

Aspects of conformal field theory from random loops

Benjamin Doyon

Department of Mathematics, King's College London

Cargèse, France, septembre 2016

Goal:

Making relations between CFT correlation functions in domain D

$$\langle \mathcal{O}(x_1)\cdots\mathcal{O}(x_n)\rangle_D$$

and CLE expectations in domain ${\cal D}$

$$\mathbb{E}[X]_D$$

Difficulties:

How to go from the inherent nonlocality of CLE (loops) to locality of CFT (fields).

How to even define a field in CFT (how do we know we have constructed it).

Ward-Takahashi identities

Space-time symmetry transformation $x \mapsto g(x)$, action on fields $\mathcal{O}(x) \mapsto g[\mathcal{O}(x)]$:

$$\langle g[\mathcal{O}(x_1)] \cdots g[\mathcal{O}(x_n)] \rangle_{g(D)} = \langle \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle_D$$

Continuous symmetry, infinitesimal (near identity): $g_{\epsilon} = \mathrm{id} + \epsilon f$

Infinitesimal transformation $g_{\epsilon}[\mathcal{O}(x)] = \mathcal{O}(x) + \epsilon \Delta \mathcal{O}(x) + O(\epsilon^2)$

Conserved Noether current $j^{\mu}(x)$:

$$\langle \partial_{\mu} j^{\mu}(x) \mathcal{O}(x_1) \cdots \mathcal{O}(x_n) \rangle = -i \sum_{j} \delta(x - x_j) \langle \mathcal{O}(x_1) \cdots \Delta \mathcal{O}(x_j) \cdots \mathcal{O}(x_n) \rangle$$

Scale and Poincaré invariance

Translation invariance: generator
$$\Delta^{\mu}\mathcal{O}(x) = \partial^{\mu}\mathcal{O}(x)$$
 $\partial_{\nu}T^{\mu\nu}(x) = 0$ (+ contact terms)

Rotation invariance: scalar generator
$$\Delta \mathcal{O}(x) = \epsilon_{\mu\rho} x^{\mu} \partial^{\rho} \mathcal{O}(x)$$

$$\partial_{\nu} \Big(\epsilon_{\mu\rho} x^{\mu} T^{\rho\nu}(x) \Big) = 0 \ \Rightarrow \ T^{\mu\nu} = T^{\nu\mu} \ (\text{+ contact terms})$$

Scale invariance: scalar generator $\Delta \mathcal{O}(x) = x_\mu \partial^\mu \mathcal{O}(x)$ $\partial_\nu \Big(x_\mu T^{\mu\nu}(x) \Big) = 0 \ \Rightarrow \ T^\mu_{\ \mu} = 0 \ (\text{+ contact terms})$

Holomorphicity

Use coordinates $z=x+i\tau$, $z=x-i\tau$ where x is space coordinate and τ is imaginary time. Then:

$$\partial_{\nu}T^{\mu\nu} = 0, \quad T^{\mu\nu} = T^{\nu\mu}, \quad T^{\mu}_{\ \mu} = 0$$

$$\downarrow \downarrow$$

$$T^{z\bar{z}} = T^{\bar{z}z} = 0, \quad \partial_z T^{zz} = 0, \quad \partial_{\bar{z}} T^{\bar{z}\bar{z}} = 0$$

Define $T \propto T^{\bar{z}\bar{z}}$ and $\bar{T} \propto T^{zz}$ (normalization constant: see next page). Then:

$$T=T(z)$$
 holomorphic, $\bar{T}=\bar{T}(\bar{z})$ anti-holomorphic

Contact terms: non-holomorphicity at fields' positions

By holomorphicity, Wilson's Operator Product Expansion must have the form

$$T(z)\mathcal{O}(x) = \sum_{n \in \mathbb{Z}} \frac{\mathcal{O}_n(x)}{(z-x)^n}, \quad \mathcal{O}_n =: L_{n-2}\mathcal{O}$$

Take $g(z) = \lambda z$ (rotation + scaling). Assume field $\mathcal O$ transforms as

$$g[\mathcal{O}(z)] = \lambda^h \bar{\lambda}^{\tilde{h}} \mathcal{O}(\lambda z)$$

