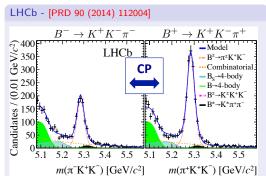


LHCb Combination of the CKM angle γ

Matthew Kenzie CERN

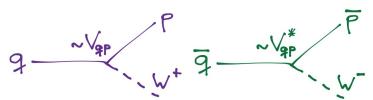
LPNHE Seminar

May 2, 2016


1. CP violation and the CKM matrix

- OP violation and the CKM matrix
- 2 The LHCb Experiment
- lacksquare CKM angle γ
- 4 LHCb Combination
- Conclusion and Prospects

- ▶ We live in a matter (and photon) dominated universe
- ▶ How does baryogenesis lead to a matter / antimatter asymmetry?
- ► CP violation is a crucial ingredient to this problem (Sacharov)
- CKM matrix is the one place in the SM with CP violation
- \blacktriangleright CPV in the SM $(\sim 10^{-20})$ does not nearly account for the observed baryon-photon asymmetry($\sim 10^{-10})$
- ▶ New sources of CP violation would be a clear indiction of New Physics (NP)


- ▶ In the SM quarks can change flavour by emission of a W^{\pm} boson
- Quark mixing in the SM is described by the 3×3 unitary CKM matrix

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \cdot \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

$$\text{mass}$$

$$\text{eigenstates}$$

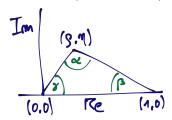
▶ The matrix elements determine the transition probability

▶ Parameterised by three mixing angles $(\theta_{12}, \theta_{13}, \theta_{23})$ and a CP violating phase (δ)

CKM matrix

▶ The CKM matrix exhibits a clear hierarchy, $\sin(\theta_{13}) << \sin(\theta_{23}) << \sin(\theta_{12}) << 1$, so often expressed in Wolfenstein parameterisation (A, λ , ρ , η)

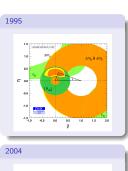
Wolfenstein parametrisation

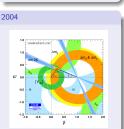

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- Hierachy gives very distinctive behaviour to the flavour sector of the SM which gives strong constraints on NP
- ▶ CKM matrix gives the only source of CP violation in the SM $(m_{\nu} = \theta_{QCD} = 0)$

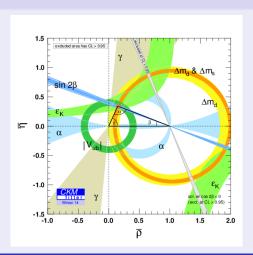
Unitarity gives a triangle in the complex plan

$$\begin{aligned} V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* &= 0 \\ \Rightarrow \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} + 1 + \frac{V_{td} V_{tb}^*}{V_{cd} V_{cb}^*} &= 0 \end{aligned}$$

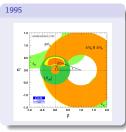

- Area corresponds to total CPV in SM
- SM implies that $\alpha + \beta + \gamma = 180^{\circ}$

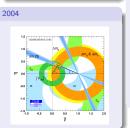


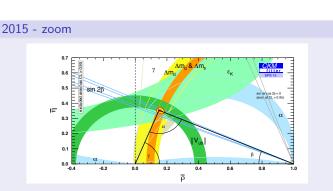
LHCb CERN


CKM picture is now well verified

- ► Any discrepancies would be of great importance
- ightharpoonup CKM angle γ is the *least well known* constraint

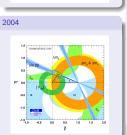


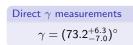


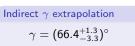

LHCb CERN

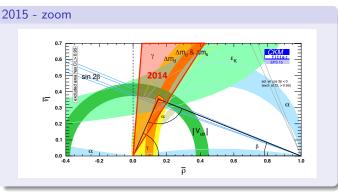
CKM picture is now well verified

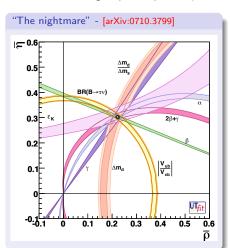
- ► Any discrepancies would be of great importance
- ightharpoonup CKM angle γ is the *least well known* constraint

