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Goal:

Making relations between CFT correlation functions in domain D

〈O(x1) · · · O(xn)〉D

and CLE expectations in domain D

E[X]D

Difficulties:

How to go from the inherent nonlocality of CLE (loops) to locality of CFT (fields).

How to even define a field in CFT (how do we know we have constructed it).
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I. Field theory of the stress-energy tensor
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I. Field theory of the stress-energy tensor

Ward-Takahashi identities

Space-time symmetry transformation x 7→ g(x), action on fields O(x) 7→ g[O(x)]:

〈g[O(x1)] · · · g[O(xn)]〉g(D) = 〈O(x1) · · · O(xn)〉D

Continuous symmetry, infinitesimal (near identity): gǫ = id + ǫ f

Infinitesimal transformation gǫ[O(x)] = O(x) + ǫ∆O(x) +O(ǫ2)

Conserved Noether current jµ(x):

〈∂µj
µ(x)O(x1) · · · O(xn)〉 = −i

∑

j

δ(x− xj)〈O(x1) · · ·∆O(xj) · · · O(xn)〉
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I. Field theory of the stress-energy tensor

Scale and Poincaré invariance

Translation invariance : generator ∆µO(x) = ∂µO(x)

∂νT
µν(x) = 0 (+ contact terms)

Rotation invariance : scalar generator ∆O(x) = ǫµρx
µ∂ρO(x)

∂ν

(

ǫµρx
µT ρν(x)

)

= 0 ⇒ Tµν = T νµ (+ contact terms)

Scale invariance : scalar generator ∆O(x) = xµ∂
µO(x)

∂ν

(

xµT
µν(x)

)

= 0 ⇒ Tµ
µ = 0 (+ contact terms)
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I. Field theory of the stress-energy tensor

Holomorphicity

Use coordinates z = x + iτ , z = x− iτ where x is space coordinate and τ is imaginary

time. Then:

∂νT
µν = 0, Tµν = T νµ, Tµ

µ = 0

⇓

T zz̄ = T z̄z = 0, ∂zT
zz = 0, ∂z̄T

z̄z̄ = 0

Define T ∝ T z̄z̄ and T̄ ∝ T zz (normalization constant: see next page). Then:

T = T (z) holomorphic, T̄ = T̄ (z̄) anti-holomorphic
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I. Field theory of the stress-energy tensor

Contact terms: non-holomorphicity at fields’ positions

By holomorphicity, Wilson’s Operator Product Expansion must have the form

T (z)O(x) =
∑

n∈Z

On(x)

(z − x)n
, On =: Ln−2O

Take g(z) = λz (rotation + scaling). Assume field O transforms as

g[O(z)] = λhλ̄h̃O(λz)

h, h̃ are holomorphic / anti-holomorphic dimensions of O. Note: T has h = 2, h̃ = 0. Use

∂z̄
1

z
∝ δ(2)(z)

Ward-Takahishi identities are equivalent to specifying certain terms in the OPE:

T (z)O(x) =
(

· · ·+
h

(z − x)2
+

∂x
(z − x)

+ · · ·
)

O(x)
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I. Field theory of the stress-energy tensor

Lower-boundedness of the set of dimensions and conformal Ward identities

Assume that the set of holomorphic and anti-holomorphic dimensions h and h̃ are

bounded from below. Then OPE is bounded from below

T (z)O(x) =
∑

n∈Z, n>nO

Ln−2O(x)

(z − x)n
.

Also, there must exist O (called primaries) such that

T (z)O(x) =
( h

(z − x)2
+

∂x
(z − x)

+ · · ·
)

O(x)

That is, LnO = 0 for all n ≥ 1. (Note: set of all primaries and descendants under T (z)

(higher OPE coefficients) usually forms a closed OPE algebra).
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I. Field theory of the stress-energy tensor

Consequences:

1. By Liouville’s theorem and clustering 〈T (z)O(x1) · · ·〉 → 0 as z → ∞, if all O in the

correlation functions are primaries, we have the exact insertion of a holomorphic

stress-energy tensor on the Riemann sphere Ĉ:

〈T (z)O(x1) · · ·〉 =
∑

j

( h

(z − xj)2
+

∂xj

(z − xj)

)

〈O(x1) · · ·〉

Further, on H, using Cardy’s boundary conditions T = T̄ (on R) and conformal

transformations of stress-energy tensor (see later), we also have exact expressions for

〈T (z)O(x1) . . .〉D on any simply connected domain D.



'

&

$

%

2. There is local conformal invariance :

There exists Noether currents jn(z) := zn+1T (z) for all n ∈ Z such that

∂z̄jn(z) = 0+ contact terms:

∂z̄

(

jn(z)O(0)
)

∝ LnO(0) δ(2)(z)

This identifies infinitesimal symmetry transformation under g(z) = z + ǫzn+1:

g[O(0)] = O(0) + ǫLnO(0) + ǭL̄nO(0) + . . .

