta m_{32}^2 L}{E} = \frac{\pi}{2}$ **E** ~ 0.6 GeV

Neutrino interaction ratio (CC)

The fraction of CC events at the T2K energy is about 80%

T2K Near-detector (Off-axis)

T2K Near-detector (On-axis)

In order to confirm the robustness of the measurement, two analyses have been performed.

Analysis I

Selection

- ① Only muon in TPC
- 2 1 muon + 1 proton in TPC
- ③ 1 muon in TPC + 1 proton in FGD
- ④ 1 proton in FGD + 1 muon in FGD

arxiv:1602.03652, under publication on PRD

arxiv:1602.03652, under publication on PRD

Analysis I

There are two additional control regions are selected in order to constrain charged current event rate with single-pion and multiple-pion production.

After pre-selection (e.g. (1)), a reconstructed negative track in TPC with muon-like PID and a positive track in TPC with pion-like PID are required.

- Events with exactly two tracks are included in region 5 : CC1 π control region
- Events with more than two tracks are included in region 6 : CC_{other} control region

27

MC based

reco -> true

Likelihood fit (Analysis I)

To predict true spectrum from reconstructed spectrum

of events in true bin

$$N_{i} = \sum_{j}^{bins \, by \, topo} \left[c_{i} \left(N_{j}^{MC \, CC0\pi} \prod_{a}^{model} w(a)_{ij}^{CC0\pi} \right) + \sum_{k}^{bkg \, reactions} N_{j}^{MC \, bkg \, k} \prod_{a}^{model} w(a)_{ij}^{k} \right] t_{ij}^{det} r_{j}^{det}$$

DATA/MC: parameter fitted

Signal events

in reco bin

Free nuisance parameter (theory + detector)

arxiv:1602.03652,

bkgd events] x

in reco bin

under publication on PRD

Simultaneously fit four topologies and two control samples.

Minimizer:

$$\chi^{2} = \chi^{2}_{stat} + \chi^{2}_{syst} = \sum_{j}^{reco\,bins} 2(N_{j} - N^{obs}_{j} + N^{obs}_{j}\ln\frac{N^{obs}_{j}}{N_{j}}) + \chi^{2}_{syst}$$

Extract flux integrated cross section

$$\begin{aligned} \chi^2_{syst} &= (\vec{r}^{det} - \vec{r}^{det}_{prior})(V^{det}_{cov})^{-1}(\vec{r}^{det} - \vec{r}^{det}_{prior}) \\ &+ (\vec{a}^{theory} - \vec{a}^{theory}_{prior})(V^{theory}_{cov})^{-1}(\vec{a}^{theory} - \vec{a}^{theory}_{prior}) \end{aligned}$$

Bayesian unfolding (Analysis II)

 To predict true spectrum from reconstructed spectrum Prediction in true bin:

> $N_{t_j}^{unfolded} = \frac{1}{\epsilon_j} \sum_i P(t_j | r_i) (N_{r_i} - B_{r_i})$ Signal - Background **Reconstructed bins**

Unsmearing matrix: $P(t_j|r_i) = \frac{P(r_i|t_j)P(t_j)}{P(r_i)}$ Probability of event being in reco and true bin

from MC

Extract flux-integrated cross section from the true prediction

arxiv:1602.03652, under publication on PRD

29

Good agreement between two analyses

<u>CCOpi on carbon</u> @ND280

arxiv:1602.03652,

under publication on PRD

CCOpi on carbon @Proton Module

PID selection

Estimate a confidence level that a particle is a muon on a plane-by-plane basis

The expected dE/dx distribution of muons is obtained from the beam-induced muon backgrounds which are mainly created by the neutrino interactions in the walls of the detector hall

C.L. =
$$P \times \sum_{i=0}^{n-1} \frac{(-\ln P)^i}{i!}$$
, $P = \prod_{i=1}^n CL_i$

n : Number of penetrated scintillator plane CL_i : Calculated confidence level at the i-th plane as a function of dE/dx

In the case where the track penetrates only two planes,

C.L. =
$$1 - \int_{P}^{1} dx \int_{P/x}^{1} dy$$

= P (1 - ln P)

<u>CCOpi on carbon @Proton Module</u>

CCOpi on carbon @Proton Module

<u>3 samples for muon propagating through downstream INGRID detector :</u>

Flux of neutrino interacting in the PM

- Most of the <u>u</u> are through-going (44 % of all interactions, 5 % for stopping)
- <u>PM flux spread from 0.5 → 3 GeV :</u> covers both MiniBooNE & Minerva → ideal to check incompatibilities.

