
Uses of Dyson-Schwinger Equations

September 16, 2016

These are lecture notes in progress: please contribute to them by sending
typos or asking questions or comments. Thanks to Mihai Nica for the first
version of the notes.

1 Lecture 1

1.1 Introduction

In order to calculate the magnetic momentum of an electron Feynman used
diagrama and Schwinger used Green’s functions. Dyson unified these two ap-
proaches. A tool is to consider Dyson-Schwinger equations. On one hand they
can be thought as equations for the generating functions of the graphs that are
enumerated, on the other they can be seen as an equation for the invariance of
the underlying measure. A baby version of these is the charaterization of the
Gaussian law X ∼ N (0, 1):

Combinatorial view point:

E [Xn] = # {pair partitions of n points}

vs. invariance of the Lebesgue measure under shift, that is integration by parts:

E [Xf(X)] = E [f ′(X)]

If one applies the latter to f(x) = xn one gets

mn+1 := E
[
Xn+1

]
= E

[
nXn−1] = nmn−1

This last bit can also be understood as the induction relation for the number
Cn of pair partitions of n points by thinking of the n ways to pair the first
particle.
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1.2 GUE topological expansion example
Let X be a GUE matrix, Xij = XR

ij + iXiR
ij , each N

(
0, 1

2N

)
and Xii = XR

ii ∼
N
(
0, 1

N

)
Then the “topological expansion” is

E

[
1

N
Tr
[
Xk
]]

=
∑
g≥0

1

N2g
Mg(k)

where Mg(k) is the number of rooted maps of gneus g build over a vertex of
degree k. And a “map” is a connected graph properly embedded in a surface.
By Euler’s formula 2− 2g = #V ertices+ #Faces−#Edges, and a “root” is a
distinguished edge.

Similarly, let: Wc (k1, . . . , kp) = ∂λ1
. . . ∂λp

1
N2 logE

[
exp

(∑k
i=1 λNTrXki

)]
|λ=0

then:
Wc (k1, . . . , kp) =

∑
g≥0

1

N2g
Mg (k1, . . . , kp)

where Mg(k1, . . . , kp) is the number of maps of genus g and 1 vertex of degree
ki. This can derived using combinatorial arguments and Wick calculus to com-
pute Gausian moments, or by the Dyson-Schwinger (DS) equation, which we do
below.

1.3 Dyson-Schwinger Eqn
Let:

Yk := TrXk −ETrXk

Let us try to compute:

E

[
TrXk1

p∏
i=2

Yki

]
.

By integration by parts, one can compute the recurence type relation

E

[
TrXk1

p∏
i=2

Yki

]
= E

[
1

N

k1−2∑
`=0

TrX`TrXk1−2−p
p∏
i=2

Yi

]
+E

 p∑
i=2

k

N
TrXk1+ki−2

p∏
j=2,i6=j

Yj


(1)

The proof of this fact goes by expanding the first term, TrXk1 , in terms of
the matrix elements and using Gaussian integration by parts. This is left
as an exercise.

1.4 Plan of next lectures
1. Show the topological expansion for GUE can be derived from the DS eqn
and Get a CLT for the centered moments

{
TrXki −ETrXki

}
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2. Generalization of these to other β ensembles (based on joint work with
Borot: http://arxiv.org/abs/1303.1045)

3. Discrete β-ensembles e.g. lozenge tilings (based on joint work with
Borodin and Gorin, http://arxiv.org/abs/1505.03760)

1.5 DS equation implies genus expansion
We will show that the DS equation (1) can be used to show that:

E

[
1

N
TrXk

]
= M0(k) +

1

N2
M1(k) + . . .

Next orders can be derived similarly.
Let:

mN
k := E

[
1

N
TrXk

]
By the DS equation (with no Y terms), we have that:

mN
k = E

[
k∑
`=0

1

N
TrX` 1

N
TrXk−`−2

]

(the second term in the DS equation is 0 here.) We now assume that we
have the self-averaging property that:

1

N
TrX` = E

[
1

N
TrX`

]
+ o(1) = mN

` + o(1)

as N → ∞ (We will show this self-averaging is true later). If this is true, then
the above expansion would give us:

mN
k =

k−2∑
`=0

mN
` m

N
k−`−2 + o(1)

On the other hand, let M0(k) be the number of maps of genus 0 with k
vertices. These satisfy the Catalan recurrence:

M0(k) =

k−2∑
`=0

M0(`)M0(k − `− 2)

This recurrence is shown by a Catalan-like recursion argument, which goes
by dividing each map of genus 0 into two submaps (both still of genus 0) of size
` and k − `− 2 .

