Loop $O(n)$ model on random quadrangulations: the cascade of loop perimeters

(1) Model and results

(2) Multiplicative cascades
(3) Proofs
(4) Relation with results on CLE

Model and results

Definitions

A bipartite map with a boundary is a rooted bipartite map in which the face on the right of the root edge is called the external face, and the other faces called internal faces.
A quadrangulation with a boundary is a bipartite map with a boundary whose internal faces are all quadrangles.

Remark

The boundary is not necessarily simple.

Definitions

A bipartite map with a boundary is a rooted bipartite map in which the face on the right of the root edge is called the external face, and the other faces called internal faces.
A quadrangulation with a boundary is a bipartite map with a boundary whose internal faces are all quadrangles.

Remark

The boundary is not necessarily simple.

We denote by $2 p$ the perimeter of the map (i.e. degree of the external face).

Loop $O(n)$ model on quadrangulations

A loop configuration on a quadrangulation with boundary \mathfrak{q} is a collection of disjoint simple closed paths on the dual of \mathfrak{q} which do not visit the external face. We restrict ourselves to the so-called rigid loops, i.e. such that every internal face is of type

or

Loop $O(n)$ model on quadrangulations

A loop configuration on a quadrangulation with boundary \mathfrak{q} is a collection of disjoint simple closed paths on the dual of \mathfrak{q} which do not visit the external face. We restrict ourselves to the so-called rigid loops, i.e. such that every internal face is of type

$$
\mathcal{O}_{p}=\left\{(\mathfrak{q}, \ell) \left\lvert\, \begin{array}{c}
\mathfrak{q} \text { is a quadrangulation with a boundary of length } 2 p, \\
\ell \text { is a rigid loop configuration on } \mathfrak{q} .
\end{array}\right.\right\}
$$

For $n \in(0,2)$ and $g, h>0$, let

$$
F_{p}(n ; g, h)=\sum_{(\mathfrak{q}, \ell) \in \mathcal{O}_{p}} g^{\# \square} h^{\# \square} n^{\#}
$$

Loop $O(n)$ model on quadrangulations

A loop configuration on a quadrangulation with boundary \mathfrak{q} is a collection of disjoint simple closed paths on the dual of \mathfrak{q} which do not visit the external face. We restrict ourselves to the so-called rigid loops, i.e. such that every internal face is of type

$$
\mathcal{O}_{p}=\left\{(\mathfrak{q}, \ell) \left\lvert\, \begin{array}{c}
\mathfrak{q} \text { is a quadrangulation with a boundary of length } 2 p, \\
\ell \text { is a rigid loop configuration on } \mathfrak{q} .
\end{array}\right.\right\}
$$

For $n \in(0,2)$ and $g, h>0$, let

$$
F_{p}(n ; g, h)=\sum_{(\mathfrak{q}, \ell) \in \mathcal{O}_{p}} g^{\# \square} h^{\# \square} n^{\#}
$$

A triple $(n ; g, h)$ is admissible if $F_{p}(n ; g, h)<\infty$. (This is independent of p).

Loop $O(n)$ model on quadrangulations

Definition

Fix $p>0$. For each admissible triple $(n ; g, h)$, we define a probability distribution on \mathcal{O}_{p} by

$$
\mathbb{P}_{n ; g, h}^{(p)}((\mathfrak{q}, \ell))=\frac{g^{\# \square_{0} h^{\#} \emptyset_{n} n^{\#}}}{F_{p}(n ; g, h)}
$$

Loop $O(n)$ model on quadrangulations

Definition

Fix $p>0$. For each admissible triple $(n ; g, h)$, we define a probability distribution on \mathcal{O}_{p} by

$$
\mathbb{P}_{n ; g, h}^{(p)}((\mathfrak{q}, \ell))=\frac{g^{\# \square} h^{\# \square} n^{\#}}{F_{p}(n ; g, h)}
$$

$$
\rightsquigarrow \quad \mathbb{P}_{n ; g, h}^{(12)}(\cdot)=\frac{g^{8} h^{38} n^{9}}{F_{12}(n ; g, h)}
$$

Theorem (Borot, Bouttier, Guitter '12)

For all admissible $(n ; g, h)$, there exist $\kappa(n ; g, h)$ and $\alpha(n ; g, h)$ such that

$$
F_{p}(n ; g, h) \underset{p \rightarrow \infty}{\sim} C \kappa^{-p} p^{-\alpha-1 / 2}
$$

Theorem (Borot, Bouttier, Guitter '12)

For all admissible $(n ; g, h)$, there exist $\kappa(n ; g, h)$ and $\alpha(n ; g, h)$ such that

$$
F_{p}(n ; g, h) \underset{p \rightarrow \infty}{\sim} C \kappa^{-p} p^{-\alpha-1 / 2}
$$

For each $n \in(0,2)$, there are four possible values of α subcritical: $\alpha=1$ generic critical: $\alpha=2$ non-generic critical
dense phase: $\quad \alpha=\frac{3}{2}-\frac{1}{\pi} \arccos (n / 2) \quad \in(1,3 / 2)$
dilute phase: $\quad \alpha=\frac{3}{2}+\frac{1}{\pi} \arccos (n / 2) \quad \in(3 / 2,2)$

Theorem (Borot, Bouttier, Guitter '12)

