

ILC Top

Keisuke Fujii, KEK on behalf of the HEP_01 team

ILC Top (HEP_01) Team

French Group

François Le Diberder

Sviatoslav Bilokin Jeremy Hebinger Emi Kou Roman Pöschl François Richard Boris Tuchming Viatcheslav Shavy Paul Colas Maxim Titov Japanese Group

Keisuke Fujii

Akimasa Ishikawa Yuichiro Kiyo Masakazu Kurata Yoshimasa Kurihara Taikan Suehara Yo Sato Yukinari Sumino Tomohiko Tanabe Hitoshi Yamamoto

The ILC Top team is expanding! There are new students not in this list.

Areas of Current Activities

Key quantities: *mt*, *tth* and *ttZ* couplings

Strong analysis team of both theorists and experimentalists in France.

Sizable EW 1-loop effects!

Higher order EW correction essential for BSM detection !

GRACE experts in Japanese Team!

Open Top Region

Japanese analysis team working on the tth coupling

Development of Analysis Techniques

Matrix Element Method

 $e^+e^- \to t\bar{t} \to \mu^+\mu^- b\,\bar{b}\,\nu_\mu\bar{\nu}_\mu$

 $\mid \mathcal{M} \mid^2$

Full reconstruction of 2L+2b final states \rightarrow full exploitation of available information

Expert in Matrix Element Method in French team

b-tagging and b-charge ID

Final state reconstruction uses all detector aspects

Proper top charge ID is essential, for which bcharge ID is very powerful if realized

In all of these analyses b-tagging and b-charge measurement essential !

Analysis experts in France Experts of flavor tagging (LCFIPlus) in Japan

Top at Threshold

Top at Threshold

The $t\bar{t}$ threshold is the ideal place to make a clean measurement of the top mass and the lowest energy place to access the tth coupling

 $\Gamma_t \approx 1.4 \text{ GeV}$ for $m_t = 175 \text{ GeV}$

Because of this large width, the top and the anti-top pair created at r=0 decay before entering the non-perturbative QCD regime.

Γ_t acts as an infrared cutoff

Reliable cross section calculation from first principle (perturbative QCD) even in the threshold region as first shown by Fadin-Khoze!

The reliable estimate of the QCD boundstate effects gives us the *opportunity to access the tth coupling!*

More importantly the reliable estimate of the QCD bound-state effects allows us to extract *the short-distance top quark mass in a theoretically very clean way!, which is crucial to decide the fate of the SM vacuum!*

mass precision to ~500MeV.

NNNLO top production near threshold

The state-of-the-art

NNNLO study for mt, Ft extraction in threshold scan with NNNLO cross section (presented in TopLC15, IFIC Valencia, 30 June-2 July, 2015)

With NNNLO threshold cross section, feasibility study for top properties (mass, width, Yukawa coupling with Higgs boson) had been started

Precision of top mass determination, Kiyo-Mishima-Sumino(JHEP 1511(2015)084

• NNNLO QCD corrections, Beneke-**Kiyo**-Marquard-Penin-Piclum-Steinhauser, PRL115(2015)no.19, 192001

 $\Delta m_t(\overline{MS}) \lesssim 30 \,\mathrm{MeV}$ $\Delta m_H = 15 \,\mathrm{MeV}$

ILC pinpoints the vacuum location!

Open Top Region

In Search of Anomalous ttZ couplings

Top: Heaviest in SM→Must couple strongly to EW symmetry breaking sector!

 \rightarrow Specific deviation pattern expected in ttZ form factors depending on new physics.

Key points

 $\Gamma_t \approx 1.4 \text{ GeV}$ for $m_t = 175 \text{ GeV}$

The top decays before forming a top hadron.