Since these both satisfy the same recurrence (andM0(0) = mN
0 = 1,M0(1) =

mN
1 = 0), we can prove by induction (assuming the self-averaging works) that:

mN
k = M0(k) + o(1) as N →∞

It remains to prove the self-averaging.
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1.5.1 Self-Averaging

Claim There exists finite constants C· and E· so that for every k, if k1, . . . , k`
are integers so that

∑`
i=1 ki ≤ k then:

a) c(k1, . . . , kp) := E

[∏̀
i=1

Yki

]
satisfies |c(k1, . . . , kp)| ≤ C∑

ki

and:
b) mN

` := E

[
1

N
TrX`

]
satisfies |mN

` | ≤ E` for all ` ≤ k

The proof is by induction on k. It is clearly true for k = 0, 1. Suppose the
induction hypothesis holds for k − 1. To see that b) holds, consider that by the
DS equation, we first observe that:

E

[
1

N
TrXk

]
= E

∑
`≥2

1

N
TrX` 1

N
TrXk−`−2


=

k−2∑
`=0

(mN
` m

N
k−`−2 + c(`, k − `− 2)) ≤

∑
(E`Ek−2−` + Ck−2) := Ek

where:
c(k, `) = E

[(
TrXk −ETrk

) (
TrX` −ETrX`

)]
To see that a) holds, consider as follows

E

Yk1 p∏
j=2

Ykj

 = E

 1

N
TrXk1

p∏
j=2

Ykj

−E

[
1

N
TrXk1

]
E

 p∏
j=2

Ykj


= E

 1

N

∑
`

TrX`TrXk1−`−2
p∏
j=2

Ykj


+E

∑ ki
N

TrXk1+ki−2
p∏

j=2,j 6=i

Ykj


−E

[
1

N

∑
`

TrX`TrXk1−`−2

]
E

 p∏
j=2

Ykj


where we just used the DS equation. We next substract the last term to the
first and observe that

TrX`TrXk1−`−2 −E[TrX`TrXk1−`−2]

= NY`m
N
k−2−` +NYk−2−`m

N
` + c(`, k − 2− `)
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to deduce

E

Yk1 p∏
j=2

Ykj

 = 2
∑
`

mN
` c(k − 2− `, k2, . . . , kp)

+
1

N

∑
c(`, k − 2− `)c(k2, . . . , kp)

+

p∑
i=2

kim
N
k1+ki−2c(k2, .., ki−1, ki+1, ., kp)

+
1

N

p∑
i=2

kic(k1 + ki − 2, k2, .., ki−1, ki+1, ., kp) (2)

which is bounded uniformly by induction.
Remark. You can understand the same thing from the Feynman picture: the
first term is somehow the interaction to other pieces and the second term is the
interaction wtih “itself”.

1.5.2 Second Order

The above self averaging properties prove that mN
k = C(k) + o(1). To get

the next order correction you have to analyze the limiting covariance of the
terms:

c(k, `) = E
[(

TrXk −ETrk
) (

TrX` −ETrX`
)]

we will show that c(k, `) converges towards:

M0(k, `) = # {planar maps with 1 vertex of degree ` and one vertex of degree k}

If we can show this, then we will have:

Corollary. N2(mN
k − C(k)) = c1k + o(1) where c1k are defined recusivly:

c1k = 2

k−2∑
`=0

c1`M0 (k − `− 2) +

k−2∑
`=0

M0(`, k − `− 2)

Proof. Again we prove the result by induction over k. It is fine for k = 0, 1
where c1k = 0. By (2) with p = 0 as well as the a priori bounds on the moments
(a) we proved by induction we have :

N2(mN
k − C(k)) =

∑
M0(`)N2

(
mN
k−`−2 −M0(k − 2− `)

)
+
∑

N2
(
mN
` −M0(`)

)
(mk−`−2 −M0(k − 2− `))

+
∑

c(`, k − `− 2)

+N2
∑
`

(mN
` −M0(`))(mN

k−2−` −M0(k − 2− `))

from which the result follows by taking the large N limit on the right hand
side.
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Exercise. Show that c1k = M1(k) is the number of planar maps of genus 1.