For all admissible $(n ; g, h)$, there exist $\kappa(n ; g, h)$ and $\alpha(n ; g, h)$ such that

$$
F_{p}(n ; g, h) \underset{p \rightarrow \infty}{\sim} C \kappa^{-p} p^{-\alpha-1 / 2}
$$

For each $n \in(0,2)$, there are four possible values of α subcritical: $\alpha=1$ generic critical: $\alpha=2$ non-generic critical
dense phase: $\quad \alpha=\frac{3}{2}-\frac{1}{\pi} \arccos (n / 2) \quad \in(1,3 / 2)$
dilute phase: $\quad \alpha=\frac{3}{2}+\frac{1}{\pi} \arccos (n / 2) \quad \in(3 / 2,2)$

The perimeter cascade of loops

We focus on the hierarchical structure of the loops, which we represent by a tree labeled by the half-perimeters of the loops.

The perimeter cascade of loops

We focus on the hierarchical structure of the loops, which we represent by a tree labeled by the half-perimeters of the loops.

We complete the tree by vertices of label 0 . This gives a random process $\left(\chi^{(p)}(u)\right)_{u \in \mathcal{U}}$ indexed by the Ulam tree $\mathcal{U}=\bigcup_{n \geq 0}\left(\mathbb{N}^{*}\right)^{n}$. We call this process the (half-)perimeter cascade of the rigid loop $O(n)$ model on quadrangulations.

Main results

Theorem (CCM 2016+)

Let $\left(\chi^{(p)}(u)\right)_{u \in \mathcal{U}}$ be the previously defined perimeter cascade. Then, we have the following convergence in distribution in $\ell^{\infty}(\mathcal{U})$:

$$
\left(p^{-1} \chi^{(p)}(u)\right)_{u \in \mathcal{U}} \stackrel{p \rightarrow \infty}{\Longrightarrow}\left(Z_{\alpha}(u)\right)_{u \in \mathcal{U}},
$$

where $Z_{\alpha}=\left(Z_{\alpha}(u)\right)_{u \in \mathcal{U}}$ is a multiplicative cascade to be defined later.

Related results

- Borot, Bouttier, Duplantier '16: Number of loops surrounding a marked vertex.
- Common belief: map $+O(n)$ loops \leftrightarrow Liouville quantum gravity + conformal loop ensemble (more on this later).
- huge literature on random planar maps with statistical mechanics model (uniform spanning tree, Potts model) in different scientific fields (combinatorics, probability, physics)
- Random planar map without statistical mechanics model, endowed with graph metric: limiting metric space is Brownian Map (Miermont, Le Gall '13)

Multiplicative cascades

Multiplicative cascades

Definition

A multiplicative cascade is a random process $Z=(Z(u))_{u \in \mathcal{U}}$ such that

$$
Z(\emptyset)=1, \quad \forall u \in \mathcal{U}, i \geq 1: Z(u i)=Z(u) \cdot \xi(u, i)
$$

where $(\boldsymbol{\xi}(u))_{u \in \mathcal{U}}=(\xi(u, i), i \geq 1)_{u \in \mathcal{U}}$ is an i.i.d. family of random vectors in $\left(\mathbb{R}_{+}\right)^{\mathbb{N}^{*}}$. The law of $\boldsymbol{\xi}=\boldsymbol{\xi}(\emptyset)$ is the offspring distribution of the cascade Z.

Remark: $X=\log Z=(\log Z(u))_{u \in \mathcal{U}}$ is a branching random walk.

Multiplicative cascades and branching random walks: a short history

Cascades multiplicatives: Mandelbrot, Kahane, Peyrière...

- Motivation: Model of the energy cascade in turbulent fluids
- Studied mostly on d-ary tree (i.e. $\xi_{i}=0$ pour $i>d$).
- Multiplicative cascade gives a random measure on the tree boundary, theory mostly studies the multifractal properties of this random measure. Interaction between geometry of
 the tree and the values of the process $Z(u)$.

Branching random walks: Hammersley, Kingman, Biggins...

- Motivation: Generalisation of the Crump-Mode-Jagers process (branching process with age)
- u : particle, $X(u)$: position of the particle u.
- Theory mostly studies the distribution of the particle positions, ignoring the geometry of the tree. Particular focus
 on extremal particles.

Mellin transform and martigales of multiplicative cascades

Definition (Mellin transform)

$$
\phi(\theta):=\mathbb{E}\left[\sum_{i \in \mathbb{N}^{*}} \xi(i)^{\theta}\right] \in(-\infty,+\infty]
$$

- $\log \phi$ is convex
- $W_{n}^{(\theta)}:=\phi(\theta)^{-n} \sum_{|u|=n} Z(u)^{\theta}$ is
 a martingale.

