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The Asymmetric Simple exclusion Process (ASEP)
Particles propagating under the effect of an external field

E

No detailed balance: Macroscopic particle current

p q

I One dimensional lattice
I Exclusion: at most one particle per site
I Asymmetric: jump rate to the right q, to the left p
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Applications
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Multispecies generalization: M-ASEP

One can think at empty spaces and particles as two species of
particles (0 and 1) that exchange their positions

0

1

It is then natural to allow any integer label α for different species
of particles and assume that the rates pα,β for a local exchange
α↔ β depends on the species involved.

α β
pα,β
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Multispecies ASEP on a ring

If we put the M-ASEP on a ring Z/LZ, a state of this system is
just a periodic word w of length L(w) = L, wi = wi+L.

w = {1, 1, 2, 3, 1, 2}
1

1

23

1

2
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The dynamics conserves the total number of particles of a given
species. We denote the species content of a configuration w by

m(w) = {. . . ,mα(w),mα+1(w), . . . } ∈ NZ

which means that we have mα(w) particles of species α∑
α=Z

mα(w) = L(w)
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Up to equivalence we can assume mi ≥ 1 for 1 ≤ i ≤ r and zero
otherwise.
For the example above we have

m(w) = {m1 = 3,m2 = 2,m3 = 1}, L = 6
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Master equation
The master equation for the time evolution of the probability of a
configuration is

d
dt Pw (t) =

∑
w ′|w ′→w

Mw ,w ′Pw (t)−
∑

w ′|w→w ′
Mw ′,w Pw (t)

d
dt P(t) =MP(t)

An important remark here is that the Markov matrix M is the sum
of local terms acting on Vm, the vector space with a basis labeled
by configurations of content m

M =
L∑

i=1
M(i), M(i) =

∑
1≤α 6=β≤N

pα,βM(i)
α,β

In this talk I will focus on the stationary probability MP = 0

Luigi Cantini Multispecies TASEP



Master equation
The master equation for the time evolution of the probability of a
configuration is

d
dt Pw (t) =

∑
w ′|w ′→w

Mw ,w ′Pw (t)−
∑

w ′|w→w ′
Mw ′,w Pw (t)

d
dt P(t) =MP(t)

An important remark here is that the Markov matrix M is the sum
of local terms acting on Vm, the vector space with a basis labeled
by configurations of content m

M =
L∑

i=1
M(i), M(i) =

∑
1≤α 6=β≤N

pα,βM(i)
α,β

In this talk I will focus on the stationary probability MP = 0

Luigi Cantini Multispecies TASEP



Master equation
The master equation for the time evolution of the probability of a
configuration is

d
dt Pw (t) =

∑
w ′|w ′→w

Mw ,w ′Pw (t)−
∑

w ′|w→w ′
Mw ′,w Pw (t)

d
dt P(t) =MP(t)

An important remark here is that the Markov matrix M is the sum
of local terms acting on Vm, the vector space with a basis labeled
by configurations of content m

M =
L∑

i=1
M(i), M(i) =

∑
1≤α 6=β≤N

pα,βM(i)
α,β

In this talk I will focus on the stationary probability MP = 0

Luigi Cantini Multispecies TASEP



M-TASEP: positivity conjectures
The case that we are interested in is

pα,β =

{
0 for α ≥ β

τα + νβ for α < β

We’ll see later where this choice comes from.
For some content m, call w∗ the weackly increasing word

wi ≤ wi+1

and normalize the stationary “probability”

ψw∗ = χm(τ, ν) :=
∏
α<β

(τα + νβ)(β−α−1)(mα+mβ−1)

Positivity Conjecture [Lam & Williams, LC]
The components ψw (τ, ν) are prime polynomials in τ, ν with positive
integer coefficients
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Combinatorics: να = 0 and multiline queues
I The positivity conjecture has been settled by Arita and

Mallick in the case να = 0 in terms of multiline queus as
conjectured by Ayyer and Linusson.

I A multiline queue (Ferrari et al.) of type m is a Z× L array
(L =

∑
mi ), which has

∑
j≤i mj particles on the i-th row.

I To a multiline queue q one can associate a M-TASEP state of
content m through the Bully Path algorithm.
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Combinatorics: να = 0 and multiline queues

Theorem [Arita Mallick]

ψw ∝
∑

q|BP(q)=w

∏
α<β

(
τβ
τα

)zα,β(q)

where zα,β(q) is the number of vacancies on row j that are covered
by a i Bully Path.