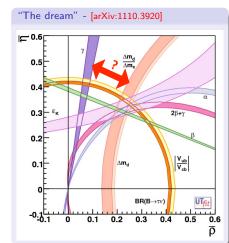



LHCb THCp


CKM picture is now well verified

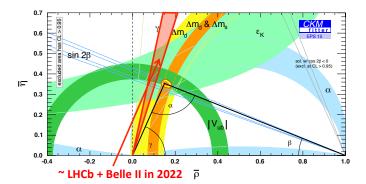

- ► Any discrepancies would be of great importance
- ightharpoonup CKM angle γ is the *least well known* constraint





LHCb CERN

The Ultimate Test


- $ightharpoonup \gamma$ is an excellent probe of new physics
- ightharpoonup Not just via direct / indirect disagreement but many constraints from new physics in neutral mixing require input of γ

The Ultimate Test

- ▶ LHCb expected precision in 2018 $\sim \pm 2-3^{\circ}$
- ▶ LHCb expected precision in 2029 $\sim \pm 1^\circ$
- ▶ Belle II expected precision in 2023 $\sim \pm 2^{\circ}$

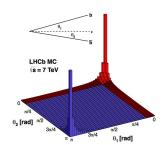
2. The LHCb Experiment

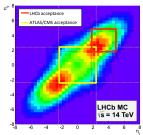
- ① CP violation and the CKM matrix
- 2 The LHCb Experiment
- 3 CKM angle γ
- 4 LHCb Combination
- Conclusion and Prospects

LHC, CERN, Geneva

LHCb Detector

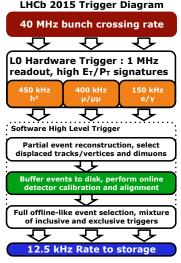
► A single arm forward spectrometer


14/38 LHCb CERN


LHCb Detector

- ► A single arm forward spectrometer
- A factory for beauty and charm decays
- ▶ Acceptance range $2 < \eta < 5$
- ▶ 100K $b\overline{b}$ pairs produced per second (10⁴× B factories)
- $\sigma(b\overline{b}) = 284 \pm 54 \mu b$
- $\sigma(c\overline{c}) \approx 20 \times \sigma(b\overline{b})$

LHCb performance paper - [arXiv:1412.6352]


- ▶ IP resolution $\approx 20 \mu m$
- p resolution $\approx 0.5\%$
- ho τ resolution pprox 45 fs
- Calorimeter ID for γ , e, π^0
- ▶ Particle ID $\epsilon(K)\sim 95\%$ with 5% $\pi\to K$ mis-id
- Muons $\epsilon(\mu) \sim 97\%$ with $(1-3)\%\pi \to \mu$ mis-id

LHCb Trigger

- ► The detector is complimented with an incredibly sophisticated and versatile trigger system
- Allow detector alignment and calibration in real time!
- In turn means online and offline reconstruction are identical
- ▶ Allows performing of many analyses online
- Allows high readout rate
- High efficiency for a broad range of topics

3. CKM angle γ

- CP violation and the CKM matrix
- \bigcirc CKM angle γ
- 4 LHCb Combination

γ from theory

$$\gamma = \arg \left(-\frac{\mathit{V_{ud}\,V_{ub}^*}}{\mathit{V_{cd}\,V_{cb}^*}} \right)$$

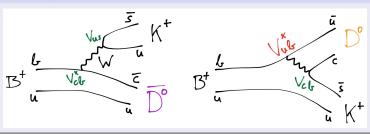
- $ightharpoonup \gamma$ is known very well
- Can be determined entirely from tree decays
 - Unique property among all CP violation parameters
 - Hadronic parameters can be determined from data
- ▶ Neglible theoretical uncertainty (Zupan and Brod 2013)

Theory uncertainty on
$$\gamma$$
 $\delta\gamma/\gammapprox\mathcal{O}(10^{-7})$ - [arXiv:1308.5663]