Remark. The proof goes again by showing M1(k) satisfies the same type of
recurrence as c1k by considering the matching of the root: either it cuts the map
of genus 1 into a map of genus 1 and a map of genus 0, or there remains a
(connected) planar maps.

Proof. (Of the c(k, `) convergence thm) Observe that c(k, `) converges for K =
k + ` ≤ 1 and assume you have proven convergence towards σ(k, `) up to K.
Take k + ` = K + 1 and use (2) with p = 1 to deduce that c(k, `) converges
towards σ(k, `) which is given by the induction relation

σ(k, `) = 2
`−2∑
p=0

M0(p)σ(k − 2− p, `) + `M0(k + `− 2)

You then can check that σ(k, `) = M0(k, `) as they satisfy the same induction
relation (check it by pairing the root).

2 Second Lecture
Last time X was a GUE matrix. We saw that:

E

[
1

N
TrXk

]
= M0(k) +

1

N2
M1(k) + o

(
1

N2

)
and:

E [YkY`] = M0 (`, k) + o(1)

where:
Yk := TrXk −ETrXk

and where M0 is the number of planar maps, M1 is the number of maps of
genus 1 and M0(`, k) is the number of planar maps with one vertex of degree `
and another vertex of degree k.

Remark. Have that if λ1, . . . , λN are the eigenvalues then:

E

[
1

N

N∑
i=1

λki

]
= M0(k) + o(1)

E
[
(
∑

λki −E
(∑

λki

)
)2
]

= O(1)

This result is enough to conclude by Borel Cantelli Lemma that almost
surely:

µ =
1

N

∑
δλi → σ(dx)
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where σ is the semi-circle law : σ(xn) = M0(n). Indeed, the almost sure
convergence for moments follows from the summability of

P
(
|
∑

λki −E
(∑

λki

)
| ≥ Nε

)
≤ 1

ε2N2
,

Borel-Cantelli Lemma and convergence of mN
k towards σ(xn). The convergence

of 1
N

∑N
i=1 f(λi) follows then since polynomials are dense in the set of continuous

functions on [−
√

2,
√

2].

2.1 CLT for Yk
Let c(k1, . . . , kp) = E

[
Yk1 · · ·Ykp

]
then we claim that as N →∞ to G(k1, . . . kp)

given by:

(†) G(k1, . . . , kp) =

k∑
i=2

M0(k1, ki)G(k2, . . . , k̂i, . . . , kp)

where ˆ is the absentee hat. This type of moment convergence is equiva-
lent to a Wick formula and is enough to prove (by the moment method) that
Yk1 , . . . , Ykp are jointly Gaussian. We will prove this by induction by using the
DS equations. Now assume that † holds for any k1, . . . , kp such that

∑p
i=1 ki ≤ k.

(induction hypothesis) We have by (4). Notice by the a priori bound on corre-
lators (a) that the terms with a 1/N are neglectable in the right hand side and
mN
k close to M0(k), yielding

E

Yk1 p∏
j=2

Ykj

 = 2
∑
`

mN
` c(k − 2− `, k2, . . . , kp)

+
1

N

∑
c(`, k − 2− `)c(k2, . . . , kp)

+

p∑
i=2

kim
N
k1+ki−2c(k2, .., ki−1, ki+1, ., kp)

+
1

N

p∑
i=2

kic(k1 + ki − 2, k2, .., ki−1, ki+1, ., kp)

= 2
∑
`

M0(`)c(k − 2− `, k2, . . . , kp)

+

p∑
i=2

kiM0(k1 + ki − 2)c(k2, .., ki−1, ki+1, ., kp) +O(
1

N
)

By using the induction hypothesis, this gives rise to:

E

[
p∏
i=1

Yki

]
= o(1) + 2

∑
M0(`)G(k1 − `− 2, k2, . . . , kp)

+
∑

kiM0(ki + kj − 2)G(k2, . . . , k̂i, . . . kp)
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It follows that

G(k1, . . . , kp) = 2
∑

M0(`)G(k1−`−2, k2, . . . , kp)+
∑

kiM0(ki+kj−2)G(k2, . . . , k̂i, . . . kp)

But using the induction hypothesis, we get

G(k1, . . . , kp) =

p∑
i=2

(2
∑

M0(`)M(k1−`−2, ki)+kiM0(ki+kj−2))G(k2, . . . , k̂i, . . . kp)

and recalling that

M0(k1, ki) = 2
∑

M0(`)M(k1 − `− 2, ki) + kiM0(k1 + ki − 2)

proves the induction.