Open question
Generalize such a construction to the case να 6= 0?
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Double Schubert polynomials [Lascoux-Schützenberger]
Let t = t1, t2, . . . and v = v1, v2 . . . two infinite sets of commuting
variables
Definition: double Schubert polynomials
For the longest permutation σ0 ∈ Sn

Sσ0(t, v) :=
∏

i+j≤n
(ti − vj)

for generic σ ∈ Sn

Sσ(t, v) = ∂σ−1σ0Sσ0(t, v)

where ∂σ = ∂si1
∂si2

. . . ∂si`
, (si1 · si2 · · · si` is a reduced

decomposition of σ) and

∂si1
=

1− st
i

ti − ti+1
, st

i : ti ↔ ti+1.
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Conjecture
I The functions ψw (τ, ν) can be expressed as polynomials of

double Schubert polynomials with the variables t, v choosen as

t =

m1︷ ︸︸ ︷
τ1, . . . , τ1,

m2︷ ︸︸ ︷
τ2, . . . , τ2, . . . ,

mr−1︷ ︸︸ ︷
τr−1, . . . , τr−1

v = −νr , . . . ,−νr︸ ︷︷ ︸
mr

,−νr−1, . . . ,−νr−1︸ ︷︷ ︸
mr−1

, . . . ,−ν2, . . . ,−ν2︸ ︷︷ ︸
m2

with positive integer coefficients.
I The double Schubert polynomials appearing in the expression

of ψw (τ, ν) correspond to permutations in σ ∈ SL(w) such that

L−mr < i < j −→ σi < σj

L−m1 < i < j −→ σ−1
i < σ−1

j .
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Multispecies ASEP: Integrability
Suppose that we have a matrix Ř(x , y) depending on two formal
commuting variables, such that

Ř(x , x) = 1, d
dx Ř(x , y)|x=y=0 ∝

∑
1≤α 6=β,N

pα,βMα,β

and a vector

ψ(z) ∈ Vm ⊗ C[z], z = {z1, . . . , zL}

that satisfies the following
Exchange equations

Ři (zi , zi+1)ψ(z) = si ◦ ψ(z)

where si acts on the polynomial part C[z] by the exchange
zi ↔ zi+1.

Luigi Cantini Multispecies TASEP



Multispecies ASEP: Integrability

Lemma
The specialization ψ(0) is proportional to the M-ASEP stationary
probability

Mψ(0) = 0

Proof.
Differentiating the exchange equations we get

d
dzi

Ř(zi , zi+1)|zi=zi+1=0ψ(0) = ∂i+1ψ(0)− ∂iψ(0)

These are terms of a telescopic sum
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Multispecies ASEP: Integrability
I Consistency of the exchange equations is ensured by the

unitarity relation

Ři (x , y)Ři (y , x) = 1

and the braid Yang-Baxter equation

Ři (y , z)Ři+1(x , z)Ři (x , y) = Ři+1(x , y)Ři (x , z)Ři+1(y , z)

I We search the Ř−matrix of the “baxterized” form

Ř(x , y) = 1 +
∑

1≤α 6=β≤N
gα,β(x , y)Mα,β

I Suppose that ∀α 6= β, gα,β 6= 0 then the only solution (up to
permutation of the species) corresponds to

pα,β =

{
p for α < β
q for α > β

multispecies ASEP introduced by Rittenberg et al.
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Multispecies TASEP: baxterized form of R-matrix

Proposition
If for some α 6= β, gα,β = 0 then, up to species relabelling, the most
general baxterized R−matrix is of the form

Ř(x , y) = 1 +
∑

1≤α<β≤N
gα,β(x , y)Mα,β

with

gα,β(x , y) =
(y − x)(τα + νβ)

(ταy − 1)(νβx + 1)
→ pα<β = τα + νβ

Lemma
The exchange equations corresponding the the Ř matrix of the Mul-
tispecies TASEP admit a polynomial solution, unique up to multi-
plication of a completely symmetric polynomial in the z.
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Ř(x , y) = 1 +
∑

1≤α<β≤N
gα,β(x , y)Mα,β

with

gα,β(x , y) =
(y − x)(τα + νβ)

(ταy − 1)(νβx + 1)
→ pα<β = τα + νβ

Lemma
The exchange equations corresponding the the Ř matrix of the Mul-
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Exchange equations in components