Top spin is measurable by **angular analysis of decay products** → **ME**

+ Polarized beams to disentangle the left- and right-handed couplings

We are developing experimental technique for precision top quark reconstruction *b-tagging and b-charge measurement are essential!*

Experts of event reconstruction in France Experts of flavor tagging (LCFIPlus) in Japan

Semi Leptonic Analysis - Reconstruction of θ_{top} at \sqrt{s} =500 Gev

Arxiv:1505.06020 EPJC (2015) 75:512

Reconstruction of b quark charge

$\mathcal{P}_{e^-}, \mathcal{P}_{e^+}$	$(\delta\sigma/\sigma)_{stat.}$ [%]	$(\delta A_{FB}^t/A_{FB}^t)_{stat.}$ [%]
-0.8, +0.3	0.47	1.8
+0.8, -0.3	0.63	1.3

Top is primary candidate to be a messenger new physics in many BSM models Incorporating compositeness and/or extra dimensions

Precision expected for top quark couplings will allow to distinguish between models Remark: All presented models are compatible with LEP elw. precision data

To remedy low e_L efficiency and further improve sensitivities to NP

- Proper top quark charge measurement essential to control migrations observed in semi-leptonic analysis
- Exploit properties of B-Mesons to determine
 b-quark charge and hence top quark charge
- Additionally charged Kaons from a Ternary carry the imprint of the original Top quark charge
- Developed algorithms:
 - **TruthVertexFinder** for generated Secondary and ternary vertices
 - VertexChargeRecovery to collect And assign all tracks to their vertex

Both algorithms are part of ILD Software

- Event selection: a) Consistent b-charge and lepton charge or b) $\chi^2 < 15$ $\chi_t^2 = (\frac{m_{rec} - m_t}{\sigma_m})^2 + (\frac{E_{rec} - E_{beam}}{\sigma_E})^2 + (\frac{p_{rec}^* - p_b^*}{\sigma_p^*})^2 + (\frac{\cos\theta_{rec} - \cos\theta_{bW}}{\sigma_{\cos\theta_{bW}}})^2$
 - Total efficiency is ~33% better than for Published result *Arxiv:1505.06020, EPJC (2015) 75:512*

Significant improvement w.r.t. published results (=ILD DBD) 33% better efficiency => ~17% less LC running time for same precision

- top polar angle from vertex charge and Kaon charge (still from generator information)

- Clean reconstruction of top polar angle spectrum
- (Still) small efficiency of 15% due to very tight selection

Matrix Element Method

Summary

- We made a significant theoretical progress in the threshold top pair production and the extraction of the short-distance top mass.
- Successful development of algorithms for reconstruction of vertex charge.
 - Clean top polar angle spectrum for semi-leptonic top decays 33% increase of efficiency w.r.t. Paper and ILD DBD
 - Clean polar angle spectrum when using vertex charge and Kaon charge
- Planned research stay in Japan by Sviatoslav Bilokin to work on new vertexing Algorithm in FY2016.
 - Higher efficiency of secondary vertices (not shown today)
 - Improved particle identification
- Application of algorithms to ee-> bb final states.
- Matrix Element Method needs proper 1-loop corrections.
- Found the key role played by the W box diagram using GRACE.
- Planned research stay in France by Yo Sato to work on ME analysis in FY2016.

Backup

Future Linear Electron-Positron Colliders

Track momentum: $\sigma_{1/p} < 5 \times 10^{-5}$ /GeV (1/10 × LEP) (e.g. Measurement of Z boson mass in Higgs Recoil) Impact parameter: $\sigma_{d0} < [5 \oplus 10/(p[GeV]sin^{3/2}\theta)] \mu m(1/3 \times SLD)$ (Quark tagging c/b) Jet energy resolution : $dE/E = 0.3/(E(GeV))^{1/2}$ (1/2 × LEP) (W/Z masses with jets) Hermeticity : $\theta_{min} = 5 \text{ mrad}$ (for events with missing energy e.g. SUSY)

Final state will comprise events with a large number of charged tracks and jets(6+)

- High granularity
- Excellent momentum measurement
- High separation power for particles

Particle Flow Detectors

Detector concepts ILD and SiD

Top Quark Physics at Electron-Positron Colliders

- Top quark production through electroweak processes no competing QCD production => Small theoretical errors!