$$\begin{split} & \underbrace{CCOpi \ on \ carbon \ @ND280 \ (FGD)}_{k_{k}} \hat{N}_{k} = \frac{U_{k_{i}}}{c_{k}} \cdot N_{j}^{scl}}_{k_{k}} \\ & \underbrace{\sigma_{k}^{water} \sim \hat{N}_{k}^{fgd2} - \hat{N}_{k}^{scint}}_{q_{k}^{scint}} \qquad \underbrace{\sigma_{k}^{scint} \sim \frac{\hat{N}_{k}^{fgd2} - \hat{N}_{k}^{scint}}{\hat{N}_{k}^{scint}}}_{where \ T^{fgd2}_{-}XYlike} \sim \frac{\hat{N}_{k}^{fgd2} - \hat{N}_{k}^{scint}}{\hat{N}_{k}^{scint}} \\ \\ & \widehat{N}_{k}^{water} = \hat{N}_{k}^{fgd2} - \sigma_{k}^{scint} \cdot T^{fgd2}_{-}XYlike} \cdot \phi^{fgd2}_{where \ T^{fgd2}_{-}XYlike} = T^{fgd2}_{-}XY + T^{fgd2}_{-}virualXY} \\ & \underbrace{\sigma_{k}^{scint} = \frac{\hat{N}_{k}^{fgd2}}{T^{fgd2}_{-}waterlike} \cdot \phi^{fgd2}}_{T^{fgd1}_{-}\phi^{fgd1}} - \frac{\hat{N}_{k}^{fgd1}}{T^{fgd2}_{-}waterlike}} \\ & \underbrace{\frac{\sigma_{k}^{water}}{\sigma_{k}^{scint}} = \frac{\hat{N}_{k}^{fgd2}}{\hat{N}_{k}^{fgd1}} \cdot \frac{T^{fgd1}}{T^{fgd2}_{-}waterlike}} \cdot \frac{\phi^{fgd1}}{\phi^{fgd2}} - \frac{T^{fgd2}_{-}XYlike}{T^{fgd2}_{-}waterlike}} \\ \\ & \underbrace{\frac{\sigma_{k}^{water}}{\sigma_{k}^{scint}} = \frac{\hat{N}_{k}^{fgd2}}{\hat{N}_{k}^{fgd1}} \cdot \frac{T^{fgd1}}{T^{fgd2}_{-}waterlike}} \cdot \frac{\phi^{fgd1}}{\phi^{fgd2}} - \frac{T^{fgd2}_{-}XYlike}{T^{fgd2}_{-}waterlike}} \\ \\ & \underbrace{\frac{\sigma_{k}^{water}}{\sigma_{k}^{scint}} = \frac{\hat{N}_{k}^{fgd2}}{\hat{N}_{k}^{fg1}} \cdot \frac{T^{fgd1}}{T^{fgd2}_{-}waterlike}} \cdot \frac{\phi^{fg1}_{-}\sigma^{fg1}_{-}\sigma^{fg2}_{-}ZYlike}{\sigma^{fg2}_{-}\sigma^{fg2}_{-}ZYlike}} \\ \\ & \underbrace{\frac{\sigma_{k}^{water}}{\sigma_{k}^{scint}} = \frac{\hat{N}_{k}^{fg2}}{\hat{N}_{k}^{fg1}} \cdot \frac{T^{fg1}_{-}\sigma^{fg1}_{-}\sigma^{fg2}_{-}ZYlike}{\sigma^{fg2}_{-}\sigma^{fg2}_{-}ZYlike}} \\ \\ & \underbrace{\frac{\sigma_{k}^{g2}}{\sigma_{k}^{g2}} + \frac{\hat{N}_{k}^{fg2}}{\hat{N}_{k}^{fg1}} \cdot \frac{T^{fg2}_{-}\sigma^{fg2}_{-}ZYlike}{\sigma^{fg2}_{-}\sigma^{fg2}_{-}ZYlike}} \\ \\ & \underbrace{\frac{\sigma_{k}^{g2}}{\sigma_{k}^{g2}} + \frac{\hat{N}_{k}^{g2}}{\hat{N}_{k}^{g2}} + \frac{\hat{N}_{k}^{g2}}{\hat{N}_{k}^{g2}_{-}ZY}} \\ \\ & \underbrace{\frac{\sigma_{k}^{g2}}{\sigma_{k}^{g2}} + \frac{\hat{N}_{k}^{g2}}{\hat{N}_{k}^{g2}} + \frac{\hat{N}_{k}^{g2}}{\hat{N}_{k}^{g2}_{-}ZY}} \\ \\ & \underbrace{\frac{\sigma_{k}^{g2}}{\sigma_{k}^{g2}} + \frac{\hat{N}_{k}^{g2}}{\hat{N}_{k}^{g2}_{-}ZY}} \\ \\ & \underbrace{\frac{\sigma_{k}^{g2}}{\sigma_{k$$

Detector candidate location

In the T2K near-detector hall at an off-axis angle 1.6 degrees - ND280 is located at an off-axis angle 2.5 degrees

Neutrino energy spectrum is similar between WAGASCI and ND280

Detector components

WAGASCI electronics

Read-out electronics is tested by LLR group, in France OMEGA SPIROC2D chip will be used in ASU boards.

Setup for the test operation

WAGASCI event selection

1 Identify muon

- At least one track should penetrate more then one iron layer in MRD

2 <u>Measure muon momentum</u>

- Track should stop in MRD or penetrate all layers
- **3** <u>Reject background from outside</u>
 - Vertex should be in Fiducial volume
 - Track should go outside from target module