Once expanded in components, the exchange equations read as
follows

ψ...,wi=wi+1,...(z) = si ◦ ψ...,wi=wi+1,...(z)

ψ...,wi>wi+1,...(z) = π̂i (wi ,wi+1)ψ...,wi+1,wi ,...(z)

and

π̂i (α, β) =
(ταzi+1 − 1)(νβzi + 1)

τα + νβ

1− si
zi − zi+1

This system of equation is cyclic: if ψw (z) is known for a given
configuration w , one can obtain ψw ′(z) for any other w ′ by acting
with the π̂ operators.
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Affine 0-Hecke algebra with spectral parameters

The operators π̂i (α, β) satisfy a spectral parameter deformation
(not baxterization!) of the 0-Hecke algebra (recovered for tα and
να independent of α)

π̂2
i (α, β) = −π̂i (α, β)

π̂i (β, γ)π̂i+1(α, γ)π̂i (α, β) = π̂i+1(α, β)π̂i (α, γ)π̂i+1(β, γ)

[π̂i (α, β), π̂j(γ, δ)] = 0 |i − j | > 2
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Simple consequences of the exchange equations

• If the configuration w has a sub-sequence
w` ≤ w`+1 ≤ · · · ≤ wk−1 ≤ wk then

ψw (z) =
k∏

i=`

 ∏
α∈w`,k
α<wi

(ταzi − 1)
∏

α∈w`,k
β>wi

(νβzi + 1)

 ψ̃w (z)

where ψ̃w (z) is symmetric in the variable {z`, . . . , zk}
• In particular if w = w∗ has minimum number of descents
w` ≤ w` ≤ · · · ≤ w`−2 ≤ w`−1 then ψ̃w∗(z) is symmetric in the
whole set of variables z and by cyclicity is a common factor of all
the ψw (z).
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Simple consequences of the exchange equations

• Normalization choice

ψw∗(z) = χm(τ, ν)
L∏

i=1

 ∏
α<w∗i

(1− ταzi )
∏
β>w∗i

(1 + νβzi )


• The solution of the exchange equation of minimal degree in the
sector m has degree

degzi ψ
(m)(z) = r − 1

Theorem
With the normalization given above, the components ψw are poly-
nomials in all their variables (z, τ, ν) with no common factors.
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Recursions

Proposition
By specializing zL = τ−1

1 or zL = −ν−1
r we have the following

recursion
ψw1(z)|zL=τ

−1
1

= K−(z \ zL)ψw (z \ zL)

ψwr (z)|zL=−ν−1
r

= K+(z \ zL)ψw (z \ zL)

where the factors K±(z \ zL) can be easily computed by inspection
of ψw∗(z).
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Simplest non trivial component
Let w (α) be a configuration such that for i ≤ j ≤ L−mα

wi 6= α and wi ≤ wj

For example
w (3) = 1 1 2 4 4 4 5 6 6 3 3 3

Then

ψ
(m)

w (α)(z) = (Trivial Factors)× φ(m)
α (z1, . . . , zL−mα)

where φ(m)
α (z1, . . . , zL−mα) is a symmetric polynomial in

z1, . . . , zL−mα of degree 1 in each variable separately.
I Thanks to the recursion relations they can be computed

explicitly
I These polynomials turn out to be the building blocks of more

general components
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Simplest non trivial component
For any n > 0 and 1 ≤ β ≤ n define the following polynomials

Φn
β(z; t; v) := ∆(t, v)

∮
t

dw
2πi

∏n−1
i=1 (1− wzi )∏

1≤ρ≤β(w − tρ)
∏

1≤σ≤n−β+1(w − vσ)

For z = 0 these specialize to the double Schubert Polynomials

Φn
β(0; t; v) = S1,β+1,β+2,...n,2,3,...,β(t; v)

1

1

2

2 β

(n−β+1) n

n

Luigi Cantini Multispecies TASEP



Proposition

φ(m)
α (z1, . . . , zL−mα) = ΦL−mα

β (z; t; v)

with β = 1 +
∑
γ<α mγ , and

t = {. . . ,
mγ︷ ︸︸ ︷

τγ , . . . , τγ , . . . ,

mα−1︷ ︸︸ ︷
τα−1, . . . , τα−1, τα}

v = {−να,−να+1, . . . ,−να+1︸ ︷︷ ︸
mα+1

, . . . ,−νγ , . . . ,−νγ︸ ︷︷ ︸
mγ

, . . . }
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Factorization of components with least ascending