2.2 β-ensembles
Consider an ensemble given by the probability measure:

dP β,VN (λ1, . . . , λN ) =
1

Zβ,VN

∆(λ)βe−Nβ
∑
V (λi)

N∏
i=1

dλi

where ∆(λ) =
∏
i<j |λi − λj |.

Remark. The case V (X) = 1
2x

2 and β = 2 is exactly the GUE case we were
looking at in the previous lecture. (the case β = 1 corresponds to GOE and
β = 4 to GSE)

Notice that we can rewrite this as:

dP β,VN

dλ
= exp

1

2
β
∑
i 6=j

log |λi − λj | − βN
∑

V (λi)


” = ” exp

{
−βN2E (µ̂N )

}
where µ̂N is the empircal measure (total mass 1), and:

E (µ) =

ˆ
V (x)dµ(x)− 1

2

ˆ ˆ
ln |x− y| dµ(x)dµ(y)

(the “=” is in quotes because we have thrown out the fact that ln |x− y| is
not well defined for a dirac mass on the “self-interaction” diagonal terms)

Theorem. Assume that lim inf |x|→∞
V (x)
ln(|x|) > 1 (i.e. V (x) goes to infinity fast

enough to be dominante the log term at infinty) and V is continuous
We have that µ̂N ⇒ µeqV a.s where µeqV is the equilibrium measure for V , ie.

namely the minimizer of E(µ) and moreover this is bounded below, i.e. ∃CV s.t.

Veff (x) := V (x)−
ˆ

ln |x− y| dµeqV (y)− CV = 0 ∀x ∈ supp(µeqV )

and Veff ≥ 0 off of supp(µeqV ).
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Proof. (sketch) We prove later the a.s. convergence towards µeqV and concen-
trates on the existence, haracterization and uniqueness of µeqV . First we observe
that the level sets {µ : E(µ) ≤M} are compact(exercise). Then by compact-
ness we can find a (possibly not unique) minimizer, call it µeqV . By using that
E(µeqV + tν) ≥ E(µeqV ) for t small enough and all measure ν which is non negative
outside the support of µeqV and with mass zero (so that µeqV + tν is a probability
measure), we find that µeqV satisfies that Veff vanishes on its support and is non
negative everywhere (for some constant CV ).

To see this is unique for any other measure µ with finite E write:

E(µ) = E(µeqV )− 1

2

ˆ
ln |x− y| d (µ− µeqV ) (x)d (µ− µeqV ) (y)

+

ˆ
Veff (x)dµ(x)

But this is a kind of distance function: if µ, ν such that E(µ), E(ν) are finite:

D(µ, ν) := −
ˆ

log |x− y| d (µ− ν) d (µ− ν) =

∞̂

0

1

r

∣∣∣µ̂− νr∣∣∣2 dr
as the Fourier transform of the logarithm is 1/t. Hence, E(µ) = E(µeqV ) implies
D(µeqV , µ) = 0(as Veff is non-negative) and therefore µ = µeqV .

2.3 Concentration of Measure
We are going to regularize µ̂N so that it has finite energy, following an idea
of Maurel-Segala and Maida. First define λ̃ by λ̃1 = λ1 and λ̃i = λ̃i−1 +
max {σN , λi − λi−1} where σN will be chosen to be like N−p. Remark that
λ̃i− λ̃i−1 ≥ σN whereas |λi− λ̃i| ≤ NσN . Define µ̃N = EU

[
1
N

∑
δλ̃i+Ui

]
where

Ui are iid unif [0, N−q] (i.e. we smooth the measure by putting little rectangles
instead of Dirac masses and make sure that the eigenvalues are at least distance
N−p apart). Then we claim that

Lemma. Assume V is C1. For 1 < p− 1 < q there exists Cp,q finite such that

P β,VN (D(µ̃N , µ
eq
V ) ≥ t) ≤ eCp,qN lnN−N2t2

Corollary. For any function ϕ set:

|ϕ| 1
2

:=

 ∞̂

0

|ϕ̂s|2 sds

 1
2

, |ϕ|L = sup
|ϕ(x)− ϕ(y)|
|x− y|

P

(∣∣∣∣ˆ ϕd (µ̂N − µeqV )