Can be exponentiated for primary fields: for any g conformal around z,

g[O(z)] = (∂g(z))h (∂̄ḡ(z̄))h̃O(g(z))

Extend symmetries to full groupoid of conformal maps g : D → g(D)

Need regularity inside domain D: jn(z) is singular at ∞ if n > 1, at 0 if n < −1.

Regular on Ĉ if and only if n ∈ {−1, 0, 1} ⇒ Möbius transformations
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I. Field theory of the stress-energy tensor

Transformation of the stress-energy tensor and the Schwarzian derivative

Assume lowest dimension is 0, and the only 0-dimensional fields are multiples of identity C1.

Then there must exist c ∈ C such that (using symmetry x ↔ y)

T (x)T (y) =
c

2

1

(x− y)4
+

2T (y)

(x− y)2
+

∂yT (y)

(x− y)
+ . . . .

That is: LnT = 0 for all n ≥ 1 except for L2T = (c/2)1.

Hence we obtain g[T (z)] for any infinitesimal g(z) = z + ǫf(z) conformal around z = 0.

Exponentiating:

g[T (z)] =
c

12
{g, z}1+ (∂g(z))2T (g(z))

where Schwarzian derivative is

{g, z} =
g′′′(z)

g′(z)
−

3

2

(

g′′(z)

g′(z)

)2



'

&

$

%

II. The stress-energy tensor as a geometric singularity
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II. The stress-energy tensor as a geometric singularity

Singular conformal transformation

Observe that

T = L−21

Geometric interpretation: for g(z) = z + ǫ2z−1,

g[1(0)] = 1+ ǫ2T (0) + ǭ2T̄ (0) + . . .

That is: T (0) is result of conformal transformation of identity field that is singular at 0.

How to make sense of this?

Note that g(z) = z + ǫ2z−1 is conformal on Ĉ \ ǫD.

Hence interpret g[1(0)] as making a hole ǫD that we deform as g(Ĉ \ ǫD).
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II. The stress-energy tensor as a geometric singularity

Use contour integral

lim
|ǫ|→0

∮

dǫ

2πiǫ3

in order to extract leading holomorphic part of 1 + ǫ2T (0) + ǭ2T̄ (0) + . . .

〈T (0)O(x1) · · ·〉Ĉ = lim
|ǫ|→0

∮

dǫ

2πiǫ3
〈O(x1) · · ·〉g(Ĉ\ǫD)

= lim
|ǫ|→0

∮

dǫ

2πiǫ3
〈g−1[O(x1)] · · ·〉Ĉ\ǫD

= lim
|ǫ|→0

∮

dǫ

2πiǫ3
〈g−1[O(x1)] · · ·〉Ĉ

Check: for primary fields using g−1[O(x)] = (∂g−1(x))h(∂̄ḡ−1(x̄))h̃O(g−1(x)):

=
∑

j

( h

(0− xj)2
+

∂xj

(0− xj)

)

〈O(x1) · · ·〉Ĉ
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II. The stress-energy tensor as a geometric singularity

Stress-energy tensor from a rotating elliptical hole

May as well make hole bǫD for any b > 1. Thus we have established

〈T (0)O(x1) · · ·〉Ĉ = lim
|ǫ|→0

∮

dǫ

2πiǫ3
〈O(x1) · · ·〉g(Ĉ\bǫD)

Observe that

g(Ĉ \ bǫD) = Ĉ \ E(ǫ, b)

E(ǫ, b) = elliptical domain centered at 0 of major semi-axis |ǫ|(b+ 1/b)

and angle arg(ǫ) wrt to positive real axis
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II. The stress-energy tensor as a geometric singularity

Therefore:

〈T (0)O(x1) · · ·〉Ĉ = lim
|ǫ|→0

∮

dǫ

2πiǫ3
〈O(x1) · · ·〉Ĉ\E(ǫ,b)
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II. The stress-energy tensor as a geometric singularity

Conformal Ward identities from derivatives with respect to conformal maps

Thus we have established, for g(z) = z + ǫ2z−1,

〈T (0)O(x1) · · ·〉Ĉ = lim
|ǫ|→0

∮

dǫ

2πiǫ3
〈g−1[O(x1)] · · ·〉Ĉ

Consider some complex function F (g) on a space of conformal maps g : A → g(A) near

the identity. Define derivatives as follows: for h holomorphic on a neighborhood of the

closure of A,

(∇hF )(id) =
d

dt
F (id + th)|t=0, ∆h =

1

2
(∇h − i∇ih)

One can show that

(∆hF )(id) = lim
|ǫ|→0

∮

dǫ

2πiǫ3
F (id + ǫ2h)
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II. The stress-energy tensor as a geometric singularity

Now choose A ⊃ {xi}i and define (for fixed xi 6= 0 ∀i)

F : g 7→ 〈g[O(x1)] · · · g[O(xn)]〉Ĉ

Let

hn(z) = (−z)n+1.

(Infinitesimal) Möbius invariance:

(∆hn
F )(id) = 0 for n = −1, 0, 1.