We have seen that to each “ascent” in a configuration w one has a
bunch of trivial factors, therefore the intuition is that the more
ascents w has the “simpler” is its component ψw .
Actually the configurations w̃ which have minimal number of
ascent are also computable
Exm

w̃ = 6 6 5 4 4 4 3 3 3 2 1 1

Theorem
Calling zα = {zi |wi = α}

ψw̃ =
∏
α

φ(m)
α (z \ zα)
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Factorization of components with least ascending:
corollaries

Consider the case mα = 1 for 1 ≤ α ≤ L and specialize z = 0
Corollary
The formula for the least ascending component implies and gener-
alizes a formula conjectured by Lam and Williams which expresses
ψw̃ as a product of double-Schubert Polynomials of τ, ν

ψL,L−1,...,1 = S1,2,3...,LS1,3,4...,L,2S1,4,5,...,L,2,3S1,L,2,3...,L−1

Actually we get something more: suppose that

w = wL j wR

with wL
i > j > wR

h then

ψw ∝ S1, j+1, j+2,...,L,2,..., j,L+1,L+2,...
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Factorization of components with least ascending:
corollaries

Suppose that w splits as w (k)w (k−1) . . .w (2)w (1),

w (r)
i < w (s)

j for r < s

Exm:
w = 6 5 6

∣∣∣4 3 4 4 3 3
∣∣∣2 1 1

Then

ψw = ψ̄w (k)ψ̄w (k−1) · · · ψ̄w (2)ψ̄w (1)

This means that under conditioning of splitting
w = w (k)w (k−1) . . .w (2)w (1) the w (j) are independent.
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Normalization

In order to compute actual probabilities we need the partition
function

Z(m)(z) =
∑

w |m(w)=m
ψw (z)

Thanks to the exchange relations this polynomial turns out to be
symmetric in z.
For simplicity let me present the general formula for the case
mα = 1

Z(m)(z) = Symz

[
ψ1···(L−1)L(zσ0)ψL(L−1)···1(z)∏

1≤α<β≤L(τα − νβ)β−α∆(z)

]

Where σ0 is the longest permutation in SL,
σ0 = (L, L− 1, . . . , 2, 1).
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Factorization of the sum rule

If for some γ we have

να = ν for 1 ≤ α ≤ γ
τα = τ for γ ≤ α ≤ r

Then the partition function factorizes

Z(m)(z) =
γ−1∏
α=1

φ(m
↑
α)

α (z)
r∏

α=γ+1
φ(m

↓
α)

α (z)

where
m↓α = Πα−1

α,α+1,...m, m↑α = Πα+1
...,α−1,αm
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Some open questions

I Correlation functions, currents, etc.
I Do the components ψw (z) have a combinatorial expression?
I What is the “right” context for the 0-Hecke algebra with

spectral parameters?
The operators π̂(α, β) can be used for example to define a
family of deformed Grothendieck “polynomials” which depend
on the parameters τ, ν. Do they have any geometric meaning?

I Deal with others Weyl groups.

Luigi Cantini Multispecies TASEP



Some open questions

I Correlation functions, currents, etc.
I Do the components ψw (z) have a combinatorial expression?
I What is the “right” context for the 0-Hecke algebra with

spectral parameters?
The operators π̂(α, β) can be used for example to define a
family of deformed Grothendieck “polynomials” which depend
on the parameters τ, ν. Do they have any geometric meaning?

I Deal with others Weyl groups.

Luigi Cantini Multispecies TASEP



Some open questions

I Correlation functions, currents, etc.
I Do the components ψw (z) have a combinatorial expression?
I What is the “right” context for the 0-Hecke algebra with

spectral parameters?
The operators π̂(α, β) can be used for example to define a
family of deformed Grothendieck “polynomials” which depend
on the parameters τ, ν. Do they have any geometric meaning?

I Deal with others Weyl groups.

Luigi Cantini Multispecies TASEP



Some open questions

I Correlation functions, currents, etc.
I Do the components ψw (z) have a combinatorial expression?
I What is the “right” context for the 0-Hecke algebra with

spectral parameters?
The operators π̂(α, β) can be used for example to define a
family of deformed Grothendieck “polynomials” which depend
on the parameters τ, ν. Do they have any geometric meaning?

I Deal with others Weyl groups.

Luigi Cantini Multispecies TASEP