∣∣∣∣ ≥ N−p+1 |ϕ|L + t |ϕ| 1
2

)
≤ eCN lnN−N2t2
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Proof. It goes by triangle inequality basically:ˆ
ϕd (µ̂N − µeqV ) =

ˆ
ϕd (µ̂N − µ̃N ) +

ˆ
ϕd (µ̃N − µeqV )

≤ 1

N

N∑
i=1

EU [ϕ(λi)− ϕ(λ̃i + U)] +

ˆ
ϕ̂s ̂(µ̂N − µ̃N )sds+

≤ |ϕ|L
(
N−p+1 +N−q

)
+ |ϕ| 1

2
D (µ̃N , µ

eq
V )

where we noticed that |λi − λ̃i| is bounded by N−p+1 and U by N−q. Hence,
the previous lemma proves the claim.

We next prove Lemma 2.3. We first show that:

Zβ,VN ≥ exp
(
−N2E(µeqV ) + CN lnN

)
This follows since:

Zβ,VN =

ˆ ∏
|λi − λj |β exp

(
−N

∑
V (λi)

)
dλ

≥
ˆ

|λi−xi|≤N−s

∏
|λi − λj |β exp

(
−N

∑
V (λi)

)
dλ

Choose points xi to be the “typical” eigenvalue locations for the equilibrium
configuration i.e. so that µeqV [(−∞, xi)] = i

N . As it can be shown the density
of µeqV is bounded

1

N
= µeqV ([xi, xi+1]) ≤ ‖

dµeqV
dx
‖∞|xi+1 − xi|

and we choose s ≥ 2 so that λi+1− λi ' (xi+1− xi)(1 +O( 1
N )). Then we have:

Zβ,VN ≥ (2N−s)N
∏
|xi − xj |β exp

(
−Nβ

∑
V (xi) +N3N−s

)
≥ exp{−βN2E(µeqV ) + CN logN}

since if i > j

log |xi − xj | ≥
ˆ xi+1

xi

ˆ xj

xj−1

log |x− y|dµeqV (x)dµeqV (y)

and |N−1V (xi)−
´ xi+1

xi
V (x)dµeqV (x)| ≤ C/N2 as V is Lipschitz.

Now consider that:

Zβ,VN

dP β,VN

dλ
=

∏
i<j

|λi − λj |β exp
(
−Nβ

∑
V (λi)

)
≤

∏
i<j

∣∣∣λ̃i − λ̃j∣∣∣β exp
(
−Nβ

∑
V (λ̃i) +N2N−p

)
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because the λ̃ only increased the differences and |λi− λ̃i| ≤ N1−p. Now because
adding the uniform variables only creates an error of order N2N−qNp we can
conclude that if q > p+ 1,

dP β,VN

dλ
≤ exp

(
−N2β (E(µ̃N )− E(µeqV )) + CN lnN

)
We now use the fact that E(µ̃N )−E(µeqV ) = D(µ̃N , µ

eq
V )2+

´
(Veff )(x))dµ̃N (x)

so that

P β,VN (D(µ̃N , µ
eq
V ) ≥ t) ≤ eCN logN−βN2t2

(ˆ
e−NVeff (x)dx

)N
where the last integral is bounded by a constant as Veff is non-negative and
goes to infinity at infinity faster than logarithmically.

3 Lecture 3

3.1 Goal and strategy
We want to show for sufficiently many functions f that

•

E[
1

N

∑
f(λi)] = µeqV (f) +

K∑
g=1

1

Ng
cg(f) + o(

1

NK
)

•
∑
f(λi)−E[

∑
f(λi)] converges to a centered Gaussian.

We will restrict ourselves to Stieljes transform f(x) = (z − x)−1 for z ∈ C\R,
which in fact gives these results for all analytic function f . We will as well
restrict ourselves to K = 2, but the strategy is similar to get higher order
expansion. The strategy is similar to the case of the GUE:

• We derive a set of equations, the Dyson-Schwinger equations, for our ob-
servables (the moments of Stieljes transform): it is an infinite system of
equations, a priori not closed. However, it will turn out that asymptoti-
cally it can be closed.

