A new electron beam ion source as charge breeder for rare isotope beams at TRIUMF

Stepan Dobrodey EMILIE Workshop 2016

The Electron Beam Ion Source

The Electron Beam Ion Source

Requirement: Accept a beam with 100 Hz repetition rate and provide ions with 10 – 20 % population in one specific charge state

The Electron Beam Ion Source

Why do we need simulations?

- Ensure that we can meet the requirements
- Very useful tool for diagnostics in near future
- Prediction of some parameters for charge breeding

Simulation Steps

- 1) Create electrostatic and magnetic fields with the finite elements method extracted from a 3D model of the EBIS
- 2) Simulate emission of electron beam and propagation into the trap
- 3) Obtain axial and radial space charge
- 4) Inject ions (include charge breeding during injection)
- 5) Extraction (work in progress)

Simulation Steps

- 1) Create electrostatic and magnetic fields with the finite elements method extracted from a 3D model of the EBIS
- 2) Simulate emission of electron beam and propagation into the trap
- 3) Obtain axial and radial space charge
- 4) Inject ions (include charge breeding during injection)
- 5) Extraction (work in progress)

Electric and Magnetic Fields

Electron Beam

First Injection Simulations

Ion Injection:

- Potassium 1+ ions
- 15 keV beam energy
- $\varepsilon_{4\text{RMS}} = 5 \pi \text{ mm mrad}$
- Drift Tubes at 14.7 kV

Ions

First Injection Simulations

Charge Breeding Simulations

Diagnostics of trap content

Max-Planck-Institut für Kernphysik

Diagnostics of trap content

- Processes in an EBIS:
 - Ionization
 - Electron impact excitation
 - Radiative recombination
 - Charge exchange
 - (Photon excitation → Experiments at ultra brillant light sources)
 - Resonant recombination processes
 - (e.g. dielectronic recombination)

Max-Planck-Institut für Kernphysik

Dielectronic recombination (DR)

• Example for KLL-DR: He-like system in initial state

Diagnostics of trap content

Max-Planck-Institut für Kernphysik

Summary and Outlook

Summary:

- Simulation of electrostatic and magnetic field
- Electron beam trajectory
- Injection of ions
- A tool for diagnostics in the near future:
 - Full Injection, charge breeding in the trap
 - Extraction of ions
 - Explore use of transition region and optimization
 - Assembly of the EBIS and commissioning in Heidelberg
 - Comparison of simulation results with real measurements

 \mathbf{O}

- Special thanks to:
 - José R. Crespo López-Urrutia
 - Jens Dilling
 - Renate Hubele
 - Thomas M. Baumann
 - Michael A. Blessenohl
 - Zachary Hockenbery

Evolution of Charge State Distribution