Theorem (Biggins, Lyons)
$\left(W_{n}^{(\theta)}\right)_{n \geq 0}$ is uniformly integrable (u.i.) if and only if $\mathbb{E}\left[W_{1}^{(\theta)} \log ^{+} W_{1}^{(\theta)}\right]<\infty$ and $(\log \phi)^{\prime}(\theta)<(\log \phi(\theta)) / \theta$

The multiplicative cascade Z_{α}

- $\left(\zeta_{t}\right)_{t \geq 0}$: α-stable Lévy process without negative jumps, started from 0 .
- τ : the hitting time of -1 by ζ.
- $(\Delta \zeta)_{\tau}^{\downarrow}$: the jumps of ζ before τ, sorted in \downarrow order.
- $\mathrm{d} \nu_{\alpha}:=\frac{1 / \tau}{\mathbb{E}[1 / \tau]} \mathrm{d} \widetilde{\nu}_{\alpha}$, where $\tilde{\nu}_{\alpha}$ is the law of $(\Delta \zeta)_{\tau}^{\downarrow}$

The multiplicative cascade Z_{α}

- $\left(\zeta_{t}\right)_{t \geq 0}: \alpha$-stable Lévy process without negative jumps, started from 0 .
- τ : the hitting time of -1 by ζ.
- $(\Delta \zeta)_{\tau}^{\downarrow}$: the jumps of ζ before τ, sorted in \downarrow order.
- $\mathrm{d} \nu_{\alpha}:=\frac{1 / \tau}{\mathbb{E}[1 / \tau]} \mathrm{d} \widetilde{\nu}_{\alpha}$, where $\tilde{\nu}_{\alpha}$ is the law of $(\Delta \zeta)_{\tau}^{\downarrow}$

Theorem (CCM 2016+)

Let $\left(\chi^{(p)}(u)\right)_{u \in \mathcal{U}}$ be the perimeter cascade of the rigid loop $O(n)$ model on quadrangulations. Then we have the convergence in distribution in $\ell^{\infty}(\mathcal{U})$:

$$
\left(p^{-1} \chi^{(p)}(u)\right)_{u \in \mathcal{U}} \stackrel{p \rightarrow \infty}{\Longrightarrow}\left(Z_{\alpha}(u)\right)_{u \in \mathcal{U}},
$$

where $\left(Z_{\alpha}(u)\right)_{u \in \mathcal{U}}$ is a multiplicative cascade of offspring distribution ν_{α}.

Properties of Z_{α}

Theorem (CCM 2016+)

The Mellin transform of the multiplicative cascade Z_{α} is
$\phi_{\alpha}(\theta)=\frac{\sin (\pi(2-\alpha))}{\sin (\pi(\theta-\alpha))} \quad$ pour $\theta \in(\alpha, \alpha+1) \quad$ and $\quad \phi_{\alpha}(\theta)=\infty$ otherwise.

Intrinsic martingales

If $\phi_{\alpha}(\theta)=1$, then

$$
W_{n}^{(\theta)}=\sum_{|u|=n} Z_{\alpha}(u)^{\theta}
$$

is called an intrinsic martingale. For $\alpha \neq 3 / 2$, there are two intrinsic martingales with $\theta=2$ and $\theta=2 \alpha-1$. It follows from Biggins' theorem that

- if $\alpha \in(3 / 2,2)$ (dilute phase), then $2<2 \alpha-1$, hence $W^{(2)}$ is u.i., whereas $W^{(2 \alpha-1)}$ is not,
- if $\alpha \in(1,3 / 2)$ (dense phase), then $2 \alpha-1<2$, hence $W^{(2 \alpha-1)}$ is u.i., whereas $W^{(2)}$ is not,

Intrinsic martingales

If $\phi_{\alpha}(\theta)=1$, then

$$
W_{n}^{(\theta)}=\sum_{|u|=n} Z_{\alpha}(u)^{\theta}
$$

is called an intrinsic martingale. For $\alpha \neq 3 / 2$, there are two intrinsic martingales with $\theta=2$ and $\theta=2 \alpha-1$. It follows from Biggins' theorem that

- if $\alpha \in(3 / 2,2)$ (dilute phase), then $2<2 \alpha-1$, hence $W^{(2)}$ is u.i., whereas $W^{(2 \alpha-1)}$ is not,
- if $\alpha \in(1,3 / 2)$ (dense phase), then $2 \alpha-1<2$, hence $W^{(2 \alpha-1)}$ is u.i., whereas $W^{(2)}$ is not,
This suggests the following for the volume Vol_{p} of the random quandragulation with perimeter p :

Volume scaling

dilute phase: $\operatorname{Vol}_{p} / p^{2}$ converges in law to $W_{\infty}^{(2)}$ as $p \rightarrow \infty$ dense phase: $\operatorname{Vol}_{p} / p^{2 \alpha-1}$ converges in law to $W_{\infty}^{(2 \alpha-1)}$ as $p \rightarrow \infty$.

Proofs

The gasket decomposition [Borot, Bouttier, Guitter '12]

The gasket decomposition [Borot, Bouttier, Guitter '12]

gasket: a bipartite map

The gasket decomposition [Borot, Bouttier, Guitter '12]

gasket: a bipartite map
A hole of size $2 k$ in the gasket: an element of $\mathcal{O}_{k}+$ a "necklace"

The gasket decomposition [Borot, Bouttier, Guitter '12]

gasket: a bipartite map
A hole of size $2 k$ in the gasket:
an element of $\mathcal{O}_{k}+$ a "necklace"
\Rightarrow fixed point condition

$$
\left\{\begin{array}{l}
F_{p}(n ; g, h)=B_{p}\left(g_{1}, g_{2}, \ldots\right) \\
g_{k}=g \boldsymbol{\delta}_{k, 2}+n h^{2 k} F_{k}(n ; g, h)
\end{array} \quad(k \geq 1)\right.
$$

The gasket decomposition

The gasket decomposition

A (head) gasket.

