DE LA RECHERCHE À L'INDUSTRIE

Laboratoire National LNHB Henri Becquerel

MMCD: Metallic Magnetic Calorimeters Development

Xavier-François NAVICK and Yong-Hamb KIM

5th joint workshop FKPPL and TYL/FJPPL , SEOUL 05/19/16

DE LA RECHERCHE À L'INDUSTRI

WHAT IS A MICROCALORIMETER?

DE LA RECHERCHE À L'INDUSTRI

- Very sensitive detector highest energy resolution <2eV FWHM@ 6keV
- Good linearity
- Relatively fast signals ($1\mu s risetime$)
- No dissipation in the sensor, no galvanic contact

DE LA RECHERCHE À L'INDUSTR

X-RAY SPECTROMETRY USING MMC

XL lines of ²⁴¹Am

30 eV FWHM at 60 keV with MMC

Evidence of satellite lines: shifted in energy from diagram lines due to multiple inner shell vacancies

M. Rodrigues and M. Loidl, Applied Radiation and Isotopes 109 (2016) pp 570-575

5th joint workshop FKPPL and TYL/FJPPL - 05/19/16

ALPHA SPECTROMETER USING MMC

W.S. Yoon, et al., NIM A 784 143-146 (2015)

Minimize the loss of energy in source and detector
No count loss

DE LA RECHERCHE À L'INDUSTR

14000

electroplated ⁶³Ni source in 4π geometry

Theory without exchange effect 12000 Theory including exchange effect Experiment, electroplated source 10000 Counts/100eV 8000 6000 4000 y-rays from ²⁴¹Am calibration source 2000 0^L 10 20 50 30 60 70 40 Energy (keV)

Confirmation of atomic exchange effect down to very low energy: threshold ~ 200 eV

Impact of exchange effect: at 200 eV the emission probability is enhanced by > 20 %

Detector placed on readout SQUID

1 mm

M. Loidl et al., J Low Temp.Phys.176 (2014) pp1040-1045

<u>AMoRE</u> (Advanced Mo-based Rare process Experiment)

⁴⁰Ca¹⁰⁰MoO₄ + MMC : Source = Detector

CaMoO₄

- Scintillating crystal
- High Debye temperature:

$$T_D = 438 \text{ K}, \ C \sim (T/T_D)^3$$

- ⁴⁸Ca, ¹⁰⁰Mo $0v\beta\beta$ candidates
- AMoRE uses ${}^{40}Ca{}^{100}MoO_4$ w. enriched

¹⁰⁰Mo and depleted ⁴⁸Ca

AMoRE TDR, arXiv:1512.05957 (2015)

MMC-BASED HEAT AND LIGHT SENSORS FOR AMORE

Heat (phonon) sensor

G.B. Kim, et al., Advances in High Energy Physics 2015 817530 (2015).

MMC **SQUID** Gold film Gold wires (thermal connection)

H.J. Lee, et al, NIMA 784 508-512 (2015)

Light (photon) sensor

PHOTON SENSOR WITH MMC

Thermalization Ge bridge: pad

Trenches through the wafer

KRISS

<u>Henri Becquere</u>

LUMINEU

risetime: $\sim 20 \ \mu s$ for X-rays 250 µs with ZMO scintillation

Thermal link

"Active" part of the detector: $\phi = 25 \text{ mm}$

MMC designed and produced: Heidelberg Univ.

D.Gray et al., J. Low Temp. Phys. (2016), DOI: 10.1007/s10909-016-1535-7

5th joint workshop FKPPL and TYL/FJPPL - 05/19/16

2 inches Au:Er target

Au:Er sputtering system

KRISS Clean room

Meander pickup coil

Device fabricated at KRISS

W.S. Yoon, et al., J. Low Temp. Phys 176 644-649 (2014)

Heidelberg

Univ.

5th joint workshop FKPPL and TYL/FJPPL - 05/19/16

DE LA RECHERCHE À L'INDUSTRIE

PROJECT IN SUPPORT OF NON-PROLIFERATION TREATY

- \rightarrow Simpler source preparation than α and mass spectrometry
- ightarrow Minimize the radiochemical process steps, strong reduce of the time
- \rightarrow More precise than α spectrometry
- ightarrow Wide number of actinide possible

YangYang(Y2L) Underground Laboratory

(Upper Dam) Yang Yang Pumped Storage Power Plant

1000n

(Power Plant)

MODANE UNDERGROUND LABORATORY

MMC is a recent technique.

The worldwide community of MMC users is very small (less than 50 people)

Both French-CEA and Korean-IBS-KRISS groups collaborate with Heidelberg University. It is natural to begin France-Korea own collaborative projects.

Both teams are contributing to

- WIMPS search (KIMS and EDELWEISS resp.)
- DBD projects (AMoRE and LUMINEU resp.)
- Spectrometry, Q measurement,

Natural convergence between our two groups to share expertise, experiences and means of production

- Phone meeting every two months

to discuss data analysis, simulations, feedback of instrumental work, and to exchange ideas for detector design and fabrication.

- Design new detectors / holders

to improve the detector performance for present and future projects. R&D plan and prototype design for a non-proliferation application.

- Share our expertise

in low radioactivity techniques, electro magnetic compatibility, radiopurity measurement and radioactive source production.

- Exchange of visitors.

One Korean student will participate in a test of a detector in CEA. One or two French researchers will come to Korea to participate in measurements, productions or discussions if required.

We thank you for your attention

Participants to MMCD

Yong-Hamb KIM from IBS, UST and KRISS Xavier-François NAVICK from CEA/DSM/IRFU Martin LOIDL and Matias Rodriguez from CEA/ DRT/LIST/LNHB MinKyu LEE from KRISS Hyejin LEE and HyonSuk JO from IBS

Back-up slides

Evidence of satellite lines: shifted in energy from diagram lines due to multiple inner shell vacancies

30eV FWHM at 60 keV

M. Rodrigues, M. Loidl, Applied Radiation and Isotopes 109 (2016) pp 570-575

Creation of a beta electron into a bound orbital with simultaneous ejection of a bound electron from the same shell

Energy-dependent enhancement of the beta emission probability

- very small in the higher energy part of the spectrum
- increases towards low energies

DE LA RECHERCHE À L'INDUSTRI

B- FULL Q SPECTRUM OF ²²⁶RA

DE LA RECHERCHE À L'INDUSTR

COO B- HEAT (PHONON) SENSOR FOR AMORE

DE LA RECHERCHE À L'INDUSTRI

B- PHOTON SENSOR WITH MMC

<u>KRIŜS</u>

