

Toward the final design of a TPC for the ILD detector (D_RD_9)

Keisuke Fujii, Serguei Ganjour

KEK, Tsukuba, Japan CEA-Saclay/IRFU, Gif-sur-Yvette, France

TYL-FJPPL Workshop Korea Institute for Advanced Study (KIAS), Seoul May 18-20, 2016

- The feasibility of a MPGD TPC for the Linear Collider (LC) was demonstrated in D_RD_2 project
 - Construction and tests of a MPGD TPC endplate prototype for the LC
 - ILD detector baseline document was completed in March 2013

B D_RD_9 project started in April 2013

- running in mid-term phase now
- Bordeaux 2014: software, analysis of beam test data
- Okinawa 2015: steps toward an engeneering design
- \blacksquare finalizing remaining issues for a TPC of the ILD detector
 - \rightarrow ion backflow and gating
 - → cooling (micro-cooling circuit option)
 - \rightarrow design of new electronics and power pulsing test
 - → mitigate and correct field distortions
 - \rightarrow simulation of the effect of the resistive foil

TPC is the central tracker for International Linear Detector (ILD)

- Is Large number of 3D points
 - continuous tracking
- Particle identification
 - \Rightarrow dE/dx measurement
- Low material budget inside the calorimeters (PFA)
 - \blacksquare barrel: $\sim 5\% X_0$
 - ${}^{\scriptstyle{\scriptstyle{|||}||}}$ endplates: $\sim 25\% X_0$

\bowtie Two gas amplification options:

- ➡ Gas Electron Multiplier (GEM)
- MicroMegas (MM)
 - \rightarrow pad-based charge dispersion readout
 - \rightarrow direct readout by the TimePix chip

INFERT TPC Requirements in 3.5 T

- **Momentum resolution:**
 - $\rightarrow \delta(1/p_{\rm T}) \le 9 \times 10^{-5} {\rm GeV^{-1}}$
- ➡ Single hit resolution:
 - → $\sigma(\mathbf{r}\phi) \le 100 \mu \mathbf{m}$ (overall)
 - $\rightarrow \sigma(\mathbf{Z}) \simeq 400 \mu \mathrm{m}$
- **Tracking efficiency:**
 - ightarrow 97% for $p_T \geq 1 GeV$
- \Rightarrow dE/dx resolution: 5%

INF Charge density function

$$\rho(r,t) = \frac{RC}{2t} \exp[-\frac{-r^2 RC}{4t}]$$

R- surface resistivity C- capacitance/unit area

- IS™ MM: T2K readout concept
 - ➡ 72-channel AFTER chip (12-bit)

GEM: modified ALTRO readout

■ 16-channel ALTRO chip (10-bit)

GEM (Japan)

MicroMegas (France)

real Fit data with: $\sigma(z) = \sqrt{\sigma_0^2 + rac{D_\perp^2}{N_{eff}} z}, \; \sigma_0^2 = b^2/N_{eff}$

- $\rightarrow \sigma_0$ the resolution at z=0, N_{eff} the effective number of electrons
- \blacksquare Magboltz calculations of D_{\perp} at about 3% precision

- IS Primary ions yield distortions in the E-field which result to $O(≤ 1\mu m)$ track distortions
- Secondary ions yield distortions from backflowing ions generated in the gas-amplification region:
 - 60 μm for IBFxGain=1 for the case of 2 ion disks

Gating: open GEM to stop ions while keeping transparency for electrons

- Image A large-aperture gate-GEM with honeycomb-shaped holes
 - produced in Japan
 - handed to Saclay for transparency measurements with MM
 - use test setup at CERN

☞ French team: simulating in hardware an ion disk with a UV lamp

Electron transmission as a function of GEM voltage

(carried out by Saga group)

Extrapolation to 3.5 T shows acceptable transmission for electrons (80%)
Simulation shows that ion stopping power better than 10⁻⁴ at 10 V reversed biases

Cooling of the electronic circuit is required due to power consumption

 $^{\hbox{\tiny I\!S\!S}}$ Temperature of the circuit rises up to 60°C

- cause a potential damage of electronics
- covect gas to TPC due to a pad heating
- $\label{eq:alphase} \hbox{$\stackrel{$\hbox{$\scriptstyle $\ensuremath{\mathbb{R}}$}}{$ $\hbox{$\scriptstyle $\ensuremath{\mathbb{R}}$}$} A 2-Phase CO_2 cooling with the KEK cooling plant \mathbf{TRACI} was provided to 7 MM modules during 2014/15 beam tests at DESY}$