Encoding the gasket: the BDG and JS bijections

[Bouttier, Di Francesco, Guitter '04, Janson, Stefánsson '15]

Encoding the gasket: the BDG and JS bijections

Encoding the gasket: the BDG and JS bijections

Encoding the gasket: the BDG and JS bijections

[Bouttier, Di Francesco, Guitter '04, Janson, Stefánsson '15]

$g_{k} \rightsquigarrow$ face of degree $2 k$
$\xrightarrow{B D G} g_{k} \rightsquigarrow \bullet$ of degree k

Encoding the gasket: the BDG and JS bijections

[Bouttier, Di Francesco, Guitter '04, Janson, Stefánsson '15]

$g_{k} \rightsquigarrow$ face of degree $2 k$
$\xrightarrow{B D G} g_{k} \rightsquigarrow \bullet$ of degree k
$\xrightarrow{\text { tabels }} \quad \tilde{g}_{k} \rightsquigarrow \bullet$ of degree $k \quad \tilde{g}_{k}=g_{k}\binom{2 k-1}{k}$

Encoding the gasket: the BDG and JS bijections

[Bouttier, Di Francesco, Guitter '04, Janson, Stefánsson '15]

$g_{k} \rightsquigarrow$ face of degree $2 k$
$\xrightarrow{B D G} \quad g_{k} \rightsquigarrow \bullet$ of degree k
$\xrightarrow{\text { tabels }} \quad \tilde{g}_{k} \rightsquigarrow \bullet$ of degree $k \quad \tilde{g}_{k}=g_{k}\binom{2 k-1}{k}$

Encoding the gasket: the BDG and JS bijections

[Bouttier, Di Francesco, Guitter '04, Janson, Stefánsson '15]

$g_{k} \rightsquigarrow$ face of degree $2 k$
$\xrightarrow{B D G} g_{k} \rightsquigarrow \bullet$ of degree k
$\xrightarrow{\text { tabels }} \quad \tilde{g}_{k} \rightsquigarrow \bullet$ of degree k

Encoding the gasket: the BDG and JS bijections

[Bouttier, Di Francesco, Guitter '04, Janson, Stefánsson '15]

$g_{k} \rightsquigarrow$ face of degree $2 k$
$\xrightarrow{B D G} \quad g_{k} \rightsquigarrow \bullet$ of degree k
$\xrightarrow{\text { tabels }} \quad \tilde{g}_{k} \rightsquigarrow \bullet$ of degree $k \quad \tilde{g}_{k}=g_{k}\binom{2 k-1}{k}$
$\xrightarrow{J S} \quad \tilde{g}_{k} \rightsquigarrow \bullet$ with k descendants $(k \geq 1)$

Encoding the gasket: the BDG and JS bijections

[Bouttier, Di Francesco, Guitter '04, Janson, Stefánsson '15]

$g_{k} \rightsquigarrow$ face of degree $2 k$
$\xrightarrow{B D G} g_{k} \rightsquigarrow \bullet$ of degree k
$\xrightarrow{\text { tabels }} \quad \tilde{g}_{k} \rightsquigarrow \bullet$ of degree $k \quad \tilde{g}_{k}=g_{k}\binom{2 k-1}{k}$
$\xrightarrow{J S} \quad \tilde{g}_{k} \rightsquigarrow \bullet$ with k descendants $(k \geq 1)$ ($1 \rightsquigarrow \circ$ with 0 descendant)

Encoding the gasket: the BDG and JS bijections

pointed bipartite maps under the Boltzmann distribution

$$
\mathbb{P}_{p, \mathbf{g}}^{\bullet}\left(M=\mathfrak{m}^{\bullet}\right)=\frac{\prod_{k=1}^{\infty} g_{k}^{f_{k}\left(\mathfrak{m}^{\bullet}\right)}}{B_{p}^{\bullet}(\mathbf{g})}
$$

face of degree $2 k$ vertices

Galton-Watson tree of offspring distribution

$$
\begin{aligned}
\mu_{\mathrm{JS}}(k) & =\tilde{g}_{k} \kappa^{k-1} \\
& \sim C k^{-\alpha}
\end{aligned}
$$

internal vertex with k children
leaves

Encoding the gasket: the BDG and JS bijections

pointed bipartite maps under the Boltzmann distribution

$$
\mathbb{P}_{p, \mathbf{g}}^{\bullet}\left(M=\mathfrak{m}^{\bullet}\right)=\frac{\prod_{k=1}^{\infty} g_{k}^{f_{k}\left(\mathfrak{m}^{\bullet}\right)}}{B_{p}^{\bullet}(\mathbf{g})}
$$

face of degree $2 k$ vertices

Galton-Watson tree $\xrightarrow{\text { BDG }}$ of offspring distribution

$$
\begin{aligned}
\mu_{\mathrm{JS}}(k) & =\tilde{g}_{k} \kappa^{k-1} \\
& \sim C k^{-\alpha}
\end{aligned}
$$