- \triangleright γ can probe for new physics at extrememly high energy scales (Zupan)
 - (N)MFV new physics scenarios: $\sim \mathcal{O}(10^2)~\mathrm{TeV}$
 - gen. FV new physics scenarios: $\sim \mathcal{O}(10^3)~{\rm TeV}$

18/38 LHCb CERN

γ from experiment

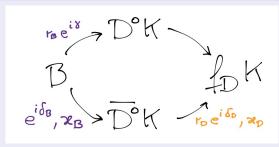

- $ightharpoonup \gamma$ is NOT known very well
- It is quite challenging to measure
- The decay rates are small

Branching ratio for suppressed
$$\gamma$$
 mode $BR(B^- \to DK^-, D \to \pi K) \approx 2 \times 10^{-7}$

- ightharpoonup Small interference effect typically $\sim 10\%$
- Fully hadronic decays hard to trigger on
- ▶ Many channels have a K_S⁰ in the final state low efficiency
- lacktriangle Many channels have a π^0 in the final state very hard at LHCb
- Many different decay channels, many observables and many hadronic unknowns make it statistically challenging

Methods to measure γ

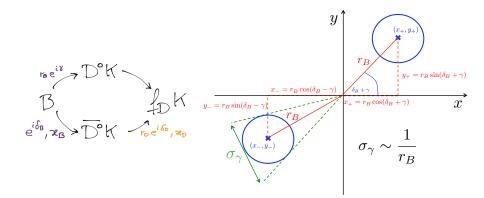
Reconstruct the D^0/\bar{D}^0 in a final state accesible to both to acheive interference


- ► GLW method
 - ▶ CP eigenstates e.g. $D \rightarrow KK$
 - ► Gronau, London, Wyler (1991)
- ► <u>ADS method</u>
 - ▶ CF or DCS decays e.g. $D \rightarrow K\pi$
 - ► Atwood, Dunietz, Soni (1997,2001)
- ► GGSZ method
 - ▶ 3-body final states e.g. $D \to K_{\rm S}^0 \pi \pi$
 - Giri, Grossman, Soffer, Zupan (2003)

- ▶ [Phys. Lett. B253 (1991) 483]
- [Phys. Lett. B265 (1991) 172]
- ► [Phys. Rev. D63 (2001) 036005]
- [Phys. Rev. Lett. 78 (1997) 3257]
- ▶ [Phys. Rev. D68 (2003) 054018]

20/38 LHCb CERN

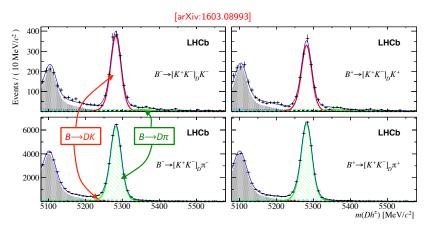
Methods to measure γ


Reconstruct the D^0/\overline{D}^0 in a final state accesible to both to acheive interference

- ► GLW method
 - ▶ CP eigenstates e.g. $D \rightarrow KK$
 - Gronau, London, Wyler (1991)
- ► ADS method
 - ▶ CF or DCS decays e.g. $D \rightarrow K\pi$
 - Atwood, Dunietz, Soni (1997,2001)
- ► GGSZ method
 - ▶ 3-body final states e.g. $D o K_{\rm S}^0 \pi \pi$
 - ▶ Giri, Grossman, Soffer, Zupan (2003)

- [Phys. Lett. B253 (1991) 483]
- ▶ [Phys. Lett. B265 (1991) 172]
- ► [Phys. Rev. D63 (2001) 036005]
- ► [Phys. Rev. Lett. 78 (1997) 3257]
- ▶ [Phys. Rev. D68 (2003) 054018]