 \blacksquare 10°C at P=45 bar system operation

About 30°C stable temperature was achieved during operation of 7 MM modules

- Thermal behavior and effect of cooling have been simulated
 - D.S. Bhattacharya et al., JINST 10 P08001, 2015"

Cooperation for industrial contacts for the **micro-cooling circuit** option

\bowtie The beam test electronics are not those to be used in the ILD detector

- ➡ AFTER (T2K chip) is not extrapolable to Switched Capacitor Array (CSA) depths of 1 bunch train
- ALTRO does not satisfy power consumption requirements
- S-Altro 16 has to evolve
 - improve packing factor (probably 65 nm)
 - lower power consumption
 - power pulsing from the beginning

resonation Common Front End for Gas Detector Signal processor development within AIDA

- the 130 nm work has finished
- \blacksquare present work within AIDA 2020
- Image See In the second se
 - performance study with the same electronics and pad's structure
 - dedicated power pulsing test

Non-uniform E-field near module boundaries induces ExB effects

- Is Track distortions from the Large Prototype
 - \blacksquare reach about 0.5 mm at boundaries
 - ightarrow worth to minimize at design level
 - accounted as systematic residual offsets
 - determined on a row-by-row basis
 - \blacksquare correct residuals to zero at ${
 m about}~20\mu{
 m m}$
- $\ensuremath{\mathbb{R}}\xspace^{\circ}$ Good agreement with simulations
 - E and B field inhomogeneity at module boundaries and near the dges of the magnet
- In this project we will refine the simulations and work on possible countermeasures

D_RD_9

Procurement of PCB with resistive kapton (CLK) is troublesome

 ${\tt I\!S\!P}$ New type modules were tested in 2015

- Diamond-Like Carbon (DLC)
- very solid, uniform, more robust, easier to achieve the required resistivity
- pecisely determined resistivity (5 MOhm/□)
- Simulation of the charge spreading in the resistive anode layer
 - potential effect on the performance
 - \rightarrow relatively slow charge evacuation
 - → charge sharing beween adjacent readout pad raws
 - implementation of the physics processes including Pile Up (PU) events

Procurement of DLC can be done in Japan

		Spending on I	French Funds			
Description		€/unit	Nb of units	Total (€)	Provided by: ¹	
Okinawa/FJPPL P. Colas		1162	1 travel	1162	Irfu	
5 days		148/day	5 days	740	irfu	
KEK/AWLC15 S. Ganjour		1043	1 travel	1043	Irfu	
13 days		115/day	13 days	1500	Irfu	
KEK/AWLC15 M. Titov		914	1 travel	1004	Irfu	
9 days		90/day	9 days	810	Irfu	
Total				6259		
		Spending on	KEK Fund			
Description		k¥/Unit	Nb of units	Total (k¥)		
Travel K. Fujii		220	2 travel	220 (440)	1 travel counted to ILC_Top	
Visit to France 20/d		20/day	9 days	90 (180)	1/2 counted to ILC_Top	
Okinawa/FJPPL K.Fujii		35	1 travel	35		
		11/day	3 days	33		
Total				688		
Additional spendi	ng on French f	unds	Add	itional spendi	ng on Japan fun	ds
Provided by: ²	Туре	€	Provided by	.3	Туре	k¥
AIDA	EU funding 3700		IPNS/KEK		Equipment	4000
CEA	Dotation	9400	Saga (grant-i	n-aid)	Equipment	2000
Total		13100	Total			6000