$\longrightarrow \quad$ internal vertex with k children
leaves

The BDG-JS bijection applies naturally to pointed bipartite maps. To recover a non-pointed Boltzmann map, we need to bias the law of the Galton-Watson tree by $1 /\{$ its number of leaves $\}$.

$$
\mathbb{E}_{p, \mathbf{g}}[F(M)]=\frac{\mathbb{E}_{p, \mathbf{g}}^{\bullet}\left[\frac{1}{\# \mathrm{\# vertex}} F(M)\right]}{\mathbb{E}_{p, \mathbf{g}}^{\bullet}\left[\frac{1}{\# \text { vertex }}\right]}=\frac{\mathbb{E}_{\mathrm{GW}}\left[\frac{1}{\text { \#leaf }} F(T)\right]}{\mathbb{E}_{\mathrm{GW}}\left[\frac{1}{\text { \#leaf }}\right]}
$$

Encoding the gasket: scaling limit of the hole sizes

Conclusion

Let $\left(\chi^{(p)}(i)\right)_{i \geq 1}$ be the half-degrees of faces of the gasket, sorted in \downarrow order and completed with zeros. Then for all bounded functions F,

$$
\mathbb{E}\left[F\left(\chi^{(p)}(i)\right)\right]=\frac{\mathbb{E}\left[\frac{1}{\#\left\{i \leq T_{p}: X_{i}=-1\right\}} F\left(\left(X_{i}+1\right)_{T_{p}}^{\downarrow}\right)\right]}{\mathbb{E}\left[\frac{1}{\#\left\{i \leq T_{p}: X_{i}=-1\right\}}\right]}
$$

where $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ is a random walk with step distribution $\mu(k)=\mu_{\mathrm{JS}}(k+1)(k \geq-1)$ and T_{p} its hitting time of $-p$.

Encoding the gasket: scaling limit of the hole sizes

Conclusion

Let $\left(\chi^{(p)}(i)\right)_{i \geq 1}$ be the half-degrees of faces of the gasket, sorted in \downarrow order and completed with zeros. Then for all bounded functions F,

$$
\mathbb{E}\left[F\left(\chi^{(p)}(i)\right)\right]=\frac{\mathbb{E}\left[\frac{1}{\#\left\{i \leq T_{p}: X_{i}=-1\right\}} F\left(\left(X_{i}+1\right) \frac{1}{T_{p}}\right)\right]}{\mathbb{E}\left[\frac{1}{\#\left\{i \leq T_{p}: X_{i}=-1\right\}}\right]}
$$

where $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ is a random walk with step distribution $\mu(k)=\mu_{\mathrm{JS}}(k+1)(k \geq-1)$ and T_{p} its hitting time of $-p$.

When p is large, $\#\left\{i \leq T_{p}: X_{i}=-1\right\} \approx \mu(-1) T_{p}$.

Encoding the gasket: scaling limit of the hole sizes

Conclusion

Let $\left(\chi^{(p)}(i)\right)_{i \geq 1}$ be the half-degrees of faces of the gasket, sorted in \downarrow order and completed with zeros. Then for all bounded functions F,

$$
\mathbb{E}\left[F\left(\chi^{(p)}(i)\right)\right] \approx \frac{\mathbb{E}\left[\frac{1}{T_{p}} F\left(\left(X_{i}+1\right)_{T_{p}}^{\downarrow}\right)\right]}{\mathbb{E}\left[\frac{1}{T_{p}}\right]} \approx \frac{\mathbb{E}\left[\frac{1}{\tau} F\left((\Delta \zeta)_{\tau}^{\downarrow}\right)\right]}{\mathbb{E}\left[\frac{1}{\tau}\right]}
$$

where $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ is a random walk with step distribution $\mu(k)=\mu_{\mathrm{JS}}(k+1)(k \geq-1)$ and T_{p} its hitting time of $-p$.

When p is large, $\#\left\{i \leq T_{p}: X_{i}=-1\right\} \approx \mu(-1) T_{p}$.

Proposition

$\left(p^{-1} \chi^{(p)}(i)\right)_{i \geq 1} \underset{p \rightarrow \infty}{\Longrightarrow} \nu_{\alpha}$ as $p \rightarrow \infty$ in the sense of finite dimensional marginals.

An identity on random walks

Theorem (CCM)

Let $S_{n}=X_{1}+\cdots+X_{n}$ be a random walk with steps $X_{i} \in\{-1,0,1, \cdots\}$. Let T_{p} be its hitting time of $-p$. Then, for all $f: \mathbb{Z} \rightarrow \mathbb{R}_{+}$and all $p \geq 2$,

$$
\mathbb{E}\left[\frac{1}{T_{p}-1} \sum_{i=1}^{T_{p}} f\left(X_{i}\right)\right]=\mathbb{E}\left[f\left(X_{1}\right) \frac{p}{p+X_{1}}\right] .
$$

An identity on random walks

Theorem (CCM)

Let $S_{n}=X_{1}+\cdots+X_{n}$ be a random walk with steps $X_{i} \in\{-1,0,1, \cdots\}$. Let T_{p} be its hitting time of $-p$. Then, for all $f: \mathbb{Z} \rightarrow \mathbb{R}_{+}$and all $p \geq 2$,

$$
\mathbb{E}\left[\frac{1}{T_{p}-1} \sum_{i=1}^{T_{p}} f\left(X_{i}\right)\right]=\mathbb{E}\left[f\left(X_{1}\right) \frac{p}{p+X_{1}}\right] .
$$