Conformal Ward identities in terms of “conformal derivatives”:

〈T (0)O(x1) · · ·〉Ĉ = (∆h−2
F )(id).
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II. The stress-energy tensor as a geometric singularity

Conformal Ward identities on simply connected domains

Now let D be a simply connected (say Jordan) domain. For any conformal map g on ∂D,

bijective on a neighborhood of ∂D, define

g♯(∂D) = D′ : D′ simply connected

∂D′ = g(∂D)

g(z) ∈ D′ ∀ z ∈ D near enough to ∂D

If g is conformal on D, then g♯(D) = g(D).

Let A ⊃ ∂D ∪ {xi}i and define (for fixed xis)

F : g 7→ 〈g[O(x1)] · · · g[O(xn)]〉g♯(D)

Then (say 0 ∈ D)

〈T (0)O(x1) · · ·〉D − 〈T (0)〉D 〈O(x1) · · ·〉D = (∆h−2
F )(id).

Also by conformal covariance 〈T (0)〉D = (c/12){g, 0}, g : D → D.
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III. The stress-energy tensor in CLE
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III. The stress-energy tensor in CLE

We have found two things that may be transferred to CLE:

T (0) = insertion of small spin-2 rotating elliptical hole centered at 0

and

Conformal Ward identities = identification of insertion of T (0) with conformal derivative

Here is how we transfer these concepts.
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III. The stress-energy tensor in CLE

CLE conformal Ward identities

Consider CLE on a simply connected domain D, random variables X supported on some

subset supp(X) ⊂ D and expectations E[X]D . Conformal invariance: for any g conformal

on supp(X) there is an action X 7→ g[X], and for any g conformal on D we have

E[g[X]]g(D) = E[X]D.

Define

F : g 7→ E[g[X]]g♯(D).

Then the right-hand side of the conformal Ward identities is

(∆h−2
F )(id)
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III. The stress-energy tensor in CLE

CLE stress-energy tensor

Consider elliptical domain E(ǫ, b). For small enough η > 0 consider indicator variable

Tǫ,η = indicator for event that at least one CLE loop winds around the annular domain

E(ǫ, b) \ E(ǫ, (1− η)b)

The following limit exists:

Tǫ = lim
η→0

T(ǫ, η)

E[Tǫ,η]Ĉ
.

By restriction property, this separates inside from outside of elliptical domain E(ǫ, b).

Then define the spin-2 rotating-ellipse variable

T = lim
|ǫ|→0

∮

dǫ

2πiǫ3
Tǫ

By translation, similarly define T(z). This a local at z (supported on z).
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III. The stress-energy tensor in CLE

Results [BD 2013]

Using CLE conformal restriction and conformal invariance, but under some yet-unproven

assumptions (existence of conformal derivatives and of certain limits).

• For D simply connected and X supported in D,

E[T(z)X]D is holomorphic on z ∈ D \ supp(X)

• Conformal Ward identities (say with z = 0)

E[T(0)X]D − E[T (0)]D E[X]D = (∆h−2
F )(id), F : g 7→ E[g[X]]g♯(D)
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III. The stress-energy tensor in CLE

• Transformation property and one-point function:

CLE probabilities are conformally invariant under action

g[T(z)] =
c

12
{g, z}+ (∂g(z))2T(z)

In particular

E[T (z)]D =
c

12
{g, z}, g : D → D
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IV. Some (formal) consequences
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IV. Some (formal) consequences

Universality: any spin-2 local variable that transforms like the stress-energy tensor satisfies

conformal Ward identities

Assume T′(z) transforms like the stress-energy tensor. Since it is spin-2, E[T′(0)]D = 0.

Hence by covariance, E[T′(z)]D = E[T(z)]D for any simply connected D and z ∈ D.

Therefore, for z ∩ supp(X) = ∅,

E[T′(z)X]D =

∫

dγ E[T′(z)X|γ]

=

∫

dγ E[X|γ]E[T′(z)]Dγ

=

∫

dγ E[X|γ]E[T(z)]Dγ

= E[T(z)X]D
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IV. Some (formal) consequences

Null-vectors: CLE expectations of a spin-0 local variable that possesses a null Virasoro

descendant satisfy CFT null-vector equations

Say the local CLE variable O has a null Virasoro descendant. For instance at level 2,

ϕ = (L−2 + aL2
−1)O,

Lnϕ = 0 ∀n ≥ 1

Since T(z) is local (supported at z), then ϕ(z) also is local.

Since Lnϕ = 0 ∀n ≥ 1, then

g[ϕ(z)] = (∂g(z))h+2(∂̄ḡ(z̄))hϕ(g(z))

for some h. Therefore E[ϕ(z)]D = 0 for every simply connected D.

Hence by similar restriction arguments:

E[ϕ(z)X]D = 0

for all z ∈ D \ supp(X).
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Conclusions

This can be generalized to all stress-energy tensor descendants (with ∆h−n
) and many

insertions of stress tensors (higher powers of conformal derivatives), and one recover the full

Virasoro vertex operator algebra .

Generalization to other symmetry currents?

Proof of assumptions / rigorization of formal arguments? Kemppainen and Werner (2014)

proved important z 7→ 1/z conformal invariance of CLE on Ĉ.