 ${\ensuremath{\mathbb S}}^{\ensuremath{\mathbb S}}$ AIDA 2020 has been granted

- method contains a gaseous detector part
- m spans 2015-2018

Request for April 2016 to March 2017

	French Group				Japanese Group			
	Name	Title	Lab./Organ	is. ²	Name		Title Lab/Organis. ³	
S. Ganjour Dr		Dr.	CEA/Irfu	K. Fujii	K. Fujii		KEK	
Leader	P. Colas	Dr.	Dr. CEA/Irfu		T. Fusayasu		Saga Univ.	
Leuder	D. Attie	Dr.	CEA/Irfu	K. Kato	K. Kato		Kinki Univ.	
Members	I. Giomataris	Dr.	CEA/Irfu	M. Koba	M. Kobayashi		KEK	
	A. Giganon	anon Mr. CEA/Irfu T. Matsuda		da	Dr.	KEK		
				A. Sugiya	A. Sugiyama		Saga Univ.	
				T. Takah	T. Takahashi		Hiroshima Univ.	
				T. Watan	abe	Dr.	Kogakuin Univ.	
				T. Ogawa	ı	Mr.	Sokendai/KEK	
Funding Request from France								
Description		€/unit		Nb of units	b of units Total (€)		Requested to ⁴ :	
Visit to Japan		150/day		25 days	3750	Irfu		
Travels			1200		3600	Irfu		
Total					7350			
Funding Request from KEK								
Description		k¥/Unit		Nb of units	Total (k¥)	Requested to:		
Travel		200		2 travel	400	KEK		
Visit to France		20/day		14 days	280	KEK		
Travel + per diem		900		1	900	KEK		
Total					1580			

- Saclay applied to an EU RiSE grant (GANDALF project)
 - fund travels to Japan for 4 years
 - ➡ includes TPC R&D

INF The French-Japan R&D work within the LCTPC collaboration is in a phase of engineering toward the final design of a TPC for the ILD detector

- It also allowed us to identify a few points requiring common active R&D to be pursued in the next few years
 - ion backflow and gating
 - field distorsions at module boundaries
 - **GEM** and MM modules with common electronics
 - effect of the resistive foil

Special thanks to P. Colas, T. Matsuda, and A. Sugiyama

Backup

$$rac{\sigma(\mathrm{p_T})}{\mathrm{p_T}} = \sqrt{rac{720}{\mathrm{N+4}}}(rac{\sigma_{\mathrm{x}}\mathrm{p_T}}{0.3\mathrm{BL}^2})$$

 $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ TPC point resolution is x10 worse than Si

- would need x100 more points
- met always practical
- Iarger tracking volume
- include 2 inner Si layers (SIT) and 1 outer Si layer (SET, ETD)