The cartesian coordinates



In the cartesian definition

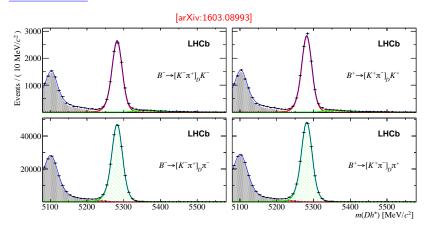
$$x_{\pm} = r_B \cos(\delta_B \pm \gamma)$$

$$y_{\pm} = r_B \sin(\delta_B \pm \gamma)$$

An example GLW analysis - $B^\pm o D^0$ K^\pm , $D^0 o K^+$ K^-

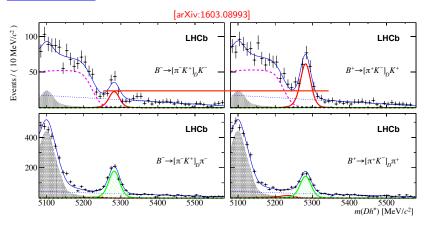
Charge asymmetries

$$A_h^f = \frac{\Gamma(B^- \to [f]_D h^-) - \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [f]_D h^-) + \Gamma(B^+ \to [f]_D h^+)}$$


Kaon/pion ratio

$$R_{K/\pi}^f = rac{\Gamma(B^\pm o [f]_D K^\pm)}{\Gamma(B^\pm o [f]_D \pi^\pm)}$$

An example ADS analysis - $B^\pm o D^0$ K^\pm , $D^0 o K^\pm$ π^\pm


► Favoured mode

An example ADS analysis - $B^\pm o D^0$ K^\pm , $D^0 o K^\pm$ π^\pm

Suppressed mode

25/38 LHCb CERN

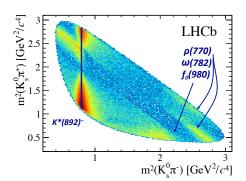
An example ADS analysis - $B^\pm o D^0$ K^\pm , $D^0 o K^\pm$ π^\pm

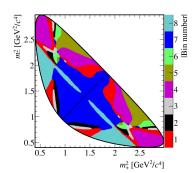
- ▶ Define observables as yield ratios (many systematics cancel)
- Along with the GLW observables build a system of equations to overconstrain the parameters

ADS ratios of favoured to suppressed

$$R_{\rm ADS}^{\bar{f}} = \frac{\Gamma(B^- \to [\bar{f}]_D h^-) + \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [f]_D h^-) + \Gamma(B^+ \to [\bar{f}]_D h^+)}$$

Corresponding charge asymmetries

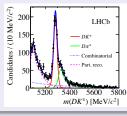

$$A_{\mathrm{ADS}}^{\bar{f}} = \frac{\Gamma(B^- \to [\bar{f}]_D h^-) - \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [\bar{f}]_D h^-) + \Gamma(B^+ \to [f]_D h^+)}$$

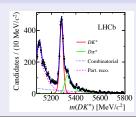

▶ Relatively trivial extension to multibody D decays $(D \to 4\pi, D \to K3\pi, D \to KK\pi^0, D \to \pi\pi\pi^0, D \to K\pi\pi^0)$, multibody B decays $(B^\pm \to DK^\pm\pi^+\pi^-)$ and other initial B states $(B^0 \to DK^{*0})$

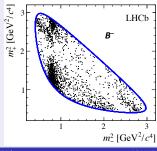
26/38 HCh (FRN)

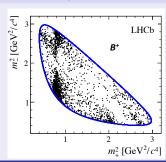
An example GGSZ analysis

- ▶ Requires a self-conjugate 3-body final state ($D^0 \to K_{\rm S}^0 \pi^- \pi^+$, $D^0 \to K_{\rm S}^0 K^- K^+$)
- ► The basic idea is to perform a GLW/ADS type analysis in each bin of the D decay phase space
- Compare Dalitz distribution for B⁺ and B⁻
 - ▶ Model dependent: use a Dalitz model describing all the intermediate resonances and fit for x_{\pm} , y_{\pm}
 - Model independent: define bins which maximise sensitivity to x_{\pm} , y_{\pm}

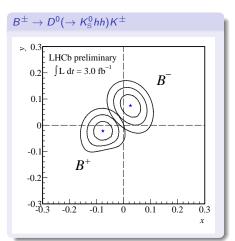


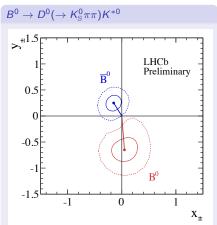

An example GGSZ analysis


Reconstruct the B invariant mass


[arXiv:1408.2748]