 $h,\, \tilde{h}$ are holomorphic / anti-holomorphic dimensions of $\mathcal{O}.$ Note: T has $h=2,\, \tilde{h}=0.$ Use

$$\partial_{\bar{z}} \frac{1}{z} \propto \delta^{(2)}(z)$$

Ward-Takahishi identities are equivalent to specifying certain terms in the OPE:

$$T(z)\mathcal{O}(x) = \left(\cdots + \frac{h}{(z-x)^2} + \frac{\partial_x}{(z-x)} + \cdots\right)\mathcal{O}(x)$$

Lower-boundedness of the set of dimensions and conformal Ward identities

Assume that the set of **holomorphic and anti-holomorphic dimensions** h and h are bounded from below. Then OPE is bounded from below

$$T(z)\mathcal{O}(x) = \sum_{n \in \mathbb{Z}, n > n_{\mathcal{O}}} \frac{L_{n-2}\mathcal{O}(x)}{(z-x)^n}.$$

Also, there must exist \mathcal{O} (called primaries) such that

$$T(z)\mathcal{O}(x) = \left(\frac{h}{(z-x)^2} + \frac{\partial_x}{(z-x)} + \cdots\right)\mathcal{O}(x)$$

That is, $L_n \mathcal{O} = 0$ for all $n \geq 1$. (Note: set of all primaries and descendants under T(z) (higher OPE coefficients) usually forms a closed OPE algebra).

Consequences:

1. By Liouville's theorem and clustering $\langle T(z)\mathcal{O}(x_1)\cdots\rangle\to 0$ as $z\to\infty$, if all $\mathcal O$ in the correlation functions are primaries, we have the exact insertion of a holomorphic stress-energy tensor on the Riemann sphere $\hat{\mathbb C}$:

$$\langle T(z)\mathcal{O}(x_1)\cdots\rangle = \sum_{j} \left(\frac{h}{(z-x_j)^2} + \frac{\partial_{x_j}}{(z-x_j)}\right) \langle \mathcal{O}(x_1)\cdots\rangle$$

Further, on \mathbb{H} , using Cardy's boundary conditions $T=\bar{T}$ (on \mathbb{R}) and conformal transformations of stress-energy tensor (see later), we also have exact expressions for $\langle T(z)\mathcal{O}(x_1)\ldots\rangle_D$ on any simply connected domain D.

2. There is local conformal invariance:

There exists Noether currents $j_n(z):=z^{n+1}T(z)$ for all $n\in\mathbb{Z}$ such that $\partial_{\bar{z}}j_n(z)=0+$ contact terms:

$$\partial_{\bar{z}} \left(j_n(z) \mathcal{O}(0) \right) \propto L_n \mathcal{O}(0) \, \delta^{(2)}(z)$$

This identifies infinitesimal symmetry transformation under $g(z) = z + \epsilon z^{n+1}$:

$$g[\mathcal{O}(0)] = \mathcal{O}(0) + \epsilon L_n \mathcal{O}(0) + \bar{\epsilon} \bar{L}_n \mathcal{O}(0) + \dots$$

Can be exponentiated for primary fields: for any g conformal around z,

$$g[\mathcal{O}(z)] = (\partial g(z))^h (\bar{\partial}\bar{g}(\bar{z}))^{\tilde{h}} \mathcal{O}(g(z))$$

Extend symmetries to full groupoid of conformal maps $g:D \to g(D)$

Need regularity inside domain D: $j_n(z)$ is singular at ∞ if n>1, at 0 if n<-1. Regular on $\hat{\mathbb{C}}$ if and only if $n\in\{-1,0,1\}\Rightarrow$ Möbius transformations

Transformation of the stress-energy tensor and the Schwarzian derivative

Assume lowest dimension is 0, and the only 0-dimensional fields are multiples of identity $\mathbb{C}1$.

Then there must exist $c \in \mathbb{C}$ such that (using symmetry $x \leftrightarrow y$)

$$T(x)T(y) = \frac{c}{2} \frac{1}{(x-y)^4} + \frac{2T(y)}{(x-y)^2} + \frac{\partial_y T(y)}{(x-y)} + \dots$$

That is: $L_nT=0$ for all $n\geq 1$ except for $L_2T=(c/2)\mathbf{1}$.