• We linearize the equations around the limit. We show that some terms
are negligable. The concentration estimates of Lemma 2.3 implies that

|E[

p∏
j=1

(
∑

(zj − λi)−1 −E[
∑

(zj−λi)
−1]| ≤ (

√
N lnN)p/

∏
|=zi| (3)

which is not good enough for our purpose. So we improve these estimates
by using the Dyson-Schwinger equations in the spirit of what we did for
the GUE.
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• To solve the linearized equation, we can not use induction as before, but
we invert some linear operator. This shows that once smaller terms have
been neglected, the system of equations can be solved (that is is closed).

• We proceed recursively to get all orders of the corrections.

3.2 Dyson-Schwinger Equation
We will look for moments of the Stieltjes transform, namely moments of:

GN (z) :=
1

N

N∑
i=1

1

z − λi

For z ∈ C\R. Let:

Yz =

N∑
i=1

1

z − λi
−E

[
N∑
i=1

1

z − λi

]

We will assume that

Assumption. -V is real analytic,
-µeqV has a connected support [a, b],
-Veff is strictly positive outside the support of µeqV .

FIrst notice that:

ˆ
dλ

N∑
i=1

∂λi

 1

z − λi
dP β,VN

dλ

k∏
j=1

Yzj

 = 0

(This follows by integration by parts formula
´∞
−∞ ∂xf(x)dx = 0) On the

other hand, if we expand out this derivative we have:

ˆ
dλ


N∑
i=1

1

(z − λi)2
+

1

z − λi

β∑
j 6=i

1

λi − λj
− βNV ′(λi)

+
∑
j

∑
i

1

z − λi
1

(zj − λi)2
1

Yzj


p∏
k=1

Yzk

If we set GN (z) = 1
N

∑
1

z−λi and define G(z) =
´

1
z−xdµ

eq
V (x) this is:

E

[(
1

N
∂zGN (z)

[
−1 +

β

2

]
+
β

2
GN (z)2 − β

N

∑ V ′(λi)

z − λi

)∏
k

Yzk

]
(4)

=
1

N
E

[ p∑
j=1

∂zjE

[
GN (zi)−GN (zj)

z − zj

]∏
` 6=j

Yz`

]
We now use the fact that V is real analytic so that Cauchy formula implies

that

12



∑ V (λi)

z − λi
= − 1

2πı

˛
V (ξ)

z − ξ
∑ 1

ξ − λi
dξ =

1

2πı

˛
V (ξ)

z − ξ
GN (ξ)dξ

where the contour encircles the λi’s. It can be proven that when Veff is positive
outside the support of µeqV , for any ε > 0, there exists c(ε) > 0 so that

P β,VN (∃i : λi ∈ [a− ε, b+ ε]c) ≤ e−c(ε)N .

This entitles us to change the probability measure to have support in [a−ε, b+ε]
up to exponentially small errors everywhere (that we will not discuss in what
follows). We then can simply take a contour around [a− ε, b+ ε].

3.3 Analysis of the Dyson-Schwinger equation: heuristics
We know by Lemma 2.3 that GN converges to G and hence (4) yields with p = 0
that

β

2
G(z)2 +

1

2πı

˛
V (ξ)

z − ξ
G(ξ)dξ = 0 . (5)

We next guess the corrections to this limit.

• First order correction. Setting ∆GN := GN − G, (4) yields with p = 0
that

E

[
1

N
∂zGN (z)

[
−1 +

β

2

]
+K[∆GN ](z) +

β

2
(∆GN (z))2

]
= 0 (6)

where
Kf(z) = βG(z)f(z)− β

2πı

˛
V ′(ξ)

z − ξ
f(ξ)dξ .

By Lemma 2.3, we know that E[(∆GN (z))2] is of order (lnN)2/N . Let us
assume for a moment it is o(N−1). Assume as well that K is invertible.
Then we deduce from (6) that

lim
N→∞

NE[∆GN (z)] = (
1

2
− 1

β
)K−1[∂zG](z) =: G1(z) .

