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Random lozenge tilings: examples

1) Uniformly random tilings of a
�nite domain

Skip

Skip

2) Surface growth
(simulation of Patrik Ferrari)

3) Path�measures in Gelfand�Tsetlin graph of asymptotic
representation theory.
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Random lozenge tilings: questions

(Kenyon�Okounkov) (Petrov) (Borodin-Ferrari)

Skip

Asymptotics as mesh size → 0 or size of the system →∞?

Universality belief:

main features do not depend on exact speci�cations.

What are these features?
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Random lozenge tilings: hexagon

A

B
C

Representative example: uniformly random lozenge tiling of
A× B × C hexagon.

Equivalently: decomposition of irreducible representation of
U(B + C ) with signature (AB , 0C ).

Equivalently: �xed time distribution of a 2d-particle system.
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Random lozenge tilings: hexagon
Skip

Shu�ing algorithm (Borodin�Gorin)
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Random lozenge tilings: features

Law of Large Numbers

(Cohn�Larsen�Propp)

And for general domains
(Cohn�Kenyon�Propp)
(Kenyon�Okounkov)
(Bufetov�Gorin)

A = aL,B = bL, c = cL

L→∞

Theorem. Average proportions of three types of lozenges converge
in probability to explicit deterministic functions of a point inside
the hexagon. Equivalently, the rescaled height function 1

LH(Lx , Ly)
converges to a deterministic limit shape.



Random lozenge tilings: features

Central Limit Theorem

(Kenyon), (Borodin-Ferrari),
(Petrov), (Duits),
(Bufetov�Gorin)

Liquid region: all types of
lozenges are present

Frozen region: only one type

A = aL,B = bL, c = cL

L→∞

Theorem. The centered height function H(Lx , Ly)− EH(Lx , Ly)
converges in the liquid region to a generalized Gaussian �eld, which
can be identi�ed with a pullback of the 2d Gaussian Free Field.



Random lozenge tilings: features

Bulk local limit

(Okounkov�Reshetikhin),
(Baik-Kriecherbauer-
McLaughlin-Miller),
(Gorin), (Petrov)

A = aL,B = bL, c = cL

L→∞

Theorem. Near each point (xL, yL) the point process of lozenges
converges to a (unique) translation invariant ergodic Gibbs

measure on tilings of plane of the slope given by the limit shape.



Random lozenge tilings: features

Edge local limit at a generic

point

(Ferrari�Spohn),
(Baik-Kriecherbauer-
McLaughlin-Miller),

(Petrov)

Edge local limit at a

tangency point

(Johansson�Nordenstam),
(Okounkov�Reshetikhin),
(Gorin�Panova), (Novak)

A = aL,B = bL, c = cL, L→∞
Theorem. Near a generic (or tangency) point of the frozen
boundary its �uctuations are governed by the Airy line ensemble
(or GUE�corners process, respectfully)



Random lozenge tilings: features

Skip

1. Law of Large Numbers

2. Central Limit Theorem

3. Bulk local limits

4. Edge local limits at generic
and tangency points

A = aL,B = bL, c = cL,

L→∞

Universality predicts that the same features should be present in
generic random tilings models.

This is rigorously established only for the Law of Large Numbers.



Random lozenge tilings: what's new?

1. Law of Large Numbers

2. Central Limit Theorem

3. Bulk local limits

4. Edge local limits at generic
and tangency points

Conjecturally, should hold for
generic random tilings

Today: partial universality results for bulk local limits



Trapezoids
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Bulk local limits: universality

Theorem. (G.-16) Let Ω(L) be a regularly growing sequence of
domains. For any part of Ω(L) covered by a trapezoid, near any
point in the liquid region in this part, the uniformly random lozenge
tilings of Ω(L) converge locally as L→∞ to the ergodic
translation�invariant Gibbs measure of the slope given by the
limit shape.
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Bulk limits were not known for
this domain before

Many domains are completely covered by trapezoids and therefore
the conjectural bulk universality is now a theorem for them.
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tilings covered by trapezoids
(2 + 1�dimensional interacting
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Bulk local limits: universality
Theorem. (G.-16) Let Ω(L) be a regularly growing sequence of
domains. For any part of Ω(L) covered by a trapezoid, near any
point in the liquid region in this part, the uniformly random lozenge
tilings of Ω(L) converge locally as L→∞ to the ergodic
translation�invariant Gibbs measure of corresponding slope.