Hence we obtain g[T(z)] for any infinitesimal $g(z)=z+\epsilon f(z)$ conformal around z=0. Exponentiating:

$$g[T(z)] = \frac{c}{12} \{g, z\} \mathbf{1} + (\partial g(z))^2 T(g(z))$$

where Schwarzian derivative is

$$\{g,z\} = \frac{g'''(z)}{g'(z)} - \frac{3}{2} \left(\frac{g''(z)}{g'(z)}\right)^2$$

Singular conformal transformation

Observe that

$$T = L_{-2} \mathbf{1}$$

Geometric interpretation: for $g(z) = z + \epsilon^2 z^{-1}$,

$$g[\mathbf{1}(0)] = \mathbf{1} + \epsilon^2 T(0) + \bar{\epsilon}^2 \bar{T}(0) + \dots$$

That is: T(0) is result of conformal transformation of identity field that is singular at 0.

How to make sense of this?

Note that $g(z)=z+\epsilon^2z^{-1}$ is conformal on $\hat{\mathbb{C}}\setminus\epsilon\mathbb{D}$.

Hence interpret $g[\mathbf{1}(0)]$ as making a hole $\epsilon \mathbb{D}$ that we deform as $g(\hat{\mathbb{C}} \setminus \epsilon \mathbb{D})$.

Use contour integral

$$\lim_{|\epsilon| \to 0} \oint \frac{\mathrm{d}\epsilon}{2\pi \mathrm{i}\epsilon^3}$$

in order to extract leading holomorphic part of $1+\epsilon^2T(0)+\bar\epsilon^2\bar T(0)+\dots$

$$\langle T(0) \mathcal{O}(x_1) \cdots \rangle_{\hat{\mathbb{C}}} = \lim_{|\epsilon| \to 0} \oint \frac{\mathrm{d}\epsilon}{2\pi \mathrm{i}\epsilon^3} \langle \mathcal{O}(x_1) \cdots \rangle_{g(\hat{\mathbb{C}} \setminus \epsilon \mathbb{D})}$$

$$= \lim_{|\epsilon| \to 0} \oint \frac{\mathrm{d}\epsilon}{2\pi \mathrm{i}\epsilon^3} \langle g^{-1}[\mathcal{O}(x_1)] \cdots \rangle_{\hat{\mathbb{C}} \setminus \epsilon \mathbb{D}}$$

$$= \lim_{|\epsilon| \to 0} \oint \frac{\mathrm{d}\epsilon}{2\pi \mathrm{i}\epsilon^3} \langle g^{-1}[\mathcal{O}(x_1)] \cdots \rangle_{\hat{\mathbb{C}}}$$

Check: for primary fields using $g^{-1}[\mathcal{O}(x)]=(\partial g^{-1}(x))^h(\bar{\partial}\bar{g}^{-1}(\bar{x}))^{\tilde{h}}\mathcal{O}(g^{-1}(x))$:

$$= \sum_{j} \left(\frac{h}{(0-x_j)^2} + \frac{\partial_{x_j}}{(0-x_j)} \right) \langle \mathcal{O}(x_1) \cdots \rangle_{\hat{\mathbb{C}}}$$

Stress-energy tensor from a rotating elliptical hole

May as well make hole $b \in \mathbb{D}$ for any b > 1. Thus we have established

$$\langle T(0) \mathcal{O}(x_1) \cdots \rangle_{\hat{\mathbb{C}}} = \lim_{|\epsilon| \to 0} \oint \frac{\mathrm{d}\epsilon}{2\pi \mathrm{i}\epsilon^3} \langle \mathcal{O}(x_1) \cdots \rangle_{g(\hat{\mathbb{C}} \setminus b\epsilon \mathbb{D})}$$

Observe that

$$g(\hat{\mathbb{C}} \setminus b\epsilon \mathbb{D}) = \hat{\mathbb{C}} \setminus E(\epsilon, b)$$

 $E(\epsilon,b) = \text{elliptical domain centered at } 0 \text{ of major semi-axis } |\epsilon|(b+1/b)$ and angle $\arg(\epsilon)$ wrt to positive real axis

Therefore:

$$\langle T(0) \mathcal{O}(x_1) \cdots \rangle_{\hat{\mathbb{C}}} = \lim_{|\epsilon| \to 0} \oint \frac{\mathrm{d}\epsilon}{2\pi \mathrm{i}\epsilon^3} \langle \mathcal{O}(x_1) \cdots \rangle_{\hat{\mathbb{C}} \setminus E(\epsilon,b)}$$

$$\mathcal{O}(x_1)$$
 $\mathfrak{Spin } 2$

Conformal Ward identities from derivatives with respect to conformal maps

Thus we have established, for $g(z) = z + \epsilon^2 z^{-1}$,

$$\langle T(0) \mathcal{O}(x_1) \cdots \rangle_{\hat{\mathbb{C}}} = \lim_{|\epsilon| \to 0} \oint \frac{d\epsilon}{2\pi i \epsilon^3} \langle g^{-1} [\mathcal{O}(x_1)] \cdots \rangle_{\hat{\mathbb{C}}}$$