Compare bin by bin differences for signal candidates in the Dalitz plane





LHCb THCP

An example GGSZ analysis

- ▶ GGSZ analyses have excellent standalone sensitivity with a single solution
- lacktriangle Can trivially extend the methodology for neutral $B^0 o D^0 K^{*0}$ decays



29/38 L.H.C.b. CERN

There are also other methods

- ▶ Time-dependent method using $B_s^0 \to D_s^- K^+$
 - Large interference occurs via B_s^0 mixing (requires knowledge of $2\beta_s$)
 - ► Time dependent, flavour tagged analysis unique to LHCb [arXiv:1407.6127]

- ► GLS method
 - Grossman, Ligeti, Soffer (2003) [Phys. Rev. D67 (2003) 071301]
 - ▶ Uses ADS-like method with singly Cabibbo suppressed D decays (e.g. $D^0 o K^0_{
 m S} K \pi)$
 - Poor sensitivity with current statistics

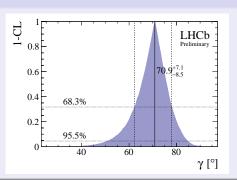
4. LHCb Combination

- ① CP violation and the CKM matrix
- The LHCb Experiment
- \bigcirc CKM angle γ
- 4 LHCb Combination
- Conclusion and Prospects

LHCb γ combination inputs

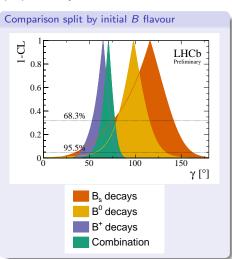
B decay D decay		D decay	Туре	ſ L	Ref.
LHCb Inputs	$B^+ \rightarrow DK^+$	$D \rightarrow hh$	GLW/ADS	3fb^{-1}	[arXiv:1603.08993]
	$B^+ o DK^+$	$D ightarrow h\pi\pi\pi$	GLW/ADS	$3\mathrm{fb}^{-1}$	[arXiv:1603.08993]
	$B^+ o DK^+$	$D o hh\pi^0$	GLW/ADS	$3\mathrm{fb}^{-1}$	[arXiv:1504.05442]
	$B^+ o DK^+$	$D ightarrow K_{ m S}^0 h h$	GGSZ	$3\mathrm{fb}^{-1}$	[arXiv:1405.2797]
	$B^+ o DK^+$	$D ightarrow K_{ m S}^{0} K \pi$	GLS	$3\mathrm{fb}^{-1}$	[arXiv:1402.2982]
	$B^0 \rightarrow D^0 K^{*0}$	$D o K\pi$	ADS	$3\mathrm{fb}^{-1}$	[arXiv:1407.3186]
	$B^+ o DK^+\pi\pi$	D o hh	GLW/ADS	$3\mathrm{fb}^{-1}$	[arXiv:1505.07044]
	$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ o hhh$	TD	$1{ m fb}^{-1}$	[arXiv:1407.6127]
	$B^0 \rightarrow D^0 K^+ \pi^-$	D o hh	GLW-Dalitz	$3\mathrm{fb}^{-1}$	[arXiv:1602.03455]
	$B^0 o D^0 K^{*0}$	$D o K^0_{ m S}\pi\pi$	GGSZ	$3\mathrm{fb}^{-1}$	[arXiv:1604.01525]
Decay Parameters		Source		Ref.	
Auxilliary Inputs	$D^0 - \overline{D}{}^0$ mixing		HFAG	-	[arXiv:1412.7515]
	$D o K\pi\pi\pi$	$(\delta_D, \kappa_D, r_D)$	CLEO+LHCb	-	[arXiv:1602.07430]
	$D o \pi\pi\pi\pi$	(F^+)	CLEO	-	[arXiv:1504.05878]
	$D o K\pi\pi^0$	$(\delta_D, \kappa_D, r_D)$	CLEO+LHCb	-	[arXiv:1602.07430]
	$D \rightarrow hh\pi^0$	(F^+)	CLEO	-	[arXiv:1504.05878]
	$D \rightarrow K_{\rm S}^0 K \pi$	(δ_D, κ_D)	CLEO	-	[arXiv:1203.3804]
	$D \rightarrow K_{S}^{0}K\pi$	(r_D)	CLEO	-	[arXiv:1203.3804]
	$D \to K^0_{ m S} K \pi$	(r_D)	LHCb	-	[arXiv:1509.06628]
	$B^0 \rightarrow D^0 K^{*0}$	$(\kappa_B, \bar{R}_B, \bar{\Delta}_B)$	LHCb	-	[arXiv:1602.03455]
	$B_s^0 \rightarrow D_s^+ K^-$	(ϕ_s)	LHCb	-	[arXiv:1411.3104]
Combination: [LHCb-CONF					[LHCb-CONF-2016-001]