• Limiting covariance. To get the limiting covariance, let us take p = 1. Let
c(z, z′) = E[YzYz′ ]. The Dyson-Schwinger equation then reads

K(c(., z′))(z) = −βN
2

E[(∆GN (z))2Yz′ ] (7)

−(
β

2
− 1)∂zE[GN (z)]− ∂z′E[

GN (z)−GN (z′)

z − z′
]

Assume that E[(∆GN (z))2Yz′ ] = o(1/N) even if the concentration esti-
mates only gives that it is of order 1/

√
N . Note that E[GN (z)Yz′ ] =

13



E[(GN (z) − G(z))Yz′ ] grows at most logarithmically, and assume it goes
to zero. As this is an analytic function, its derivative goes as well to zero.
Then, we deduce from (4) that

lim
N→∞

E[NGN (z)Yz′ ] = K−1[∂z′
G(.)−G(z′)

.− z′
](z) =: W (z, z′) .

• Second order correction. Going back to (4) with p = 0 we have

K[N(N∆GN−G1)](z) = −β
2

(E[Y 2
z ]+E[N∆GN (z)]2)−(

β

2
−1)∂zE[N∆GN (z)]

and we can go to the limit N →∞ to deduce

lim
N→∞

K[N(N∆GN −G1)](z) = −β
2

(W (z, z) +G1(z)2)− (
β

2
− 1)∂zG1(z)

so that taking the inverse of K yields the desired limit:

lim
N→∞

N(N∆GN−G1)](z) = K−1(−β
2

(W (., .)+G1(.)2)−(
β

2
−1)∂zG1)(z) .

The above heuristics can be made rigorous provided we invert the operator
K (and show its inverse is continuous to neglect error terms after we inverted
it) and we show sufficiently strong concentration inequalities. This is what we
do next.

3.4 Inverting the operator K
Observe that we want to apply K to functions which are differences of Stieljes
transforms and therefore going to infinity like 1/z2. We therefore search for f
with such a decay satisfying g(z) = Kf(z) for a given g. As a consequence g
goes to infinity like 1/z at best. We can rewrite

Kf(z) = β(G(z)− V ′(z))f(z)− β
˛
V ′(ξ)− V ′(z)

2iπ(z − ξ)
f(ξ)dξ .

We make the following crucial assumption of off-criticality:

Assumption. There exists a real analytic function h which does not vanish on
a complex neighborhood of [a− ε, b+ ε] so that

dµeqV
dx

= h(x)
√

(x− a)(b− x) .

This implies that

G(z)− V ′(z) = π
√

(z − a)(b− z)h(z)

with h real analytic and not vanishing on [a− ε, b+ ε]. Indeed,(5) implies that

G(z)2 − 2V ′(z)G(z) +Q(z) = 0

14



with Q(z) = 2
¸ V ′(ξ)−V ′(z)

2iπ(z−ξ) f(ξ)dξ. Solving this equation yields

G(z) = V ′(z)−
√
V ′(z)2 −Q(z)

As V ′ is analytic, and V ′(z)2 − Q(z) is analytic, its square root becomes as z
goes to the real line the density of µeqV . The conclusion follows.

This behaviour is essential to invert K, in the spirit of Tricomi airfol equa-
tion. Indeed, we write with σ(z) =

√
(z − a)(b− z), for g = Kf

σ(z)f(z) =
1

2iπ

˛
1

z − ξ
σ(ξ)f(ξ)dξ

=
1

2iπ

˛
1

z − ξ
1

βS(ξ)
(g(ξ) +

1

2
Q(ξ))dξ

=
1

2iπ

˛
1

z − ξ
1

βS(ξ)
(g(ξ))dξ

where in the first line we took a contour around z and used Cauchy formula, in
the second line we passed the contour around [a, b] and used the definition of
Kf = g, using that the residue at infinity vanishes because σ(z)f(z) goes like
1/z, and in the last line we used that Q/S is analytic. Hence, we deduce that

K−1g(z) =
1

σ(z)

1

2iπ

˛
1

z − ξ
1

βS(ξ)
(g(ξ))dξ ,

where the contour surrounds [a− ε, b+ ε]. We note that away from [a, b], K−1
is bounded. Also it maps holomorphic to holomorphic functions so that bounds
on functions translate into bounds on its derivatives up to take slightly smaller
imaginary part of the argument.