r ILC flagship measurement

- ``` recoil mass $e^+e^- \rightarrow Z(ll)X$
- \blacksquare driven by both beam spread ($\sigma_{
 m B}$) and momentum resolution($\sigma_{
 m D}$)
- IIII $\sigma_{
 m B}=400~{
 m MeV}$ from TDR
- $\blacksquare \sigma_{\mathrm{D}} = 300 \ \mathrm{MeV}$ at $\mathrm{R}_{\mathrm{out}} = 1.8 \ \mathrm{m}$
- $\blacksquare \sigma_{\mathrm{D}} = 400 \ \mathrm{MeV}$ at $\mathrm{R}_{\mathrm{out}} = 1.4 \ \mathrm{m}$

Extensive R&D for ILC TPC is active research area of the LCTPC Collaboration

The EUDET/AIDA test beam (TB) facility at DESY provide a 6 GeV electron beam

Large Prototype (LP) TPC
 consists of a field cage equipped with an endplate with 7 windows to receive up to
 7 fully equipped modules

French activity encompases the MicroMegas readout for ILD TPC

- ☞ Prehistory of TB with MM modules:
 - \blacksquare Mar 2010: one-module setup
 - \blacksquare May 2011: cross-talk problem
 - Jul 2012: multi-module setup with 6 operated modules; coherent noise
 - Jan-Feb 2013: multi-module setup with 7 fully operated modules; many disconnected pads
 - ➡ Feb 2014: same as in 2013 with some pads' connection problem
- Isst beam test of 7 MM modules took place at DESY, 1–14 March, 2015
 - Involved groups:
 - → Bonn, Carleton, DESY, KEK, Saclay

The EUDET/AIDA test beam facility at DESY provide a 6 GeV electron beam

- Setup was designed for a Large TPC Prototype (LPTPC) for the ILC experiment
- LP readout modules operate in a strong magnetic field
 - provides a superconducting solenoid magn⁽ Ø85 cm and a length ∼1 m
 - a magnetic field
 strength of up to
 1.25 T

Consists of a field cage equipped with an endplate with 7 windows to receive up to 7 fully equipped identical modules

Different layouts are considered for ILD: 4-wheel and 8-wheel scheme

Multi-module setup

A multi-module detector sensitive to misalignment and distortions

 $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ Low material budget is required for ILD-TPC

- current MM module design:

$$m d/X_0\simeq 0.24$$

 \bowtie Beam, Laser, and Cosmic triggers are deployed

- A cosmic trigger based on
 - \rightarrow 12 scintillator plates
 - ightarrow readout by silicon PMs
 - → SiPM signal discrimination and coincidence logic with NIM modules
- Image: BAQ 120 Hz maximum event taking rate (designed and produced at CEA-Saclay)
 - 6 AFTER chips are digitized in parallel by 8-channel ADC at 20 MHz
 - 4 sequential iterations are needed to readout a FEMi
 - \blacksquare each iteration takes 79 x 511 clock cycles at 20 MHz
 - \blacksquare irreducible dead-time of 8 ms

- ☞ 7 MM modules with charge dispersion by resistive anode
 - \blacksquare pads of the size 3×7 mm²
 - 24 rows with 72 pads each
 - 1728 pads per module
- Beam data taking program:
 - magnetic field: B=0, 1 T
 - \blacksquare drift field: E=140, 230 V/cm
 - ******* z-scan [5-50]cm every $\Delta z = 5 \,\mathrm{cm}$
 - $``` shaping time <math display="inline">\tau\text{-scan:}$ 100-1000 ns
 - \blacksquare ZS: 4.5 σ (baseline) and 3 σ
 - beam energy scan [1-5] GeV
 - \blacksquare varying θ angle up to 30°
- $rac{1}{\sim}$ Cosmic data: cover a whole LP volume (T₀ calibration)

x=40:baseline beam setupx=-30:complementary beam setup(B=0T data at x=-30)

- ${\tt I\!S\!P}$ Prototype operates with T2K gas
 - \implies Ar(95%), CF₄(3%), iC₄H₁₀(2%)
 - $^{\shortparallel}$ gas purity: 60 ppm O_2 , 100 ppm H_2O
 - deploy Magboltz calculations

 \blacksquare Absolute T_0 calibration:

- **beam trigger:** dedicated z-scan at $V_{drift} = 140,230 V$
 - → $T_0 = 645 ns$ from fit
- cosmic trigger: accumulate a whole LP volume data events

 \rightarrow T₀ = 22 × 40ns = 880ns

	E=140 V/cm	E=230 V/cm		
V_d Data	$56.7 \pm 0.1 \mu m/ns$	$74.1 \pm 0.2 \ \mu m/ns$		
$V_{\rm d}$ Magboltz	$57.9 \pm 1.0 \mu \mathrm{m/ns}$	$75.5 \pm 1.0 \mu \mathrm{m/ns}$		
D_{\perp} Magboltz	$74.5 \pm 2.5 \mu \mathrm{m}/\sqrt{\mathrm{cm}}$	$94.8 \pm 3.1 \mu \mathrm{m}/\sqrt{\mathrm{cm}}$		

About 250 ns differnce for T_0 between

Residual offsets are due to distortions (ExB) and misalignment (multi-module setup)

- Reference Alignment is accounted as overall rotations (θ) and shifts (x and y)
 - ${}^{\scriptstyle \hbox{\tiny III}}$ uses all data at B=0T to exclude ExB effects
 - corrections are obtained in an iterative procedure unless they are within errors (3 serie)
 - determined in module-by-module basis
 - we uses multi-dimensional χ^2 minimization with Millipede II interfaced to GBL tracks

Available TB data allowed us to study the whole set of systematic effects relevant to the multi-module setup

 D_RD_9

About 26 W power consumption is currently measured per MM module

- $^{\hbox{\tiny I\!S\!S}}$ Temperature of the circuit rises up to 60°C
 - cause a potential damage of electronics
 - covect gas to TPC due to a pad heating

Cooling of the electronic circuit is required!

- Principle: CO₂ has a much lower viscosity and a much larger latent heat than all usual refrigerants
 - the two phases (liquid and gas) can coexist at room temperature under pressure
 - wery small pipes suffice
 - hold high pressure with low material
- $\bowtie 10^{\circ} C$ at $P{=}45~bar$ system operation

About $30^{\circ}C$ stable temperature was achieved during operation of 7 MM modules

S.Ganjour

Module 6 (S3B)