Previous results:

(Petrov-12)
Local bulk limits for
polygons covered by
single trapezoid.

(Kenyon�04)
Local bulk limits for
a class of domains
with no straight
boundaries.

(Borodin�Kuan�07)
Local bulk limits for
Gibbs measures
arising from
characters of U(∞)

(Okounkov�
Reshetikhin�01)
Local bulk limits for
Schur processes



Ergodic translation�invariant Gibbs measures

Theorem. ... near any point in the liquid region as L→∞ we
observe an ergodic translation�invariant Gibbs measure.

Theorem. (She�eld). For each
slope, i.e. average proportions of

lozenges (p , p , p ) there is a
unique e.t.-i.G. measure.

Description. (Cohn�Kenyon�Propp,

Okounkov�Reshetikhin) Red lozenges
in e.t.-i.G. measure form a
determinantal point process

ρk((x1, n1), . . . , (xk , nk)) =
n

det
i ,j=1

[
1

2πi

∫ ξ

ξ̄
w xj−xi−1(1− w)nj−nidw

]
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contour intersects (0, 1) when nj ≥ ni and (−∞, 0) otherwise.
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Theorem. ... near any point in the liquid region as L→∞ we
observe an ergodic translation�invariant Gibbs measure.

Theorem. (She�eld). For each
slope, i.e. average proportions of

lozenges (p , p , p ) there is a
unique e.t.-i.G. measure.

Description. (Cohn�Kenyon�Propp,
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n

det
i ,j=1

[
1

2πi

∫ ξ

ξ̄
w xj−xi−1(1− w)nj−nidw

]
sin(arg ξ(xj−xi ))

π(xj−xi ) for nj = ni . Extension of discrete sine kernel.



Ergodic translation�invariant Gibbs measures
Theorem. ... near any point in the liquid region as L→∞ we
observe an ergodic translation�invariant Gibbs measure.
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Local vs global meanings of slope (p , p , p )

<(ξ)

=(ξ)

0 1

ξ

Meaning 1: It describes the
e.t.-i.G. measure in the bulk

1

2πi

∫ ξ

ξ̄
w xj−xi−1(1− w)nj−nidw

Meaning 2: Law of Large Numbers. Normalized lozenge counts
inside a subdomain D converge to deterministic vector(∫

D
p (x,η)dxdη,

∫
D
p (x,η)dxdη,

∫
D
p (x,η)dxdη

)
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How to �nd slope (p , p , p )?

(Kenyon�Okounkov) (Petrov) (Borodin-Ferrari)

Skip

Both local bulk limits and global law of large numbers are
parameterized by the same position�dependent slope which one
needs to �nd.



How to �nd slope (p , p , p )?

Method 1. (Cohn�Kenyon�Propp)

Solve variational problem for
tilings of a generic domain Ω.

∫
Ω
σ
(
p (x,η), p (x,η), p (x,η)

)
dxdη −→ max

σ(·, ·, ·) is an explicitly known entropy (or surface tension)



How to �nd slope (p , p , p )?

Method 1. (Cohn�Kenyon�Propp)

Solve variational problem for
tilings of a generic domain.

Method 2. (Kenyon�Okounkov)
For simply�connected
polygons the solution is found
through an algebraic procedure.

<(ξ)

=(ξ)

0 1

ξ
Q(ξ, 1− ξ) = xξ + η(1− ξ)

Q is a polynomial uniquely
de�ned by a set of algebraic
conditions such as degree and
tangency to polygon's sides.



How to �nd slope (p , p , p )?

Method 1. (Cohn�Kenyon�Propp)

Solve variational problem for
tilings of a generic domain.

Method 2. (Kenyon�Okounkov)
For simply�connected
polygons the solution is found
through an algebraic procedure.

Method 3. (Bufetov�Gorin-13)
For trapezoids the solution is
found through a quantization of
the Voiculescu R�transform
from free probability.