3.5 Improving concentration estimates
To this end we use the Dyson-Schwinger equations. By using the concentration
estimate, the right hand side of (2) implies we see that the right hand side is
bounded by (lnN)3

√
N . This yields an a priori bound on c of order (lnN)3

√
N

as K−1 is bounded. This is better than the a priori estimate N(lnN)2. This
already shows that E[|N∆GN (z)|2] is at most of order (lnN)3

√
N = o(N),

justifying our computation of the first order correction on E[GN − G]. To
go farther, observe that by Lemma 2.3 and restricting ourselves to the event
|∆GN | ≤ lnN/

√
N , we find

|E[(∆GN (z))2Yz′ ]| ≤
lnN

N
√
N

E[|N∆GN (z)|2]1/2E[|Yz′ |2]1/2 +
e−N(lnN)2N

|(=z)=z′|
≤ (lnN)5/2/N

by the previous bound on the covariance. Going back to (2), we deduce that c
is at most of order (lnN)5/2, and by the above bound that

|E[(∆GN (z))2Yz′ ]| ≤
(lnN)7/2

N
√
N
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We can then make the argument concerning the convergence of c rigorous. We
then get the second order correction as announced.

3.6 Central limit theorem
To prove the central limit theorem we show by induction over p that

lim
N→∞

E[

p∏
i=1

Yzi ] =

p∑
i=2

W (z1, zj) lim
N→∞

E[
∏
` 6=j

Yz` ]

This is true for p = 1, 2. We then use

E

[(
∂zGN (z)

[
−1 +

β

2

]
+NβK(GN −G) +

βN

2
(GN (z)−G(z))2

) p∏
k=1

Yzk

]

= E

[ p∑
j=1

∂zjE

[
GN (zi)−GN (zj)

z − zj

]∏
` 6=j

Yz`

]
(8)

We then use that by concentration inequality Lemma 2.3 and the induction
bound on E[

∏p
j=1 |Yzj ]| if p is even or E[

∏p−1
j=1 |Yzj |] if p is odd which is finite

|E[(GN (z)−G(z))2
p∏
k=1

Yzk ]| ≤ (
(lnN)√

N
)2(
√
N lnN)n +

1

(=z)2
∏
|=zk|

e−N lnN

where n = 1 if p is odd and 0 if p even. Let us consider the case p odd. Plugging
back this estimate and inverting K (recall as well the first term βK(GN −G) +

∂zGN (z)
[
−1 + β

2

]
= βK(GN−E[GN ])) yields that |E[N(GN (z)−G(z))

∏p
k=1 Yzk ]|

is at most of order lnN
√
N . p + 1 is this time even so we can insert the

absolute value, and deduce by concentration inequality that E[(N(GN (z) −
G(z))2

∏p
k=1 Yzk ]| is at most of order (lnN)2. Hence we may neglect this term

and conclude as before.

3.7 Bibliography
B. Eynard and his collaborators used a lot DS equations to get large N ex-
pansions on a formal level, and study the “topological expansion” that relates
the coefficients of these expansion. The idea to use DS equations to prove CLT
rigorously was first followed by Johansson (97) under some assumption of con-
vexity on the potential. Note that an expansion for linear statistics yields after
interpolation expansions for the free energy as if Vt = tV + (1− t)x2

1

N2
ln
Zβ,VN

Zβ,x
2

N

= −
ˆ 1

0

E
P
β,Vt
N

[
1

N

N∑
i=1

∂tVt(λi)]dt

so that if we have expansions at each t of the interpolation, we are done.This
was done with Borot It was pursued by Shcherbina and G-Borot to consider the
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case were µeqV has a disconnected support: in this case the number of eigenvalues
lying in each connected part fluctuates as a discrete Gaussian whose mean and
covariance may only converge along subsequences, so that the usual CLT is not
valid anymore. More general potential(in particular none linear in the spectral
measure) were considered with Borot and Kozlowski, as well as the sinsh model
were the Coulomb potential is replaced by a sinsh potential. Several matrix
models were considered with E. Maurel Segala, however, the inversion of the
operator in general requires the potential to be small. This approach was also
generalized to orthogoal and unitary matrices with Collins and Maurel Segala,
and then with Novak. A related research was conducted by Chatterjee. In the
next lecture, we investigate the discrete case. Then, large deviation and concen-
tration inequalities are very similar. However, the expected Dyson -Schwinger
equation given by (discrete) integration by parts is not easily tractable. Indeed
the induced change of measure is not a nice function of the empirical measure
LN=

1
N

∑
δ`i/N as it depends on

∏
i<j

(1 +
1

`i − `j
)

which depends on LN and N in a non trivial way.We shall present recent equa-
tions introduced by Nekrasov that will be convenient for asymptotic analysis.
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