Theorem (CCM)

Let $\left(\eta_{t}\right)_{t \geq 0}$ be a Lévy process without negative jumps and of Lévy measure π. Let τ be its hitting time at -1 . Then, for all measurable $f: \mathbb{R}_{+}^{*} \rightarrow \mathbb{R}_{+}$

$$
\mathbb{E}\left[\frac{1}{\tau} \sum_{t \leq \tau} f\left(\Delta \eta_{t}\right)\right]=\int f(x) \frac{1}{1+x} \pi(\mathrm{~d} x)
$$

Proof of the discrete identity

Kemperman's formula (/cyclic lemma /ballot theorem)
If the F is invariant under cyclic permutation of its arguments, then

$$
\mathbb{E}\left[F\left(X_{1}, \cdots, X_{n}\right) \mathbf{1}_{\left\{T_{p}=n\right\}}\right]=\frac{p}{n} \mathbb{E}\left[F\left(X_{1}, \cdots, X_{n}\right) \mathbf{1}_{\left\{S_{n}=-p\right\}}\right]
$$

Proof of the discrete identity

Kemperman's formula (/cyclic lemma /ballot theorem ...)
If the F is invariant under cyclic permutation of its arguments, then

$$
\mathbb{E}\left[F\left(X_{1}, \cdots, X_{n}\right) \mathbf{1}_{\left\{T_{p}=n\right\}}\right]=\frac{p}{n} \mathbb{E}\left[F\left(X_{1}, \cdots, X_{n}\right) \mathbf{1}_{\left\{S_{n}=-p\right\}}\right]
$$

Proof.

$$
\begin{aligned}
A_{n} & :=\mathbb{E}\left[\sum_{i=1}^{n} f\left(X_{i}\right) \mathbf{1}_{\left\{T_{p}=n\right\}}\right]=\frac{p}{n} \mathbb{E}\left[\sum_{i=1}^{n} f\left(X_{i}\right) \mathbf{1}_{\left\{S_{n}=-p\right\}}\right] & & \text { by Kemperman's formula } \\
& =p \mathbb{E}\left[f\left(X_{1}\right) \mathbf{1}_{\left\{S_{n}=-p\right\}}\right] & & \text { by cyclic symmetry } \\
& =p \mathbb{E}\left[f\left(X_{1}\right) \mathbf{1}_{\left\{\tilde{S}_{n-1}=-p-X_{1}\right\}}\right] & & \text { by Markov property } \\
& =p \mathbb{E}\left[f\left(X_{1}\right) \frac{n-1}{p+X_{1}} \mathbf{1}_{\left\{\tilde{T}_{\left.p+X_{1}=n-1\right\}}\right.}\right] & & \text { by Kemperman's formula. }
\end{aligned}
$$

Proof of the discrete identity

Kemperman's formula (/cyclic lemma /ballot theorem . . .)

If the F is invariant under cyclic permutation of its arguments, then

$$
\mathbb{E}\left[F\left(X_{1}, \cdots, X_{n}\right) \mathbf{1}_{\left\{T_{p}=n\right\}}\right]=\frac{p}{n} \mathbb{E}\left[F\left(X_{1}, \cdots, X_{n}\right) \mathbf{1}_{\left\{S_{n}=-p\right\}}\right]
$$

Proof.

$$
\begin{aligned}
A_{n} & :=\mathbb{E}\left[\sum_{i=1}^{n} f\left(X_{i}\right) \mathbf{1}_{\left\{T_{p}=n\right\}}\right]=\frac{p}{n} \mathbb{E}\left[\sum_{i=1}^{n} f\left(X_{i}\right) \mathbf{1}_{\left\{S_{n}=-p\right\}}\right] & & \text { by Kemperman's formula } \\
& =p \mathbb{E}\left[f\left(X_{1}\right) \mathbf{l}_{\left\{S_{n}=-p\right\}}\right] & & \text { by cyclic symmetry } \\
& =p \mathbb{E}\left[f\left(X_{1}\right) \mathbf{1}_{\left\{\tilde{S}_{n-1}=-p-X_{1}\right\}}\right] & & \text { by Markov property } \\
& =p \mathbb{E}\left[f\left(X_{1}\right) \frac{n-1}{p+X_{1}} \mathbf{1}_{\left\{\tilde{T}_{\left.p+X_{1}=n-1\right\}}\right]}\right. & & \text { by Kemperman's formula. }
\end{aligned}
$$

For $p \geq 2$ we have always $T_{p} \geq 2$, hence

$$
\begin{aligned}
\mathbb{E}\left[\frac{1}{T_{p}-1} \sum_{i=1}^{T_{p}} f\left(X_{i}\right)\right]=\sum_{n=2}^{\infty} \frac{A_{n}}{n-1} & =p \sum_{n=2}^{\infty} \mathbb{E}\left[f\left(X_{1}\right) \frac{1}{p+X_{1}} \mathbf{1}_{\left\{\tilde{T}_{p+X_{1}}=n-1\right\}}\right] \\
& =\mathbb{E}\left[f\left(X_{1}\right) \frac{p}{p+X_{1}}\right] .
\end{aligned}
$$