Slope (p , p , p ) for trapezoids.

Various origins for the measure
on tilings of trapezoid, e.g.:

Setup. We know the asymptotic
pro�le of p along the right
boundary of a trapezoid. The
distribution of tilings of
trapezoid is conditionally
uniform given the right boundary
(which might be random).

Question. How to �nd
(p , p , p ) inside the
trapezoid?



Slope (p , p , p ) for trapezoids.

x

η

η = 1

µ[η], 0 < η ≤ 1 is a probability
measure on R with density at a
point x equal to p (ηx− η,η)

Eµ(z) = exp

(∫
R

1

z − x
µ(dx)

)
.

Rµ(z) = E (−1)
µ (z)− z

z − 1
,
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Eµ(z) = exp

(∫
R

1

z − x
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)
.
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µ (z)− z
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,

Deformation (quantization) of
the Voiculescu R transform

from the free probability theory



Slope (p , p , p ) for trapezoids.

x

η

η = 1

µ[η], 0 < η ≤ 1 is a probability
measure on R with density at a
point x equal to p (ηx− η,η)

Eµ(z) = exp

(∫
R

1

z − x
µ(dx)

)
.

Rµ(z) = E (−1)
µ (z)− z

z − 1
,

Theorem. (Bufetov�Gorin-13) If (p , p , p ) describes the Law of
Large Numbers for Gibbs measures on tilings of trapezoids, then

Rµ[η](z) =
1

η
Rµ[1](z).



Slope (p , p , p ) for trapezoids.
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0 1
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point x equal to p (ηx− η,η)

Eµ(z) = exp

(∫
R

1

z − x
µ(dx)

)
.

Corollary. (Bufetov�Gorin-13)
For tilings of trapezoids also

ξ(ηx− η,η) = Eµ[η] (x− 0i)

Angle of red lozenge is clear.
Others are very mysterious.
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Noncolliding random walks

Natural ways to produce lozenge tilings of in�nite domains?

One of them is to interpret tiling as a collection of paths.



Noncolliding random walks

We drop out the domain constraints.
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3

4

5

6

7

time T

skip

• N independent simple
random walks

• probability of jump p

• started at arbitrary lattice
points

• conditioned never to
collide

The previous discussion predicts bulk universality as N →∞.

Yet for �nite T this can not hold. How large should T be?
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Noncolliding random walks

0

1

2

3

4

5

6

7

time T

• N independent simple
random walks

• probability of jump p

• started at arbitrary lattice
points

• conditioned never to
collide

Theorem. (Gorin�Petrov-16) Suppose that as N →∞ in the
initial con�guration ai (N), near point x · N, the density of particles
is bounded away from 0 and 1, and the con�guration is balanced.
Then for T � N, T →∞, the point process of lozenges near
(xN,T ) converges to a translation invariant ergodic Gibbs

measure on tilings of plane of an explicit slope.



Noncolliding random walks

More details for x = 0.

Assumption 1. There exist scales D = D(N) satisfying
D(N)� T (N) and Q = Q(N) satisfying T (N)� Q(N)� N, and
absolute constants 0 < ρ•, ρ

• < 1, such that in every segment of
length D(N) inside [−Q(N),Q(N)] there are at least ρ•D(N) and
at most ρ•D(N) points of the initial con�guration A(N).

Assumption 2. For δ > 0, R > 0 and all N large enough one has∣∣∣∣∣ ∑
i : R·T (N)≤|ai (N)|≤δ·N

1

ai (N)

∣∣∣∣∣ ≤ AR,δ,

Theorem. (Gorin�Petrov-16) Then for T (N)� N,
T (N),N →∞, the point process of lozenges near (0,T (N))
converges to a translation invariant ergodic Gibbs measure on
tilings of plane of an explicit slope.



Noncolliding random walks
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7

time T

• N independent simple
random walks

• probability of jump p

• started at arbitrary lattice
points

• conditioned never to
collide

Theorem. (Gorin�Petrov-16) Suppose..., then for T � N, the
lozenges near (xN,T ) converge to a translation invariant

ergodic Gibbs measure on tilings of plane.