Consider some complex function F(g) on a space of conformal maps $g:A\to g(A)$ near the identity. Define derivatives as follows: for h holomorphic on a neighborhood of the closure of A,

$$(\nabla_h F)(\mathrm{id}) = \frac{\mathrm{d}}{\mathrm{d}t} F(\mathrm{id} + th)|_{t=0}, \quad \Delta_h = \frac{1}{2} (\nabla_h - \mathrm{i}\nabla_{\mathrm{i}h})$$

One can show that

$$(\Delta_h F)(\mathrm{id}) = \lim_{|\epsilon| \to 0} \oint \frac{\mathrm{d}\epsilon}{2\pi \mathrm{i}\epsilon^3} F(\mathrm{id} + \epsilon^2 h)$$

Now choose $A \supset \{x_i\}_i$ and define (for fixed $x_i \neq 0 \ \forall i$)

$$F: g \mapsto \langle g[\mathcal{O}(x_1)] \cdots g[\mathcal{O}(x_n)] \rangle_{\hat{\mathbb{C}}}$$

Let

$$h_n(z) = (-z)^{n+1}.$$

(Infinitesimal) Möbius invariance:

$$(\Delta_{h_n} F)(id) = 0$$
 for $n = -1, 0, 1$.

Conformal Ward identities in terms of "conformal derivatives":

$$\langle T(0) \mathcal{O}(x_1) \cdots \rangle_{\hat{\mathbb{C}}} = (\Delta_{h_{-2}} F)(\mathrm{id}).$$

Conformal Ward identities on simply connected domains

Now let D be a simply connected (say Jordan) domain. For any conformal map g on ∂D , bijective on a neighborhood of ∂D , define

$$g^\sharp(\partial D)=D'$$
 : D' simply connected
$$\partial D'=g(\partial D)$$

$$g(z)\in D'\ \forall\ z\in D \ {
m near\ enough\ to}\ \partial D$$

If g is conformal on D, then $g^{\sharp}(D) = g(D)$.

Let $A \supset \partial D \cup \{x_i\}_i$ and define (for fixed x_i s)

$$F: g \mapsto \langle g[\mathcal{O}(x_1)] \cdots g[\mathcal{O}(x_n)] \rangle_{g^{\sharp}(D)}$$

Then (say $0 \in D$)

$$\langle T(0) \mathcal{O}(x_1) \cdots \rangle_D - \langle T(0) \rangle_D \langle \mathcal{O}(x_1) \cdots \rangle_D = (\Delta_{h-2} F) (\mathrm{id}).$$

Also by conformal covariance $\langle T(0)\rangle_D=(c/12)\{g,0\},\quad g:D\to\mathbb{D}.$

We have found two things that may be transferred to CLE:

 $T(0)={\it insertion}$ of small spin-2 rotating elliptical hole centered at 0

and

Conformal Ward identities = identification of insertion of ${\cal T}(0)$ with conformal derivative

Here is how we transfer these concepts.

CLE conformal Ward identities

Consider CLE on a simply connected domain D, random variables X supported on some subset $\mathrm{supp}(X)\subset D$ and expectations $\mathbb{E}[X]_D$. Conformal invariance: for any g conformal on $\mathrm{supp}(X)$ there is an action $X\mapsto g[X]$, and for any g conformal on D we have

$$\mathbb{E}[g[X]]_{g(D)} = \mathbb{E}[X]_D.$$

Define

$$F: g \mapsto \mathbb{E}[g[X]]_{g^{\sharp}(D)}.$$

Then the right-hand side of the conformal Ward identities is

$$(\Delta_{h-2}F)(\mathrm{id})$$

CLE stress-energy tensor

Consider elliptical domain $E(\epsilon,b)$. For small enough $\eta>0$ consider indicator variable

 $T_{\epsilon,\eta}$ = indicator for event that at least one CLE loop winds around the annular domain

$$E(\epsilon, b) \setminus E(\epsilon, (1 - \eta)b)$$

The following limit exists:

$$T_{\epsilon} = \lim_{\eta \to 0} \frac{T(\epsilon, \eta)}{\mathbb{E}[T_{\epsilon, \eta}]_{\hat{\mathbb{C}}}}.$$

By restriction property, this separates inside from outside of elliptical domain $E(\epsilon,b)$.