Consequences of the identities

- The Mellin transform of the continuous cascade Z_{α} : for $\theta \in(\alpha, \alpha+1)$,

$$
\frac{\mathbb{E}\left[\frac{1}{\tau} \sum_{t \leq \tau}\left(\Delta \eta_{t}\right)^{\theta}\right]}{\mathbb{E}\left[\frac{1}{\tau}\right]}=\frac{\int \frac{x^{\theta}}{1+x} \pi(\mathrm{~d} x)}{\int \frac{1}{1+x} \pi(\mathrm{~d} x)}=\frac{\sin (\pi(2-\alpha))}{\sin (\pi(\theta-\alpha))}
$$

Consequences of the identities

- The Mellin transform of the continuous cascade Z_{α} : for $\theta \in(\alpha, \alpha+1)$,

$$
\frac{\mathbb{E}\left[\frac{1}{\tau} \sum_{t \leq \tau}\left(\Delta \eta_{t}\right)^{\theta}\right]}{\mathbb{E}\left[\frac{1}{\tau}\right]}=\frac{\int \frac{x^{\theta}}{1+x} \pi(\mathrm{~d} x)}{\int \frac{1}{1+x} \pi(\mathrm{~d} x)}=\frac{\sin (\pi(2-\alpha))}{\sin (\pi(\theta-\alpha))}
$$

- Convergence of moments of the offspring distribution

$$
\mathbb{E}\left[\sum_{i=1}^{\infty}\left(p^{-1} \chi^{(p)}(i)\right)^{\theta}\right] \underset{p \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[\sum_{i=1}^{\infty}\left(Z_{\alpha}(i)\right)^{\theta}\right]
$$

Consequences of the identities

- The Mellin transform of the continuous cascade Z_{α} : for $\theta \in(\alpha, \alpha+1)$,

$$
\frac{\mathbb{E}\left[\frac{1}{\tau} \sum_{t \leq \tau}\left(\Delta \eta_{t}\right)^{\theta}\right]}{\mathbb{E}\left[\frac{1}{\tau}\right]}=\frac{\int \frac{x^{\theta}}{1+x} \pi(\mathrm{~d} x)}{\int \frac{1}{1+x} \pi(\mathrm{~d} x)}=\frac{\sin (\pi(2-\alpha))}{\sin (\pi(\theta-\alpha))}
$$

- Convergence of moments of the offspring distribution

$$
\mathbb{E}\left[\sum_{|u|=k}\left(p^{-1} \chi^{(p)}(u)\right)^{\theta}\right] \underset{p \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[\sum_{|u|=k}\left(Z_{\alpha}(u)\right)^{\theta}\right]
$$

Consequences of the identities

- The Mellin transform of the continuous cascade Z_{α} : for $\theta \in(\alpha, \alpha+1)$,

$$
\frac{\mathbb{E}\left[\frac{1}{\tau} \sum_{t \leq \tau}\left(\Delta \eta_{t}\right)^{\theta}\right]}{\mathbb{E}\left[\frac{1}{\tau}\right]}=\frac{\int \frac{x^{\theta}}{1+x} \pi(\mathrm{~d} x)}{\int \frac{1}{1+x} \pi(\mathrm{~d} x)}=\frac{\sin (\pi(2-\alpha))}{\sin (\pi(\theta-\alpha))}
$$

- Convergence of moments of the offspring distribution

$$
\mathbb{E}\left[\sum_{|u|=k}\left(p^{-1} \chi^{(p)}(u)\right)^{\theta}\right] \underset{p \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[\sum_{|u|=k}\left(Z_{\alpha}(u)\right)^{\theta}\right]
$$

- For all $k \in \mathbb{N}$: convergence in $\ell^{\infty}\left(\mathcal{U}_{k}\right)$ of the perimeter cascade $\left(\mathcal{U}_{k}\right.$: first k generations of the Ulam tree).

Consequences of the identities

- The Mellin transform of the continuous cascade Z_{α} : for $\theta \in(\alpha, \alpha+1)$,

$$
\frac{\mathbb{E}\left[\frac{1}{\tau} \sum_{t \leq \tau}\left(\Delta \eta_{t}\right)^{\theta}\right]}{\mathbb{E}\left[\frac{1}{\tau}\right]}=\frac{\int \frac{x^{\theta}}{1+x} \pi(\mathrm{~d} x)}{\int \frac{1}{1+x} \pi(\mathrm{~d} x)}=\frac{\sin (\pi(2-\alpha))}{\sin (\pi(\theta-\alpha))}
$$

- Convergence of moments of the offspring distribution

$$
\mathbb{E}\left[\sum_{|u|=k}\left(p^{-1} \chi^{(p)}(u)\right)^{\theta}\right] \underset{p \rightarrow \infty}{\longrightarrow} \mathbb{E}\left[\sum_{|u|=k}\left(Z_{\alpha}(u)\right)^{\theta}\right]
$$

- For all $k \in \mathbb{N}$: convergence in $\ell^{\infty}\left(\mathcal{U}_{k}\right)$ of the perimeter cascade $\left(\mathcal{U}_{k}\right.$: first k generations of the Ulam tree).
- Convergence in $\ell^{\infty}(\mathcal{U})$: NOT a consequence, obtained by other methods (martingale inequalities and exact bounds on volume of random quadrangulations with small perimeter).