E.g. for initial con�guration ai (N):

• ai (N) = bN ∗ f (i/N)c, smooth f with f ′ > 1, T = Nγ ,

or

• Particles/holes form i.i.d. Bernoulli sequence of parameter q.
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Dyson Brownian Motion
Noncolliding random walks have a famous continuous analogue.


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


Let X be N × N matrix of i.i.d.
complex Brownian motions.

Theorem. (Dyson-62 and others) The eigenvalues of X+X∗

2 form a
Markov process known as Dyson Brownian Motion:
N independent Brownian motions conditioned to never collide.

(Dyson-62) predicted that local statistics in DBM become
universal after very short times (before global limit shape changes).

Complete proof only recently (Landon�Yau-15, Erdos�Schnelli-15).

Critical ingredient for proofs of universality in Random Matrices.

Our result is a discrete analogue of Dyson's conjecture.
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Ingredients of proofs
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time T

Partial universality result for bulk local limits

• Lozenge tilings of domains covered by trapezoids.

• Non-colliding random walks at short times

The results are based on determinantal structure.



Ingredients of proofs
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For L�tuple (t1 > t2 > . . . tL),
let {x ji }, 1 ≤ i ≤ j ≤ L be
horizontal lozenges of uniformly
random lozenge tiling with
positions t on the right boundary

Theorem. (Petrov-2012) For
any collection of distinct pairs
(x(1), n(1)), . . . , (x(k), n(k))

P
[
x(i) ∈ {xn(i)

1 , x
n(i)
2 , . . . , x

n(i)
j }, i = 1, . . . , k

]
=

k

det
i,j=1

[K (x(i), n(i); x(j), n(j))]

K (x1, n1; x2, n2) = −1n2<n11x2≤x1

(x1 − x2 + 1)n1−n2−1

(n1 − n2 − 1)!
+

(L− n1)!

(L− n2 − 1)!

× 1

(2πi)2

∮
C(x2,...,t1−1)

dz

∮
C(∞)

dw
(z − x2 + 1)L−n2−1

(w − x1)L−n1+1

1

w − z

L∏
r=1

w − tr
z − tr

,



Ingredients of proofs

x5
1

x5
3

x5
4

x5
5

x5
2

x = 0 line

x4
1

x3
1

x2
1

x1
1

x2
2 x4

3

x3
3

x4
4

x3
2

x4
2

x
n

L

For L�tuple (t1 > t2 > . . . tL),
let {x ji }, 1 ≤ i ≤ j ≤ L be
horizontal lozenges of uniformly
random lozenge tiling with
positions t on the right boundary

Theorem. (Petrov-2012) For
any collection of distinct pairs
(x(1), n(1)), . . . , (x(k), n(k))

P
[
x(i) ∈ {xn(i)

1 , x
n(i)
2 , . . . , x

n(i)
j }, i = 1, . . . , k

]
=

k

det
i,j=1

[K (x(i), n(i); x(j), n(j))]

Observation. (G.-16) the bulk limit of K (·) depends only on the
asymptotic limit shape of t. This allows to pass from deterministic

to random t and prove bulk universality.
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let {x ji }, 1 ≤ i ≤ j ≤ L be
horizontal lozenges of uniformly
random lozenge tiling with
positions t on the right boundary

Theorem. (Petrov-2012) For
any collection of distinct pairs
(x(1), n(1)), . . . , (x(k), n(k))

P
[
x(i) ∈ {xn(i)

1 , x
n(i)
2 , . . . , x

n(i)
j }, i = 1, . . . , k

]
=

k

det
i,j=1

[K (x(i), n(i); x(j), n(j))]

Observation. (Gorin-Petrov-16) There is a limit from trapezoids to
noncolliding Bernoulli random walks with arbitrary initial
conditions. This paves a way for the analysis of the latter.



Summary
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Universal bulk local limits:

• For lozenge tilings �near� straight boundaries of domains

• For noncolliding Bernoulli random walks at short times
[proving a discrete analogue of the Dyson's (ex-)conjecture]

Key tool: double contour integral for the correlation kernel.

How do we extend universality further?
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