Then define the spin-2 rotating-ellipse variable

$$T = \lim_{|\epsilon| \to 0} \oint \frac{\mathrm{d}\epsilon}{2\pi \mathrm{i}\epsilon^3} T_{\epsilon}$$

By translation, similarly define $\mathrm{T}(z)$. This a local at z (supported on z).

Results [BD 2013]

Using CLE conformal restriction and conformal invariance, but under some yet-unproven assumptions (existence of conformal derivatives and of certain limits).

ullet For D simply connected and X supported in D,

$$\mathbb{E}[\mathrm{T}(z)X]_D$$
 is holomorphic on $z\in D\setminus\mathrm{supp}(X)$

• Conformal Ward identities (say with z=0)

$$\mathbb{E}[T(0)X]_D - \mathbb{E}[T(0)]_D \,\mathbb{E}[X]_D = (\Delta_{h_{-2}}F)(\mathrm{id}), \quad F: g \mapsto \mathbb{E}[g[X]]_{g^{\sharp}(D)}$$

• Transformation property and one-point function:

CLE probabilities are conformally invariant under action

$$g[T(z)] = \frac{c}{12} \{g, z\} + (\partial g(z))^2 T(z)$$

In particular

$$\mathbb{E}[T(z)]_D = \frac{c}{12} \{g, z\}, \quad g: D \to \mathbb{D}$$

IV. Some (formal) consequences

Universality: any spin-2 local variable that transforms like the stress-energy tensor satisfies conformal Ward identities

Assume $\mathrm{T}'(z)$ transforms like the stress-energy tensor. Since it is spin-2, $\mathbb{E}[\mathrm{T}'(0)]_{\mathbb{D}}=0$. Hence by covariance, $\mathbb{E}[\mathrm{T}'(z)]_D=\mathbb{E}[\mathrm{T}(z)]_D$ for any simply connected D and $z\in D$. Therefore, for $z\cap\mathrm{supp}(X)=\emptyset$,

$$\mathbb{E}[\mathbf{T}'(z)X]_{D} = \int d\gamma \, \mathbb{E}[\mathbf{T}'(z)X|\gamma]$$

$$= \int d\gamma \, \mathbb{E}[X|\gamma] \, \mathbb{E}[\mathbf{T}'(z)]_{D_{\gamma}}$$

$$= \int d\gamma \, \mathbb{E}[X|\gamma] \, \mathbb{E}[\mathbf{T}(z)]_{D_{\gamma}}$$

$$= \mathbb{E}[\mathbf{T}(z)X]_{D}$$

IV. Some (formal) consequences

Null-vectors: CLE expectations of a spin-0 local variable that possesses a null Virasoro descendant satisfy CFT null-vector equations

Say the local CLE variable \mathcal{O} has a null Virasoro descendant. For instance at level 2, $\varphi = (L_{-2} + aL_{-1}^2) \mathcal{O}$,

$$L_n \varphi = 0 \quad \forall n \geq 1$$

Since T(z) is local (supported at z), then $\varphi(z)$ also is local.

Since $L_n \varphi = 0 \ \forall n \geq 1$, then

$$g[\varphi(z)] = (\partial g(z))^{h+2} (\bar{\partial}\bar{g}(\bar{z}))^h \varphi(g(z))$$

for some h. Therefore $\mathbb{E}[\varphi(z)]_D=0$ for every simply connected D.

Hence by similar restriction arguments:

$$\mathbb{E}[\varphi(z)X]_D = 0$$

for all $z \in D \setminus \operatorname{supp}(X)$.

Conclusions

This can be generalized to all stress-energy tensor descendants (with Δ_{h-n}) and many insertions of stress tensors (higher powers of conformal derivatives), and one recover the full Virasoro vertex operator algebra.

Generalization to other symmetry currents?

Proof of assumptions / rigorization of formal arguments? Kemppainen and Werner (2014) proved important $z\mapsto 1/z$ conformal invariance of CLE on $\hat{\mathbb{C}}$.