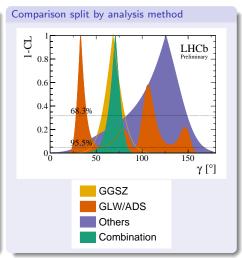
New or updated since last combination


1 HCP

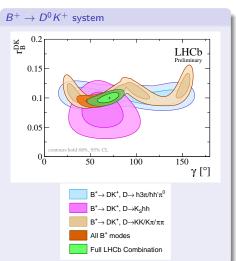
LHCb γ Combination

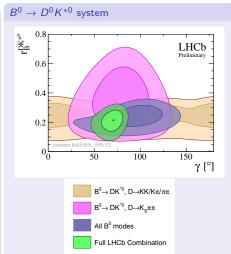
- ▶ Combination of all $B \rightarrow DK$ -like modes
 - ► [LHCb-CONF-2016-001]
- ▶ Paper to follow soon with information on $B o D\pi$ modes also
- ▶ Nominal results with a frequentist Feldman-Cousins "plugin" procedure
- ▶ 71 observables and 32 free parameters
 - $p(\chi^2, N_{\text{dof}}) = 87.6\%$
 - $p(toys) = (87.0 \pm 0.2)\%$


LHCb γ Combination


- Nominal result: $\gamma = (70.9^{+7.1}_{-8.5})^{\circ}$
- ► Uncertainty < 10° is better than combined *B* factories
- \blacktriangleright The most precise single experiment measurement of γ
- LHCb combination paper expected later this year

LHCb γ Combination


Naive statistical treatement (profile likelihood method) - plots for demonstrative purposes only



LHCb γ Combination

<u>Naive statistical treatement</u> (profile likelihood method) - plots for demonstrative purposes only

5. Conclusion and Prospects

- 1 CP violation and the CKM matrix
- The LHCb Experiment
- 4 LHCb Combination
- **5** Conclusion and Prospects

- ▶ With Run II of the LHC underway and Belle II starting soon the prospects look good
- \blacktriangleright We can reasonably expect to half the experimental uncertainty on γ in the next 3 years
- lacktriangle We can reasonably expect to have $\sim 1^\circ$ precision in the next 5-7 years
- Current systematic effects are relatively small
 - ► GLW/ADS
 - instrumental charge asymmetries
 - ▶ PID calibration
 - GGSZ
 - efficiency correction over the Dalitz plane
 - ► Time-dependent
 - Decay time resolution
 - Decay time acceptance
 - ► Knowledge of Δm_s , $\Delta \Gamma_s$, Γ_s
- ightharpoonup Tree measurements of γ will not be systematically limited for a long time (not at 100 times the current dataset)

This does not include smart new ideas which people often have

Prospects

- ▶ We are approaching the first tree-level precision measurement of the CKM triangle
- lacktriangle Direct measurements of $|V_{ub}|$ play a crucial role in this as well

Conclusions

- CKM matrix is incredibly successful description of the guark sector in the SM
- Measurements of CKM elements are becoming increasingly precise
- Finding new sources of CP violation can lead us to New Physics
- CKM angle γ is one of the only CP measurements accesible with tree-level decays
 - ► Theoretically very clean
 - Experimentally challenging
- ► LHCb has the worlds most precise single experiment measurement and dominates the world average
 - $\gamma = (70.9^{+7.1})^{\circ}$
- ▶ The future looks incredibly bright with the prospect of reducing the direct measurement uncertainty by a factor of 10
 - ► This will compete with the indirect precision (which assumes the SM)

Thank You