Relation with results on CLE

Map $+O(n) \leftrightarrow$ LQG + CLE

Common belief: \exists embedding of planar maps to unit disk \mathbb{D} (uniformization, circle packing...), such that
volume measure of random planar map $+O(n)$ loops $\rightarrow \mathrm{LQG}_{\gamma}+\mathrm{CLE}_{\kappa}$
Parameters related by

$$
\alpha-\frac{3}{2}= \pm \frac{1}{\pi} \arccos (n / 2)=\frac{4}{\kappa}-1, \quad \gamma=\sqrt{\min (\kappa, 16 / \kappa)}
$$

Let's focus on the dilute phase:

$$
\alpha>3 / 2, \quad \kappa<4, \quad \gamma=\sqrt{\kappa}
$$

Then we saw before: $\operatorname{Vol}_{p} \sim p^{2}$.

Nb of loops around small balls in random quadrangulation

For $\delta>0$ (small), consider the set \mathcal{L}_{δ} of vertices u in the Ulam tree such that $Z_{\alpha}(u)^{2}<\delta$ and $Z_{\alpha}(\nu)^{2} \geq \delta$ for all $\nu \prec u$. Define

$$
W^{(\theta), \delta}=\sum_{u \in \mathcal{L}_{\delta}} \varphi_{\alpha}(\theta)^{-|u|} Z_{\alpha}(u)^{\theta}
$$

Then since $\left(W_{n}^{(\theta)}\right)_{n \geq 0}$ is u.i.,

$$
1=\mathbb{E}\left[W^{(\theta), \delta}\right] \approx \delta^{\theta / 2} \mathbb{E}\left[\sum_{u \in \mathcal{L}_{\delta}} \varphi_{\alpha}(\theta)^{-|u|}\right]
$$

Suggests: if we partition the vertices of the quadrangulation into metric balls $B_{\delta}(\nu)$ of volume δ and denote by $N_{\delta}(\nu)$ the number of vertices surrounding the ball $B_{\delta}(\nu)$, then (cf Borot, Bouttier, Duplantier '16)

$$
\mathbb{E}\left[\sum_{v} \phi_{\alpha}(\theta)^{-N_{\delta}(v)}\right] \approx \delta^{-\theta / 2}
$$

Nb of loops around small quantum balls, $\mathrm{LQG}_{\sqrt{\kappa}}+\mathrm{CLE}_{\kappa}$

$\widetilde{N}_{r}=$ number of CLE_{κ} loops surrounding Euclidean ball of radius $r>0$. Then (Schramm, Sheffield, Wilson '09, Miller, Sheffield, Watson '16)

$$
\begin{gathered}
\mathbb{E}\left[\psi_{\kappa}(\widetilde{\theta})^{-\widetilde{N}_{r}}\right] \approx r^{-\widetilde{\theta}}, \text { where } \\
\psi_{\kappa}(\widetilde{\theta})=\frac{-\cos (4 \pi / \kappa)}{\cos \left(\pi \sqrt{(1-4 / \kappa)^{2}-8 \widetilde{\theta} / \kappa}\right)}=\phi_{\alpha}\left(1+\frac{4}{\kappa}-\sqrt{(1-4 / \kappa)^{2}-8 \widetilde{\theta} / \kappa}\right)
\end{gathered}
$$

Nb of loops around small quantum balls, $\operatorname{LQG}_{\sqrt{\kappa}}+\mathrm{CLE}_{\kappa}$

$\widetilde{N}_{r}=$ number of CLE_{κ} loops surrounding Euclidean ball of radius $r>0$. Then (Schramm, Sheffield, Wilson '09, Miller, Sheffield, Watson '16)

$$
\begin{gathered}
\mathbb{E}\left[\psi_{\kappa}(\widetilde{\theta})^{-\widetilde{N}_{r}}\right] \approx r^{-\tilde{\theta}}, \quad \text { where } \\
\psi_{\kappa}(\widetilde{\theta})=\frac{-\cos (4 \pi / \kappa)}{\cos \left(\pi \sqrt{\left.(1-4 / \kappa)^{2}-8 \widetilde{\theta} / \kappa\right)}\right.}=\phi_{\alpha}\left(1+\frac{4}{\kappa}-\sqrt{\left.(1-4 / \kappa)^{2}-8 \widetilde{\theta} / \kappa\right)} .\right.
\end{gathered}
$$

Explanation (cf BBD16 for similar derivation): partition space into squares of quantum volume $\approx \delta . N(S)=$ number of CLE loops surrounding square S. Then,

$$
\mathbb{E}\left[\sum_{S} \psi_{\kappa}(\widetilde{\theta})^{-\widetilde{N}(S)}\right] \approx \delta^{\frac{1}{2}\left(-1-\frac{4}{\kappa}+\sqrt{(1-4 / \kappa)^{2}-8 \widetilde{\theta} / \kappa}\right)}
$$

Comparison with quandragulations: $\theta=1+\frac{4}{\kappa}-\sqrt{(1-4 / \kappa)^{2}-8 \widetilde{\theta} / \kappa}$, $\psi_{\kappa}(\widetilde{\theta})=\phi_{\alpha}(\theta)$.

Thank you for your attention!