- High precision measurements

- Top quark mass at ~ 350 GeV through threshold scan
- Polarised beams allow testing chiral structure at ttX vertex
 Precision on form factors F and couplings g

ACCÉLÉRATEUR

At ILC **no** separate access to ttZ or tt γ vertex, but ...

ILC 'provides' two beam polarisations

$$P(e^{-}) = \pm 80\%$$
 $P(e^{+}) = \mp 30\%$

There exist a number of observables sensitive to chiral structure, e.g.

$$\boldsymbol{\sigma}_{\boldsymbol{I}} \qquad A_{\boldsymbol{F}\boldsymbol{B},\boldsymbol{I}}^{t} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)} \qquad (F_{R})_{I} = \frac{(\sigma_{R})_{I}}{\sigma_{I}}$$

x-section

Forward backward asymmetry

Fraction of right handed top quarks

다 Extraction of relevant unknowns

$$\begin{array}{ll} F_{1V}^{\gamma},\,F_{1V}^{Z},\,F_{1A}^{\gamma}=0,\,F_{1A}^{Z} \\ F_{2V}^{\gamma},\,F_{2V}^{Z} \end{array} \quad \text{ or equivalently } \quad g_{L}^{\gamma},\,\,g_{R}^{\gamma},\,\,g_{L}^{Z},\,\,g_{R}^{Z} \end{array}$$

New physics reach for typical BSM scenarios with composite Higgs/Top and or extra dimensions

Based on phenomenology described in Pomerol et al. arXiv:0806.3247

Roman Pöschl

Tokusui 2015 – December 2015

Assumptions for Lumi scaling

 $\sqrt{s} \sim 500$ GeV is "sweet spot" for coupling measurements However:

- Sensitivity to CP violating Higgs at smaller cms energies
- New physics at higher energies may increase cross section

- F1AZ would profit from somewhat higher energies (beta dependence)
- Remark: Full disentangling for F1VZ and F2VZ at ~1 TeV
- $\sqrt{s} \sim 1$ TeV attractive option

Top pair production is effectively ee->6f process

- Role of (indistinguishable) single top production (Eur. Phys. J. C (2015) **75**: 223) Only relevant for e_L
- Effective filed theory approaches w.r.t. full models
- Exploitation of information of final state by matrix element method (arxiv: 1503.04247) Unbiased access to tensorial CP violating form factors !?
- Exotic decays as e.g. t->ch

What about LHC perspectives?

Linear Collider will outperform LHC results

- Particular poor constraint on g_R (this holds also for flavor physics results)
- LHC LO QCD analysis, ~30% improvement through NLO QCD
- LHC may still be capable to exclude models

Comparison with current LHC results

Influence of the top quark mass on x-sec and ${\rm A}_{\rm FB}$

- very pronounced below \sqrt{s} = 360 GeV
- 2.9%/GeV at \sqrt{s} = 380 GeV
- 1.3%/GeV at √s = 420 GeV
- 0.6%/GeV at √s = 500 GeV

With the assumption of a 100 MeV pole mass measurement at threshold, the remaining uncertainty is one per mil or less above 420 GeV

- Luminosity: Critical for cross section measurements Expected precision 0.1% @ 500 GeV
- Beam polarisation: Critical for asymmetry measurements Expected to be known to 0.1% for e- beam and 0.35% for e+ beam
- Migrations/Ambiguities: Critical for A_{FB}:
 PFLOW important for selection of 'clean events' but maybe subleading w.r.t. jet clustering Control of b charge is most relevant topic !!!!
- Other effects: b-tagging, passive material etc. LEP1 claims 0.2% error on R_b -> guiding line for LC
- Under discussion with theory groups:
 - Consideration full 6f final state (Interference with single top and ZWW)
 - Electroweak NLO predictions (Correction LO \rightarrow NLO ~ 15%)
 - Update and maintenance of event generators (WHIZARD, MADGRAPH etc.)